Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 1319-1327 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

STRUCTURAL DESIGN AND VIBRATION CONTROL FOR A
CANTILEVER BEAM

Alexandre Molter? Jun S. O. Fonseca’, Valdecir Bottega®

@Universidade Federal de Pelotas, Dep. Mathematius Statistics, Campus Universitario,
s/n®, 354, 96010-900, Pelotas, RS, Brazil, alexamiiter@yahoo.com.br,
valdecir.bottega@ufpel.edu.br

P Universidade Federal do Rio Grande do Sul, Dep.heacal Engineering, R. Sarmento Leite, 425,
90050-170, Porto Alegre, RS, Brazil, jun@ufrgs.br

Keywor ds: Optimization, control, vibrations, dynamics.

Abstract. The objective of this work is to present a stuat design methodology considering the
control effects, the change of the topology by at® force action, and design modal control for
suitable fixed actuator locations. The structurptimization design in a cantilever structure is
completed through a homogenization design methddlewthe control force is obtained by the
optimal control design for transient response aadopmed in the modal space. In this work the
actuators locations are chosen arbitrarily priath®structural design. In fact, it is a known fewt a
good location for an actuator in a cantilever duite is close the fixed size of the structure, siitc
acts upon the first and most significant mode. tveer fundamental modes are responsible for the
most of the tip displacement of the beam; therefheefirst two eigenfunctions are computed and
considered in the work. The additional dynamics andtrol design were included in a topology
optimization code. Simulations were conducted &eas the optimality and control model efficiency.
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1 INTRODUCTION

Structural topology optimization and structwilaration control have called attention both
in theoretical research and practical applicationsngineering. Structural vibration control is
a particularly important consideration in the dasig dynamic systems. The main idea of the
structural optimization is to obtain an optimal erél layout of a load-bearing structure.
Usually, continuum topology optimization probleme éormulated to minimize the structural
material volume or to optimize the structural parfance. A typical example is to raise the
first fundamental frequency of a structure whileyihg a volume constraint (Zhan, Xiaoming
and Rui, 2009). Meanwhile, structural dynamics omnis used to minimize or suppress
vibration effects.

There are always fundamental interest in asigith efficient structural control system
from both structural and control engineers. Howgeuwbese groups have been working
independently. Traditionally, the structural desigdevelops his design based on strength and
stiffness requirements, and the control designeates the control algorithm to reduce the
dynamic response of a structure (Ou and Kikuch@6)9In this work we are designing the
structure and controls simultaneously, meaning thatcost function includes not only the
strain energy, but also the control energy.

The reason why topology optimization is beawgna very important research field is the
necessity of efficient methodologies to designdtmes, thus saving material and time. The
main objective of the topology optimization problemto find a material distribution that
minimizes a given objective functional, subjecteda set of constraints, achieved by a
consistent parameterization of the material progerin each part of the design domain. A
natural question is whether there exists or notenedtin a given point, which leads to a
discrete problem. It is well-known that this integearameterization leads to numerical
difficulties, associated with the integer probleoneergence (Cardoso and Fonseca, 2003;
Bendsge and Kikuchi, 1988; Bendsge and Sigmund®)188inimizing the vibration effects
of the dynamic response is an important goal fer structural vibration control, and the
effectivity of the control depends on the weightimgtrices.

The objective of this paper is to presentracsuiral design methodology considering the
control effects, the change of the topology by it force action, and design modal control
for suitable fixed actuator locations. The struataptimization design is completed through a
density design method, while the control force lisa;med by the optimal control design for
transient response and performed in the modal space

The efficient structural control design neadsareful selection of actuator positions (Ou
and Kikuchi, 1996). However, in this work the adtua locations are chosen arbitrarily prior
to the structural design. In fact, it is well knowmat a good location for an actuator in a
cantilever structure is close the fixed size ofdtrecture, since it acts upon the first and most
significant mode. The lower fundamental modes @&spaonsible for the most of the tip
displacement of the beam; therefore, the first éigenfunctions are computed and considered
in this work.

The additional dynamics and control designeaecluded in a topology optimization code
(Sigmund, 2001). Simulations were conducted tosastiee effectiveness and control model
efficiency.
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2 FORMULATION OF STRUCTURAL TOPOLOGY OPTIMIZATION CONSIDE-
RING CONTROL ACTION

In this work the homogenization design method (Bemdand Sigmund, 2003) is the tool
for the topology optimization considering a conteaition. This method is based on the
concept of optimizing the material distribution,rabigh a density distribution. A finite
element mesh is defined to perform the structuradah analysis (Bathe, 1996). As a
simplification, we assume that the density is canisin each finite element. An optimality
criteria (OC) is derived from the necessary minatian conditions, and it is solved to update
the density distribution. A number of simplificati® are introduced to the implementation, as
a regular mesh.

We now consider that the objective functiothis sum of the strain energy and the control
energy. Then, the topologic optimization problensteady state has the form

minJ, J(x)=f"Rf + U'QU

V(x) _
RV , @)

KU =Hf+F
0<x,,sx<1

whereU is annx1 displacement vectoH is annxm location matrix for the control forcej is
the number of action control forces ards annx1 applied external force vectdrjs anmx1
control force vector. The magnitudes of the masriQeandR are assigned according to the
relative importance of the state variables andctivdrol force in the minimization procedure.
The matrixQ can be adjusted =K, whereK is the finite element global stiffness matpix.
is the vector of design variablegi, is a vector of minimum relative densiti®4x) andV, is
the material volume and design domain volume, mspdy and Vn,n is the prescribed
volume function. Considering the discretization,

UTKU:ZN:(xe)puTekeue, 2

whereN is the number of elementg is the penalization exponeni andk. are the element
displacement vector and stiffness matrix, respebtiv

The optimization problem is solved using thati@ality criterion (OC), and this criterion
is derived from the Karush-Kuhn-Tucker conditiorBefidsge and Kikuchi, 1988). The
Lagrangian function of the minimization problem is

L(X) = ‘] (X) +/]0(V(X) _Vmin\/o) + ;“I (K U - (Hf + F)) + ZN:/]Ze( )gwin - >g) +ZN:/]3e( >$_ ryﬁax) . (3)
where the scal A,and the vectoi, are the global Lagrangian multipliers, and theas 4,

and A, are Lagrangian multipliers for lower and uppeesidnstraints.
To locate a stationary point, it is necessay oL / ox, =0, then

0L _ 03, 0V - O(KU=(HT +F)
ox, 0x 0X, X,

_/]Ze+/]3e :0' (4)
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Assume that constrains of the design variadtesot active1,, =4, =0, and that the load

O(Hf +F)
1)

and forces are design independe =0. With some expanding of the terms, also

simplification of the equations and heuristics subdor the design variables (Sigmund, 2001)
we can obtain the nex for each iteration. More details about the expagdif the terms can
be seen in the follow subsection, Sensitivity AsayThe mesh-independent filter is the same
as in Sigmund (2001).

The feedback requires a full knowledge ofestaBy using the displacement closed-loop
feedback control we can assume

f=-R'H'U, 5)
then the equilibrium constraint from Eq. (1) beceme
K.U=F, (6)

where
K,=K+HR™H". (7

We can note that thK . is the modified matrix under control effect ané thodification

appears where the force control is applied, whidfects also the eigenvalues and
displacement of the structure. The problem candbeed as the conventional static finite
element method in standard foK U =F.

The influence of the weighting matrR is an important aspect to consider. To have
significant effect on the topology of the structutbe matrix R* need an equivalent
magnitude compatible with the stiffness matrix. cinthe stiffness is modified on each
iteration, thenR is chosen ¢R =diag(w/a), where ».are the eigenvalues (the smallest to the

largest) andw are weighting constants with the same order ofntade of the stiffness
terms.

2.1 Sensitivity Analysis

Sensitivities are defined as the derivativeshe objective function and the constraints
with respect to the design variables, and is ofie®m major computational cost of the
optimization. In this work the objective functionersitivity requires differentiating
displacements (which implies stiffness differemtiaj and eigenvalues. The objective
function can be simplified using Eq. (2) into Ed),(thenJ = f'Rf +U" (Hf +F).Using Eq.
(5), this yieldsJ = F'U. Taking the derivative of the objective function, @ach element, one
can obtain

9 U

=F' , 8
0X, 0X, ®)
and substituting
ouU L 0K
=-K'—2U
ox, Cax, 9)
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and
&:G_K.FiHa_;‘HT
ox, O0x, w 0x, (10)
into (8), we have
Yo Jur ety gy (11)
0X, 0X, w 0x,

The sensitivity of the each eigenvalue can be geiHaftkaet al. (1990), and is computed
by

A _ (oK . oM ok, . om,
e e

ox, ox,  Ox, °ox, 0x,

where ¢ is the mass-normalized eigenvector &hds the mass matrix, on each elemgit
andme.

3 CONTROL EFFECTSON STRUCURAL TOPOLOGY

It is clear that control forces acting in di#nt locations on the structure should influence
the optimized design. To exemplify this fact, welwase a design domain as a cantilever beam
shows in Figure 1.

T

4

1

— 10 ——%

Figure 1. Design domain.

For a structural only design of this domaire wse the compliance as the objective
function, and obtain the topology shown in Figuae Phen we try to introduce a control force
on this design layout. It is possible that on tlesickd location for the actuator there is no
material. If the optimization is performed withaugnsidering the control force, then we need
either to change the actuator location or to rephetiie structure. In Figure 2a we indicated
with a point (small circle) the actuator locationdadesigned the structure again, this time
considering the control force. The new topologytfus problem is shown in Figure 2b. The
mesh domain in the simulationi$x40 finite elements.

> D>

(a) (b)
Figure 2. a-Topology optimization without controfrée action. b-Topology optimization with controtrée
action.
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In this simulation it can be noted that theudure design change completely with the
control action effects. Additionally some attentitor the actuator location is required to
assure the controllability of the system.

4 OPTIMAL CONTROL DESIGN IN MODAL SPACE

After computing the optimal structure we searchtfa vibration suppression for a transient
response of the system. It is possible to desigrctimtrol for the displacement of a particular
point of the structure, but in this work we derthie control in independent modal space.

The formulation of independent modal spacetrobnderived by the classical optimal
theory (Bertsekas, 1995), associated with the idiged-parameter system can be written
briefly as follows. The modal formulation for thgsgem is

ii+o’n =g Hf, (13)
where« are the angular frequencies.
The dynamic system defined by Eq. (13) capdrameterized in first order equations and
written in the state- coefficient form

y = Ay +Bf, (14)

wherey is a state, time dependent variaty 00%" is the vector of the first order time
derivates of the states in modal spaf OsSOO™ is the control vectorS is the control

constraint set. This system represents the constfaom the nonlinear regulator problem,
together witry(t,) =y, y(e)=0, respectively the initial and final conditions.

The coefficient matrices, in modal space, authconsidering damping, are given by

A=[_Zz I} B{;H} (15)

where ADO?™" and BOO?™™, It is assumed thd(0)=0, which imply that the origin is an
equilibrium point.

A state feedback rather than output feedbeckadopted to enhance the control
performance. The quadratic cost function for tigulator problem is given by

_lm T T
J = 2£[y Qy+f"R f]dt, (16)

whereQ, 00?™" is semi-positive-definite matriandR. 00™™ positive definite. There are
weighting matrices on the state and control inpaspectively.
Assuming full state feedback, the control lawiven by

f=-R;'B"Py. (17)

ThealgebraidRiccati equation to obtail, is given by
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A"P+PA-PBR'B'P+Q, =0. (18)

The computational cost is high if all modes aonsidered. But it can be dramatically
reduced if only a few modes are dominant and themtrol is sufficient for the whole
structure.

5 RESULTS

The physical system considered in this workcasnposed by cantilevered steel beam
shown in Fig. 1. The resulting topology for thisolplem is show in Figure 3, where the
locations of the horizontal control forces are aade by points (small circles). This location
for the actuator was chosen because it is a knaetrttat the best place for one actuator is as
close as possible to the fixed size of the strectwhich bears the maximum stress induced by
the first and most significant mode.

[ X)
(© (d)

Figure 3. c-Topology optimization without controk€e action. d-Topology optimization with controtrée
action.

Some simplifications are introduced to thebpem and its response analysis. We assume
that the two control points can have different &xcThis fact means that there are two
external actuators. Embedded actuators (piezoelettaterials or hydraulic mechanisms),
would generate equal magnitude opposing forcesnaedl to be explicitly included in the
model.

The convergence of the objective functionlattpd in Figure 4.
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Figure 4. Objective function convergence a- withoantrol; b- with one control force; c- with twordool forces

We can observe in Figure 4 that the convergéndaster in the initial 30 iterations, after
there is a smaller change of the objective functialine at each iteration.

The structure shown in Figure 1 subject todient forces produces initial deformation and
so active the natural vibrations. The two free ailam modes of the model in Figure 1, which
finite element discretization are shown in the fegu5a and 5b,
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Figure 5. Deflections of first and second modethefbeam.

The results of the optimal control simulation Matlab are shown in Figure 6. The
weighting matrices arQ, =diag{l}, R, =diag{05}. Here are considered the two first modes of
the optimized structure. The position 1 is on #fé point (small circle) and position 2 on the
right, shown in Figure 3. The fourth-order Rungettiumethod was used to integrate the
equations for a twenty seconds simulation.

displacement mode 1, position 1 displacement mode 2, position 1
0.1 0.1
0.05 1 0.os
3 o T o
-0.05 1 -0.05
-0.1 : : : -0.1 : : :
a ] 10 14 20 1] 5 10 15 20
t t
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£ 0 £ 0
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Figure 6. Deflections of first and second modesaeuit independent modal control (blue and red) aitial w
independent modal control (black).

It is possible observe that the modapldisement go quickly to zero, even without
natural damping.

6 CONCLUSIONSAND CONSIDERATIONS

In this work we introduced an integrated degigocedure for a topology optimization and
structural control system. This technique usesnumgdtidesign of a controlled structure and
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steady state control forces was achieved through hlemogenization method and
displacement feedback law. Optimal controls wengliag to reduce the structural vibration
within a reasonable few cycles. Active control camove the vibration suppression from the
structure effectively if it is carried out approgely.

The simulations for the control system conédnthe effectiveness of this control
technique. The numerical results indicate that doetb structural topology design and
optimal control can become an efficient methodology

The present methodologies can be easily egtetalother applications.
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