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Abstract. The finite element analysis of homogenous and isotropic tubes is a well established 

subject and very good results are obtained for long tubes using standard beam elements. On 

the other hand, the analysis of laminated composite tubes is generally carried-out using a 

global-local approach. This approach is performed in two levels, by means of a global 

analysis using beam elements with effective stiffness properties followed by the analysis of a 

refined local model of shell or solid elements to compute the ply stresses at critical sections 

of the tube. This work investigates the use of a global approach to carry-out the complete 

structural analysis of laminated composite beams, without the need to use a local finite 

element model. The successful application of beam elements depends on the accurate 

evaluation of effective mechanical properties of laminated tubes. In this work, the axial and 

bending stiffness of laminated tubes are computed by appropriate integration of segment 

stiffness over the tube cross-section. The internal forces obtained from the global analysis are 

used to compute the beam membrane strain and curvature. Ply strains are computed from 

the laminated strains. Finally, the stresses in the material system are evaluated using the 

appropriate constitutive relations. Numerical examples are presented and the results 

obtained by the global analysis approach are compared with results obtained by solid and 

shell finite elements. Very good results were obtained for most lamination schemes.  
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1 INTRODUCTION 

Many applications in structural design involve situations where a more detailed 

response of a small region of a large structure is required by the designer. In such 

cases, it is needed to construct a mesh, fine enough to capture stress and strains 

states at the local region of interest (Voleti et al., 1994). Usually, this approach results 

in a mesh with an excessive number of degrees of freedom leading to a high 

computational cost. For laminated composite tubes, the use of shell or solid elements 

is natural, since they allow the precise representation of the adopted tube lay-up as 

well as the evaluation of stresses and strains in each ply. 

For long composite tubes, as marine risers and pipelines, the computational cost of 

using shell or solid finite element models is prohibitive. Therefore, a practical 

alternative is to use a global-local approach. Global-local analysis refers to a 

methodology where the structure is evaluated in two levels. At the global level, the 

structure is analyzed using a simplified finite element model (e.g. a coarse finite 

element mesh or a beam element model). After that, the region of interest is analyzed 

using a refined finite element model with relevant data obtained from global analysis.  

For tubular structures, the global analysis is carried-out using two and three-

dimensional beam elements yielding the global displacements, rotations, and internal 

forces (axial force, bending and torsional moments). After that, critical locations along 

the length of the tube are selected and analyzed using a refined model discretized 

using shell or solid elements subjected to the displacements and/or internal forces 

computed in the global analysis. The use of beam elements allows the consideration 

of dynamic and large displacement effects in a simple and efficient way. Furthermore, 

the global-local approach allows the use trusted finite element programs for analysis 

of marine risers and pipelines. 

The global-local approach is much more computationally efficient than the use of 

a refined global model. However, it requires the handling of two different finite 

element models and the transference of the global responses to the local model, 

which is cumbersome and error prone. 

In this work, a simpler approach to the structural analysis of long tubes, as marine 

risers and pipelines, will be presented. In this approach, the whole structural analysis 

will be carried-out using a global (beam) model, including the evaluation of stresses 

and strains in each composite ply. 

The equivalent mechanical properties (i.e. the axial and bending stiffness) of 

laminated composite tubes are computed using a Mechanical of Materials approach 

based on a theory of thin-walled laminated beams (Barbero, 1998; Massa and 

Barbero, 1998). These properties are used in the structural analysis using two-

dimensional beam elements to obtain the displacements and internal forces (axial 

and bending moments). After the global analysis, the internal forces are used to 

compute membrane strain and curvature of the beam. The laminate strains and 

curvatures are computed using the kinematic relations of the beam model. Ply strains 

are computed from the laminated strains and curvatures. Finally, the stresses in the 
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material system are evaluated using the appropriate constitutive relations. 

This paper is organized as follows. Section 2 discusses the computation of the 

equivalent mechanical properties of laminated composite tubes. Section 3 presents 

the procedure for computation of ply stresses and strains. Section 4 presents the 

numerical examples. Finally, Section 5 presents the main conclusions. 

2 EQUIVALENT MECHANICAL PROPERTIES OF LAMINATED TUBES 

Laminated tubes are formed by a set of layers stacked to achieve the desired 

stiffness and thickness, as depicted in Figure 1. The global x-axis is parallel to the 

longitudinal direction of the tube, while the global axis y and z are parallel to the tube 

cross-section. The effective mechanical properties will be computed in the global 

axes. 

 
Figure 1: Laminated tube. 

 

In addition to the global axes, two set of local axes will be used: the segment and 

the material (or ply) system. The segment (or laminate) system (x, r, s), depicted in 

Figure 2, will be used in the computation of the laminate stiffness. It can be noted 

that r is the radial direction and s is tangent to the laminate mid-surface (hoop 

direction). Finally, the material system (x1, x2, x3), where 1 is the fiber direction, 2 is the 

in-plane transversal direction and 3 is the out-of-plane (i.e. radial) direction, will be 

used to define the stress-deformation relations for each lamina. 

 
Figure 2: Laminate system. 
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Macroscopically, each lamina behaves as a homogenous and orthotropic material. 

Assuming a plane stress state in each ply, the relation between stress (1) and strain 

(1) in the material system is given by generalizes Hooke’s law: 
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where the coefficients of the elastic constitutive matrix Q are given by 
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The constitutive equations of the orthotropic materials are written in terms of stress 

and strain in the material system (x1, x2, x3), while the equations governing the 

solution of the problem are written in the global coordinate system (x, r, s). Thus, it is 

important to transform stresses and strains between these two systems. The strains 

can be transformed from the global to the local system using the equation 

εTε 1  (3) 

where T is the transformation matrix computed from the director cosines of the local 

axes with respect to the global axes (Cook et al., 2002). 

The fiber orientation of each lamina with respect to the longitudinal direction is 

described by the helix angle , as shown in Figure 1. The constitutive relation can be 

transformed to the laminate system (Jones, 1999; Reddy, 2004): 

εQζ  , (4) 

where Q  is called the transformed constitutive matrix, whose coefficients are given by 
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(5) 

According to the Classical Lamination Theory (Jones, 1999; Reddy, 2004), the 

strains at planes parallel to the middle surface of laminate are given by  

κεε rm   (6) 

where mε  represents the membrane strains (strains at the mid-surface) and 

κ represents the curvatures of the laminate. These parameters are also known as 

generalized strains. The resultant forces and moments (also known as generalized 

stresses) are obtained by integration of stresses through the laminate thickness (h): 
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where Nx and Ns are the axial forces, Nxs is the in-plane shearing force, Mx and Ms are 

the bending moments, and Mxs is the torsional moment. Using Eqs. (4), (6), and (7), 

the relation between generalized stress and strains are written as  
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(8) 

where x, s, xs are the membrane strains and x, s, xs are the laminate curvatures. 

The stiffness coefficients are computed from the integration of the constitutive matrix 

(Q ) through the laminate thickness (h): 
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where n is the number of plies.  

The stiffness relation given by Eq. (8) can be written in matrix format as 
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where A is the extension (membrane) stiffness, D is the bending stiffness matrix, and 

B is the bending-extension coupling matrix. According to Eq. (9), B = 0 for symmetric 

lay-ups, thus bending and extension are uncoupled for these laminates. The inversion 

of Eq. (10) leads to the flexibility or compliance relation: 
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It is worth noting that although the sub-matrix B is symmetric (B
T
 = B), the 

corresponding sub-matrix  is not necessary symmetric (
T
  ). Thus 
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The assumptions Ns = 0 and Ms = 0, which yield accurate results for slender thin-

walled laminated beams, are adopted here. Keeping only the generalized stress and 

strains of interest for beam problems and reordering some terms, Eq. (12) simplifies 

to 
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At this point Massa and Barbero (1998) and Barbero (1998) assume uncoupling 

between normal and shearing strains (α16 = β16 = β61 = δ16 = 0). However, this 

uncoupling occurs only in cross-ply and antisymmetric angle-ply laminates with large 

number of plies. Retaining all terms presented in Eq. (13) in the inversion process 

yields 
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Now, neglecting the couplings between normal and shearing strains, the reduced 

stiffness equation can be written as 
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It is important to note that this expression has the same format presented by 

Massa and Barbero (1998), but now the stiffness coefficients contain contributions 

from the above-mentioned coupling. 

In fact, two approaches will be considered here. In the first one, the uncoupling 

between normal and shearing strain are considered before the inversion of Eq. (13), 

as performed by Massa and Barbero (1998) and Barbero (1998). In the other one, the 

couplings between normal and shearing strains are neglected only after inversion of 

Eq. (13). 
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Assuming a strain state such that only x  0, the first two rows in Eq. (15) can be 

solved to produce 

xbx
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x
x NeN
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M  , (16) 

where the eccentricity eb is the location of the neutral axis of bending s for the 

segment, i.e., the place where an axial force does not produce bending curvature. 

The bending stiffness of the segment is evaluated with respect to s  axis. 

Considering      Nx = 0 and working with the first two rows of Eq. (15), Mx is given by: 
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Thus, the bending stiffness of the segment per unit length is given by 
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Using Nx, Mx, x and x defined in relation to the neutral axis of bending, the 

membrane and bending equations become uncoupled and can be represented by the 

following relation 
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Similar development can be applied to compute the torsional stiffness of the 

segment. Now, if a strain state such that only xs  0 is assumed, then the last two 

rows of Eq. (15) can be solved to produce 



Mxs 
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Fxs

Nxs  eqNxs. (20) 

The eccentricity eq is the location of the neutral axis of torsion s   for the segment, i.e., 

the location where a shear force produces only a constant shear strain through the 

thickness. 

Now, the torsional stiffness of the segment with respect to s   axis can be defined 

assuming Nxs = 0 and computing from the last two rows Eq. (15): 
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So, the torsional stiffness of the segment per unit length is given by 
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Thus, when Nxs, Mxs, xs and xs are defined with respect to the neutral axis of torsion 

the shear and torsional equations become uncoupled and can be written as 
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
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It should be emphasized that due to the variation of material properties from layer 

to layer, the mechanical properties cannot be computed separately from geometric 

ones. Thus, it is necessary to define effective mechanical properties that consider 

simultaneously the geometric and material information. These properties are 

computed by integrals over the cross section area. Massa and Barbero (1998) worked 

with a section composed of several combined linear segments and assumed that the 

segment had the same length regardless of the longitudinal coordinate used (s, sor 

s  ). Obviously, this is not true for circular cross section. Thus, the integrations over 

the length of the segment will be developed initially using the mid-axis s, but the use 

of the neutral axes will be also discussed.  

2.1 Axial stiffnesss 

Considering a state of strain with all components zero except for x that has a 

constant value the axial force is given by 

  
s

x

s h

x

A

x dssNdrdsdAN )( . 
(24) 

Using Eq. (19) the axial force can be written as 

x

s

xx

s

xx EAdsAdsAN    . 
(25) 

Since dRds  , where R is the radius of the mid-surface of the segment, the axial 

stiffness EA of the laminated tube can be computed as 

xx

s

x RAdRAdsAEA 


2
2

0

   (26) 

Now, using   deRds b (integration on neutral axis of bending), the axial stiffness 

will be computed as 

    iiibbi BRAAeRdeRAEA 


222
2

0

  . (27) 

 

2.2 Bending stiffnesss 

The mechanical bending properties of the segment ds with respect to rs  axes 

using the specific values to the axial and bending stiffness defined before are 
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

dEI s  D x ds

dEI r' 
Ax (ds)3

12

dEI s r  0

 (28) 

Using the standard Mechanics of Materials procedure and neglecting rEId  , since 

this term depends on a higher order differential (ds
3
), the mechanical bending 

stiffness of the segment after rotation to zy   axes can be written as 

dsDEId

dsDEId

dsDEId

xzy

xz

xy







sincos

sin

cos

2

2













 (29) 

The segment stiffness with respect to the global axes is obtained using the Parallel 

Axis Theorem: 

)sin)(cos(sincos

)sin(sin

)cos(cos

22

22







bbxxyz

bxxz

bxxy

eyezAdsDEId

eyAdsDEId

ezAdsDEId







 (30) 

where sinRy   and cosRz  are the coordinates of the mid-point of the 

segment. 

Integration over the mid-surface ( dRds  ) with  varying from 0 to 2 leads to 

the bending stiffness of the tube: 

 

0

2





yz

xbxzy

EI

AeRRDREIEI 
 (31) 

These results are compatible with the axial symmetry of the tube. The bending 

stiffness can also be expressed in terms of coefficients Ax, Bx and Dx: 

xxxzy RDBRAREIEI   23 2 . (32) 

Application of this expression to an homogenous and isotropic tube produces a 

result compatible with a moment of inertia of a thin-walled tube. Comparing this 

expression with the exact moment of inertia of a thick-walled tube, a correction on 

the bending stiffness can be done multiplying the last term by 3. Thus, the final 

expressions for including the correction for thick-walled tubes is given by 

0

32 23





yz

xxxzy

EI

RDBRAREIEI 
 (33) 

If the integration of Eq. (30) is carried-out over the neutral axis of bending 

( deRds b)(  ) with  varying from 0 to 2, then the bending stiffness is given by 

Mecánica Computacional Vol XXIX, págs. 1367-1383 (2010) 1375

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



   

0

)(
32





yz

xbxbxbzy

EI

AeRAeDeREIEI 
 (34) 

Once again, these results are compatible with the axial symmetry of the tube. Using 

Eq. (16), the bending stiffness can be expressed in terms of coefficients Ax, Bx and Dx 

as 

xx

x

x
x

x

x
xzy RDD

A

B
BR

A

B
RAREIEI   2

2
3 32  (35) 

This expression is accurate for homogenous thin-walled tubes of isotropic materials. 

Based on the expected result to a thick-walled one, corrections can be applied to 

produce exact results for homogenous and isotropic tubes. This can be done 

multiplying the last term of the Eq. (35) by 3 and is called here local correction. The 

final result is 

xx

x

x
x

x

x
xzy RDD

A

B
BR

A

B
RAREIEI  332 2

2
3 

 
(36) 

Otherwise, the correction can be applied to the first term of the Eq. (34) and is 

called here global correction. The result can be presented as 

xx

x

x
x

x

x
xzy RDD

A

B
BR

A

B
RAREIEI  3332 2

2

3
3 

 
(37) 

It is important to note that there is no difference in both expressions for symmetric 

laminates, since Bx = 0 for these laminates. 

3 STRESS COMPUTATION 

This section presents the procedure developed for the computation of stress and 

strains in each ply of the tube from the internal forces (axial force and bending 

moment) evaluated by the beam model. The procedure is represented in Figure 3. 

Initially, the beam axial strain (



b

0) and bending curvature (



b) are computed from the 

normal force Ng and bending moment Mg obtained by the global analysis using the 

axial and bending stiffness: 

EI

M

EA

N

g

b

g

b







      0

 (38) 

Stresses are evaluated at the top and bottom segments of the tube cross-section, 

as depicted in Figure 3. These segments have the same curvature (



 i b ) and the 

axial strain is computed using the plane section hypothesis as 



x

i b

0  Rb . (39) 

L. MORORO, A. MELO, E. PARENTE JR., A. HOLANDA, D. ALMEIDA1376

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



b
0

b

bb

i

x R 
0

R
gN

gM

k

1

)(thicknessh

b

i

x

bbb

 

Figure 3: Stress computation. 

The forces and moments at the segment are obtained with the reduced 

constitutive relation. At this point, three different formulations may be used to 

evaluate the laminate forces and moments:  

 Formulation 1: all terms of the Eq. (13) are considered before inversion and 

retained after inversion.  

 Formulation 2: all terms of the Eq. (13) are considered before inversion, 

however, after inversion the normal and shearing strains are uncoupled (Eq. 

(15)).  

 Formulation 3: the uncoupling between normal and shearing strains occurs 

before inversion of the Eq. (13). 

 

 

Figure 4: Global analysis steps. 

Figure 4 shows the steps used in the evaluation of the stresses in each ply of the 

tube wall. After adding the terms Nsi = Msi = 0 to the force vector at appropriated 

positions, the membrane strains mε  and curvatures  of the segment in its coordinate 

system are evaluated using Eq. (12). The strains at any point of the laminated 
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segment computed by Eq. (6) and the strains at a lamina k are transformed to 

material system by Eq. (3). Finally, the stresses in the material system are computed 

using Eq. (1).  

4 NUMERICAL EXAMPLES 

The procedures for computation of the equivalent mechanical properties and 

stress computation in laminated composite tubes presented in Section 2 and Section 

3, respectively, were implemented in MATLAB. In order to validate the proposed 

formulations, the results obtained by the MATLAB implementation were compared 

with finite element solutions using ABAQUS (Simulia, 2009). In the case of equivalent 

properties, the results were also compared with the Smear Property Approach (SPA) 

(Chan and Demirhan, 2000; Lin and Chan, 2001; Lemanski and Weave, 2006), which is 

a widely used procedure.  

The models considered here were made using a prepeg carbon/epoxi AS4/3501-6, 

whose mechanical properties are presented in Table 1. All models have six plies, each 

one with a thickness of 1 mm. The detailed specifications of each model are 

presented in Table 2. 

 

E1(GPa) E2(GPa) E3(GPa) G12(GPa) G13(GPa) G23(GPa) ν12 ν13 ν23 

137.9 9.0 9.0 7.1 7.1 6.2 0.30 0.30 0.49 

Table 1 - Material properties. 

Model Lay-up Internal radius (mm) R/h 

L1 
[+45/-45/+45/+45/-

45/+45] 
57.0 10 

L2 [0/90/0/0/90/0] 57.0 10 

L3 
[+45/-45/+45/-45/+45/-

45] 
57.0 10 

L4 [0/90/0/90/0/90] 57.0 10 

Table 2 – Description of models. 

4.1 Equivalent properties 

The finite element model is clamped at one end, free in the other and has a length-

to-radius ratio equal to 20. The bending stiffness was computed from the 

displacements due to a constant bending moment (pure bending): 




22

2

FEM

2 ML
EI

EI

ML
 , (40) 

where  is the tip displacement. The loading is applied by a couple at the free end. A 

rigid ring of isotropic material with 12 mm in the longitudinal direction and Young’s 

modulus equals to a hundred times the Young’s modulus of steel was introduced in 
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the loaded end to alleviate the effect of stress concentration and to guarantee the 

plane section hypothesis. 

Subjecting the tube to an axial force P, applied as a uniform tension at the free 

end, the axial stiffness can be computed using the Mechanics of Materials and the 

results of finite element analysis: 




PL
EA

EA

PL
FEM   (41) 

The tubes were discretized using quadratic solid finite elements with 20 nodes 

(C3D20) from ABAQUS. The mesh has 41 elements in the longitudinal direction and 6 

elements in the circumferential direction. Figure 5 shows the mesh of the solid 

elements after the bending deformation. 

 

Figure 5: Deformed model – solid elements. 

In order to evaluate the analytical procedures, the results are compared with FE 

results and SPA, since the discretization error is rather small for the adopted finite 

element mesh. Table 3 presents the relative difference between analytical, FE, and SPA 

results for bending stiffness. 

 

EI  L1 L2 L3 L4 

FEM (N·m²) 
9.773E+0

4 

3.897E+0

5 

9.839E+0

4 

3.012E+0

5 

SPA (%) 34.45 0.53 1.66 2.64 

MMA – COUP/LC (%) -0.07 0.09 0.61 2.20 

MMA – COUP/GC (%) -0.07 0.09 0.61 2.21 

MMA - UNC /LC (%) 1.38 0.09 1.66 2.20 

MMA – UNC/GC (%) 1.38 0.09 1.66 2.21 

Table 3 - Bending stiffness (LC = local correction, GC = global correction). 

It can be noted that all formulations presented here produce good results. On the 

other hand, the Smear Property Approach (SPA) yields poor results for model L1. It 

also should be noted that Mechanics of Materials Approach (MMA) presented here, 

with both local and global corrections, leads to excellent results considering coupling 
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and uncoupling in Eq. (13). 

 

EA  L1 L2 L3 L4 

FEM (N) 5.409E+07 2.160E+08 5.757E+07 1.670E+08 

SPA (%) 34.37 0.59 6.87 1.22 

COUP/MS (%) -0.18 0.15 5.86 0.05 

COUP/NS (%) -0.18 0.15 5.86 0.78 

UNC/MS (%) 1.26 0.15 6.87 0.05 

UNC/NS (%) 1.26 0.15 6.87 0.78 

Table 4 - Axial stiffness (MS = mid-surface, NS = neutral surface). 

The results obtained for the axial stiffness are presented in Table 4. It can be noted 

that all formulations presented in this work lead to good results. It should also be 

emphasized that both coupled and uncoupled formulations lead to good results 

unless for model L3, where difference was greater than for the other models.  

4.2 Stresses 

The formulation presented in this work was also applied to the stress computation. 

Using the same models mentioned above, the stresses S11 and S22 in the local system 

are shown in the following tables. The models were discretized using quadratic thick-

shell elements, based on the Reisner-Mindlin theory, with 8 nodes and reduced 

integration (S8R) from ABAQUS. The mesh, shown in Figure 6, has 121 elements in 

the longitudinal direction and 40 elements in the circumferential direction. 

 

Figure 6: Shell finite element model: mesh and results. 

Formulations 2 and 3 lead to excellent results for the symmetric angle-ply lay-up 

L1 (Table 5), since the large difference was about 5%. 

 

Model L1 ABAQUS (Shell) Form. 1 (%) Form. 2 (%) Form. 3 (%) 

Ply Angle S11 S22 S11 S22 S11 S22 S11 S22 

1 45 
1.030E+0

4 

1.447E+0

3 
-31.26 22.20 -1.96 1.60 -0.54 2.95 

2 -45 
1.960E+0

4 

1.046E+0

3 
29.83 -9.42 1.22 -0.08 2.61 1.33 

3 45 
1.087E+0

4 

1.485E+0

3 
-28.66 21.67 0.38 0.33 1.81 1.76 
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4 45 
1.115E+0

4 

1.504E+0

3 
-27.45 21.41 1.45 -0.29 2.90 1.19 

5 -45 
2.025E+0

4 

1.112E+0

3 
28.73 -7.97 -1.43 1.18 0.11 2.66 

6 45 
1.171E+0

4 

1.543E+0

3 
-25.21 20.93 3.45 -1.47 4.92 0.10 

Table 5 – Stress in materials coordinates for symmetric angle-ply model L1. 

Results for symmetric cross-ply model L2 (Table 6) are also in very good agreement 

with the finite element model. It is worth noting that all formulations lead to very 

good results. 

 

Model L2 ABAQUS (Shell) Form. 1 (%) Form. 2 (%) Form. 3 (%) 

Ply Angle S11 S22 S11 S22 S11 S22 S11 S22 

1 0 2.137E+04 3.463E+02 0.38 0.21 0.38 0.21 0.38 0.21 

2 90 7.044E+02 1.397E+03 1.01 0.37 1.01 0.37 1.01 0.37 

3 0 2.208E+04 3.578E+02 0.38 0.37 0.38 0.37 0.38 0.37 

4 0 2.244E+04 3.636E+02 0.38 0.45 0.38 0.45 0.38 0.45 

5 90 7.389E+02 1.466E+03 -0.74 0.39 -0.74 0.39 -0.74 0.39 

6 0 2.316E+04 3.752E+02 0.38 0.59 0.38 0.59 0.38 0.59 

Table 6 – Stress in materials coordinates for anti-symmetric cross-ply model L2. 

For anti-symmetric angle-ply model, only Formulation 1 leads to good results, 

while Formulations 2 and 3 produce inaccurate results (Table 7). 

 

Model L3 ABAQUS (Shell) Form. 1 (%) Form. 2 (%) Form. 3 (%) 

Ply Angle S11 S22 S11 S22 S11 S22 S11 S22 

1 45 
1.361E+0

4 

1.129E+0

3 
0.63 0.27 -37.47 10.99 

-

36.00 
11.94 

2 -45 
1.376E+0

4 

1.151E+0

3 
0.09 0.57 8.30 -14.66 9.28 13.44 

3 45 
1.409E+0

4 

1.165E+0

3 
0.78 0.19 -5.28 -7.09 -4.16 -5.96 

4 -45 
1.420E+0

4 

1.190E+0

3 
-0.07 0.65 -23.04 2.79 

-

21.73 
3.82 

5 45 
1.457E+0

4 

1.202E+0

3 
0.93 0.10 24.80 -24.08 25.60 22.76 

6 -45 
1.463E+0

4 

1.229E+0

3 
-0.21 0.74 -52.55 19.14 

-

50.92 
20.00 

Table 7 – Stress in materials coordinates for anti-symmetric angle-ply model L3. 

Finally, the antisymmetric cross-ply model (Table 8) was analyzed using the 
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different formulations presented in this work. For most plies very good results were 

obtained, but for some plies the differences were significant. It is important to 

emphasize that the approaches here developed are more appropriate to symmetric 

laminates and antisymmetric angle-ply laminates with large number of plies. 

 

Model L4 ABAQUS Form. 1 (%) Form. 2 (%) Form. 3 (%) 

Ply Angle S11 S22 S11 S22 S11 S22 S11 S22 

1 0 
2.802E+0

4 

4.824E+0

2 
-0.39 -3.69 -0.39 

-

3.69 
-0.39 3.69 

2 90 
4.779E+0

2 

1.841E+0

3 
15.30 -0.45 15.30 

-

0.45 
15.30 0.45 

3 0 
2.896E+0

4 

4.988E+0

2 
-0.36 0.88 -0.36 0.88 -0.36 0.88 

4 90 
4.899E+0

2 

1.901E+0

3 
-54.64 -0.10 -54.64 

-

0.10 
-54.64 0.10 

5 0 
2.990E+0

4 

5.152E+0

2 
-0.34 5.15 -0.34 5.15 -0.34 5.15 

6 90 
5.019E+0

2 

1.962E+0

3 
-121.23 0.24 -121.23 0.24 -121.23 0.24 

Table 8 – Stress in the materials coordinates for anti-symmetric cross-ply model L4. 

5 CONCLUSIONS 

A simple approach combining the elementary beam theory and Classical 

Lamination Theory is presented to the analysis of composite laminated tubes under 

axial force and bending. The effective properties are computed by appropriate 

integration of segment properties over the tube cross section. The stresses in the 

material systems are evaluated using the elastic constitutive relations. 

The proposed approach is much simpler than global-local procedure since it allows 

the structural analysis of laminated tubes using only beam elements. The proposed 

formulation leads to very good displacements for all lamination schemes indicating 

that the effective properties are accurately computed for both symmetric and non-

symmetric models.  

The computed stresses are in excellent agreement with finite element results for 

symmetric and angle-ply balanced laminates. On the other hand, for anti-symmetric 

cross-ply lay-ups good results were obtained for most plies, but some stress 

components were poorly estimated in some plies. Therefore, the global analysis 

formulations presented here are valuable tools for structural analysis of laminated 

composite tubes. 
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