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Abstract. Path following methods have been widely used in nonlinear analysis due to their greater
efficiency in tracing the equilibrium trajectories of a structure with nonlinear behavior. The arc-length
method is the most powerful path following method in the solution of equilibrium paths, bifurcation
points and limit points by introducing a constraint condition which establishes the nonlinear equations in
which the unknown load parameter is determined. Unfortunately, this method presents some difficulties
and imperfections in the control of load increment to reach convergence at specific locations along the
trajectories of load-deflection. Therefore, this paper proposes to present a modification in the arc-length
method introduced by Crisfield (M.A.Crisfield, Compt. Struct., 13:55-62 (1981)) with the objective of
improving the performance analysis of equilibrium paths. The mentioned change was firstly proposed
by Teng and Luo (J.G.Teng, Y.F.Luo, Comm Num Meth Eng, 14 (1):51-58 (1998)) . It introduces a new
parameter with the function to add all previous arc lengths of Crisfield’s method up to now and then
includes a new current load step, which can achieve convergence to levels of pre-defined values for loads
or other parameter (i.e., displacements, strains). With this, the difficulties found in the arc-length method
are efficiently overcome.
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1 INTRODUCTION

The complete investigation of solution path of the nonlinear systems of equilibrium equations
has a strong of practical interest in the study the over critical behaviors of structures, like for
example in buckling analysis of shell, such also in the determination to materials instabilities
and singular points. Due to this necessity, path-following methods were developed such that
allow to follow arbitrary nonlinear solution paths in structural analysis.

Methods which allow general path-following are called arc-length or continuation methods.
The essential idea of the path-following method is to add a constraint condition to the set of
nonlinear equations from which the unknown load parameter can be determined.

Since path-following methods are well established, a number of different methods (Riks,
1979; Crisfield, 1981; Ramm, 1981; Schweizerhof and Wriggers, 1986) are available and doc-
umented in the literature. Among the many existing incremental iterative nonlinear solution
methods, the arc-length method as developed by Crisfield (1981) for application in finite ele-
ment analysis, appears to be the most popular.

The arc-length method is a solution strategy in which the path through a converged solution,
at any step, follows a orthogonal direction to the tangent of the solution curve. In this procedure,
both the load vector and the displacement field vary. Therefore, the control parameter captures
the effects from both load change and displacement change, so both load limit points (snap-
through points) and displacement limit points (snap-back points) can be handled effectively.
While the arc-length method (or other methods with similar capabilities) can handle complex
load-deflection paths effectively, the analyst has no control over the load incrementation scheme
to achieve convergence in specific locations along the load-deflection path. There are a number
of situations in which such control is required. When nonlinear structural analysis programs are
used in structural design, both the ultimate load carrying capacity and the deformations under
service loads need to be found.

The present paper aims to present an improved form of the Crisfield’s arc-length method
so that it can achieve convergence to pre-defined load levels. This improvement was firstly
introduced for Teng and Luo (1997), and was developed for bifurcation analysis in which con-
vergence to specified load levels is replaced by convergence to estimated values of a new param-
eter called accumulated arc-length. This new parameter controls the operation of the arc-length
method to converge at the bifurcation point that is being sought. The inclusion of this new
parameter modify the conventional arc-length method and is named by Teng and Luo (1998)
as the accumulated arc-length method, that leads to a new bifurcation analysis strategy which
can efficiently detect the existence of a bifurcation point located anywhere on the load deflec-
tion path. The accumulated arc-length method described in this paper can satisfactorily also be
applied to analyze post-collapse bifurcation problems, but this will not be approached in this
paper.

2 THE CONVENTIONAL ARC-LENGTH METHOD

The solution of nonlinear system equations for a finite element model of a structure using
the conventional arc-length method, quote above, is following developed.

Amongst the most varied constraint methods, in this paper we will consider a cylindrical arc-
length method developed by Crisfield (1991) adding a simpler constraint condition where the ψ
is set to zero in the formulation of the spherical arc-length method defining a cylindrical surface,
and therefore the influence of de loads is neglected. The constraint methods are effectively
Newton Raphson procedures with an additional constraint to define the direction of iterative
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path/surface.
In the standard method, the iterative displacement which account for a flexible load level are

given by:

δpn
i = δp̄n

i + δλni δpt
n
i (1)

where δp̄n
i are the iterative displacements for the nth iteration within the ith loading step, related

to the residual force vector as in the standard Newton Raphson method.
For an arbitrary load level f in (generally the initial or reference load level), the tangent

displacement vector may be calculated as

δpt
n
i = Kt

−1n
i f (2)

where Kt
−1n
i is the tangent stiffness matrix formed at the beginning of the ith loading step and

it is kept constant during subsequent iterations. At the nth iteration within the ith loading step,
the displacement increments due to residual forces gj

i are given by,

δp̄n
i = −Kt

−1n
n gj

i (3)

The incremental displacement can then be updated as

∆pn
i = ∆pn

i−1 + δp̄n
i + δλni δpt

n
i (4)

where δλni is the change of the load factor for the nth iteration within the ith loading step.
The change of load factor δλ is constrained by the arc-length increment ∆li for the ith loading

step through the following equation:

∆pnt
i ∆pn

i = ∆l2i (5)

For the iterations, Eq. 4 and Eq. 5 give the following quadratic equation to define δλni :

a1δλ
n2

i + a2δλ
n
i + a3 = 0 (6)

a1 = δpt
nt
i δpt

n
i (7)

a2 = 2δpt
n
i (∆pn

i−1 + δp̄n
i ) (8)

a3 = (∆pn
i−1 + δp̄n

i )t(∆pn
i−1 + δp̄n

i ) − ∆l2i (9)

The appropriate root is one which maintains a positive angle between the original and up-
dated displacements within the ith loading step, or the one closer to the linear solution if both
angles are positive. The arc-length increment ∆li for the ith loading step is determined by the
following procedure:

∆li = ∆li−1

(
Id
Ii−1

)1/2

(10)

where ∆li−1 is the arc-length increment of the previous loading step, Id is the desired number
of iterations for the ith loading step before convergence and Ii−1 is the number of iterations
required to converge in the (i − 1)th loading step.
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3 THE ACCUMULATED ARC-LENGTH METHOD

According to the procedure, first, conventional arc-length method presented above is used
to trace the load-displacement path. When the path approaches to the pre-defined state, the
accumulated arc-length process (Teng and Luo, 1998) is started to achieve the desired level of
convergence. For this propose the standard arc-length is modified.

Firstly a new parameter that define the sum of all arc-lengths up to and including the current
load step is introduced. This new parameter is express by Li, and as cited above, is called
accumulated arc-length at the ith loading step Li as following bellow

Li =
i∑

k=1

∆lk (11)

where ∆lk is the arc-length increment of the kth loading step. The L parameter represents the
current state of the structure and depends on the characteristics of the structure and its loading,
and also the process of load incrementation during the analysis.

During the conventional arc-length method of Crisfield as described above is employed to
trace the load deflection path until the load factor reaches a desired load factor, is necessary a
continuous monitoring to see if the converged load level λi is near the pre-defined load level
λd. Then, the accumulated arc-length process proposed below is started once the load factor li
at the convergence of the ith loading step is close to λd.

In the formulation of the accumulated arc-length , is necessary to define a new parameter ψ
just to simplify the accumulated arc-length formulation:

ψ(Li) = λi − λd (12)

The desired arc-length increment for the (i + 1)th loading step ∆ld is to make the accumu-
lated arc-length Ld satisfy the following equation:

ψ(Ld) = 0 (13)

where

Ld = Li+1 = Li + ∆li+1 = Li + ∆ld (14)

Taylor’s expansion of equation (11) leads to

ψ(Ld) = ψ(Li + ∆ld) = ψ(Li) +
dψ(Li)

dL
∆ld +

1

2

d2ψ(Li)

dL2
∆ld

2 + ... = 0 (15)

3.1 Linear approximation to the desired arc-length increment

In this present work, it will be omitted the second and higher order terms, resulting in a linear
approximation to the desired arc-length increment ∆ld,

ψ(Li) +
dψ(Li)

dL
∆ld = 0 (16)

With this consideration, it will reach the following equation:

∆ld = − ψ(Li)

dψ(Li)/dL
(17)
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Where the first derivative of ψ with regard to L at loading steps i and i-1 are approximated by
the following backward finite difference is,

dψ(Li)

dL
=
λi − λi−1

Li − Li−1

(18)

Introducing Eq. 17 into Eq. 18, the new arc-length increment ∆ld for the (i − 1)th loading
step in order to reach the desired load level is found as

∆ld =
λd − λi
λi − λi−1

(Li − Li−1) (19)

The resulting formula developed above is the formula for the desired arc-length increment.
In the solution process the magnitude of ∆l achieved, should be compared with each other

and the smaller one is used as the arc-length.

4 NUMERICAL EXAMPLES

The method proposed here has been coded into the latest version of the MATLAB program.
Two numerical examples are presented below to demonstrate the validity and capability of the
proposed method.

The first example is a simple truss structure with two bar element and the truss has geo-
metric symmetry, see Figure 1. But a pertubation was introduced in material properties setting
a Young’s Modulus different in each bar, in the first bar the Young’s Modulus adopted was
1.07 × 105 MPa. The pre-defined load level for convergence considered was 300 kN.

Figure 1: Two bar symmetric structure

In this Figure 2, it is possible to observe a snap-through behavior. With accumulated arc-
length method the convergence level was most efficient, and was very effective for convergence
to a pre-defined value.

In the second example is used a star shaped dome according to Crisfield (1991) and Wriggers
(2008), that consists of nonlinear truss elements, the top view and front view of the dome are
depicted in Figure 3. This structure was modeled by the St. Venant elastic constitutive equation
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with a Young modulus of E = 1079.6. The outer nodes of the finite element mesh are located on
a circle with radius R = 50 while the inner nodes lye on a circle with radius R = 25. The inner
nodes are located at a height of H = 6. 216 and the mid node is located at a height of H = 8.
216. The structure is simply supported at all outer nodes. A point load is applied at the apex of
the dome.

Figure 2: Load-deflection path tracing with convergence to a pre-defined load level

Figure 3: Top view and front view of the star shaped dome

The Figure 4 shows the load-deflexion path of the star dome considering a pre-defined load
level of 50.
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Also in this structure is easily to note that the accumulated arc length method had very
effective convergence in the pre-defined load level adopted. This figure depicts the complex
nonlinear behavior of this simple structure.

Figure 4: Load-deflection path tracing with convergence to a pre-defined load level

5 CONCLUSIONS

This paper has presented a modification or an improvement in the conventional arc-length
method, in which can be previous defined load level to reach the convergence.

As can be readily observed the numerical formulation, this process is easy to implement in
nonlinear finite element and arc-length method programs.

The examples depicted above prove that this new method can improve the conventional arc-
length method by achieving the convergence level easier and faster than one, i.e., with a smaller
number of iterative steps in each increment and with also a smaller number of increments,
thereby gaining a greater computational efficiency.

Finally, the numerical examples mentioned here have demonstrated the effectiveness of the
proposed method as a important tool to examine and predefine bifurcation and limits points,
converging efficiently to pre-defined load level.
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