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Abstract. This article deals with the application of Finite Element Method (FEM) to a two-
dimensional electromagnetic scattering problem. The radar operation for detect submarines and 
aircraft is just one of many applications of this phenomenon in engineering. The FEM allows the 
treatment of geometrically complex structures containing non-homogeneous materials. Furthermore, it 
generates sparse matrices, which allows great computational economy. To be applied to scattering 
problems, the FEM requires a radiation condition incorporated into the formulation. This work uses an 
Absorbing Boundary Condition (ABC), which preserves the characteristics of the matrix. This choice 
gives results in agreement with the analytic solution. The error and sensitivity analysis are evaluated.  
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1 INTRODUCTION 

The electromagnetic scattering occurs when an electromagnetic wave iluminates an object 
and induces electric current on it. This object, in turn, due to interaction with the incident 
wave, emits a scattered electromagnetic wave, that overlaps the incident wave. By knowing 
the characteristics of the object, or scatterer, one can predict the shape of the scattered wave. 
The radar operation for detect submarines and aircraft (Liu, 2004), the modeling of forests 
structure by remote sensing (Li, 1998), the study of integrated circuits and printed circuit 
boards through the analysis of microstrips (Gürel, 1996) are based on that phenomenon. 

The electromagnetic scattering problem is an open problem, i.e, the scattered field 
propagates in all directions without limits. Thus, it is necessary to put an artificial boundary at 
some distance from scatterer to truncate the geometry of the problem. The region inside this 
boundary includes the problem domain. On the border, a boundary condition is imposed so 
that the scattered wave is absorbed by it (Li, 1993). This work uses the Absorbing Boundary 
Condition (ABC). First order ABC's are widely used because they are simple to implement 
and have a low computational cost. Moreover, when the boundary should be very close to the 
scatterer, or when great accuracy is required, the use of a second order ABC is indicated (Lee, 
2007). A detailed study of first and second orders ABC's for general problems in two and 
three dimensions is done in (Stupfel, 1994).  

The electromagnetic scattering problem can be solved analytically or by numerical 
computational methods. The analytical solution, although exact, can be obtained only in very 
special cases, drastically limiting the number of problems treated. The Finite Element Method 
(FEM), proposed by R.L. Courant in 1943 (Pelosi, 2007) and first used to solve problems of 
analysis of structures, is now widely used to solve problems of both electromagnetism and 
several other areas. For a general review on FEM, see (Coccioli, 1996).  

This paper aims to solve the electromagnetic scattering problem due to a plane 
electromagnetic (EM) wave incident on a scatterer with simple geometry. The Absorbing 
Boundary Condition of Bayliss-Turkel is used to truncate the computational domain. Initially, 
the mathematical formulation for the proposed problem is deduced, for both first order and 
second order ABC. Then, this formulation is validated through a software that solves the 
problem and compares it with the analytic solution. Then, a sensitivity analysis is done, where 
some factors that affect the accuracy of results are tested. Finally, in conclusion, is presented 
a synthesis of the results. 

2 MATHEMATICAL FORMULATION 

2.1 Problem description 

When an EM wave, described by the electric incident field ( iE
r

) and the magnetic incident 
field ( iH

r
), hits on the scatterer, another wave, described by the electric scattered field ( sE

r
) 

and the magnetic scattered field ( sH
r

), is generated. The overlap of these waves changes the 
total electric and magnetic fields in all the domain for E

r
 and H

r
, respectively. So, the electric 

field is given by: 

 si EEE
rrr

+= . (1) 

The same goes for the H
r

 field. When the incident EM wave is perpendicular to the axis of 
an infinite scatterer of arbitrary cross section, there is no variation in one direction, say z. In 
this case, the problem can be solved in two dimensions, through the determination of the 
fields E

r
 and H

r
 in points of a cross section of it. Figure 1 shows an arbitrary two-
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dimensional scatterer Ω, immersed in the free space Ω0 and illuminated by a plane and 
uniform EM wave, which focuses on the scatterer at an angle . iθ

 
Figure 1: Geometry of an arbitrary two-dimensional scatterer 

In this figure, sγ  is the boundary of the scatterer and  is the unit exterior normal vector. 
The above phenomenon is described by the generalized Helmholtz equation (Jin, 1993): 

n̂

 ,       ( ) 02
2
01 =+∇⋅∇ UkU αα Ω∈∀xr . (2) 

In equation (2),  and 1
1

−= rμα rεα =2  when EU
r

=  and  and 1
1

−= rεα rμα =2  when 
HU
r

= . Ω is the region inside the scatterer and  is the wave number for free space. 0k

2.2 Weak formulation 

The equation (2) defines the so-called strong formulation for the problem, since the U field 
must obey it at all points of the domain. This is a very strong demand for problems to be 
solved numerically. Instead, is allowed a residual for the strong form (Afonso, 2003): 

 ( ) ukuR 2
2
01 αα +∇⋅∇= . (3) 

where the u field in equation (3) is an approximation for the exact one in equation (2). 
Through the residual weighted method, the so-called weak formulation can be obtained by 

integration of the residue around the entire domain, Ω, through a weighting function, w, and 
equating the integral to zero (Afonso, 2003): 

 . (4) ( )[ ] ∫∫ ΩΩ
=Ω⋅+Ω⋅∇⋅∇ 02

2
01 udwkwdu αα

Using vector identities and the divergence theorem, the equation (4) can be written as: 

 ( )∫ ∫ ∫Ω Ω
=

∂
∂

−Ω⋅−Ω∇⋅∇
e

ed
n
uwudwkduw

γ
γααα 012

2
01 . (5) 

2.3 The Absorbing Boundary Condition 

The first two integrals in equation (5) are valid in the domain Ω and are handled directly 
by the FEM. The third one, nevertheless, requires a special treatment. The normal derivative 
of the field must satisfy the Sommerfeld’s radiation condition (Jin, 1993). However, the 
implementation of the formulation across an ABC requires a domain extension. Figure 2 
illustrates this domain extension, now enclosed by a boundary γe, slightly out of the scatterer. 
All other parameters remain unchanged. The choice of the location of this boundary is 
influenced by two conflicting interests: accuracy and computational cost. The farther away 
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from the scatterer is placed the ABC boundary, the greater is the precision. On the other hand, 
the closer it is, the smaller becomes the computational cost. 

 
Figure 2: Geometry of the scatterer of Figure 1, after incorporating the boundary eγ . 

To solve this problem computationally, an ABC must be incorporated in equation (5). So, 
it is assumed that the scattered field can be expressed in the following asymptotic form (Jin, 
1993; Peterson, 1989): 

 ( )∑
∞

=

−

=
0n

n
n

ik
s Aeu

ρ
ϕ

ρ

ρ

. (6) 

where ( )ϕρ,  are polar coordinates. 
Equation (6) is the two-dimensional version of the well known Wilcox’s expansion to EM 

fields (Wilcox, 1956). The order of the ABC is related to the number of terms considered in 
this series, and, in most papers, it is imposed over γe a first or second order ABC. In both 
cases, one takes the derivative of the scattered field with respect to ρ and it is obtained, after 
mathematical manipulations (Jin, 1993): 

 uq
n
u γα −=
∂
∂

1 . (7) 

The first order ABC is obtained when considering only the first term of equation (6). Thus, 
the values found for γ and q are: 

 ⎥⎦
⎤

⎢⎣
⎡ +=

201
καγ ik , and (8) 

 i
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n
uq ⎥⎦

⎤
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⎡ ++

∂
∂

=
2011
καα . (9) 

where ρκ 1=  and . Since the incident field is known, , the 
terms γ in equation (8) and q in equation (9) are constant for a specific linear element. 

si uuu −= ( )ii ysenxiki eu θθ += cos0

To obtain the second order ABC, the first four terms of equation (6) are considered. Thus, 
the values of γ and q are given by: 

 ( ) ( ) ⎥
⎦
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⎣

⎡
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−
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It is noteworthy that the term γ in equation (10) is not constant, but a differential operator. 
The term q in equation (11), however, remains constant. Equations (7) to (11) define the 
Bayliss-Turkel ABC (Bayliss, 1982). 

2.4 Incorporation of the ABC 

The FEM formulation with first order ABC is obtained by direct substitution of the values 
of γ and q given by equations (8) and (9), respectively: 

 . (12) ( ) 02
2
01 =⋅⋅+⋅−Ω⋅−Ω∇⋅∇ ∫∫ ∫ ∫Ω Ω ee

ee udwwdqudwkduw
γγ

γγγαα

where γe is the ABC boundary. 
However, when the values of γ and q are given by equations (10) and (11), respectively, 

the obtainment of the FEM formulation with second order ABC is a bit more elaborate. Using 
integration by parts, it is obtained, after mathematical manipulations, the following 
expression: 
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where  and  are the coordinates of the boundary element in question. The 
constants γ 

( 11, yx ) )( 22 , yx
1 and γ 2 in equation (13) are related with γ  in equation (10) by: 
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 ( )⎥⎦
⎤

⎢
⎣

⎡
−

−+=
0

2

011 82 ki
iik
κ
κκαγ , and (15) 

 ( )0

1
2 2 ki

i
−

−=
κ
αγ . (16) 

It is noticed that the second order FEM-ABC formulation, given by equation (13), reduces 
to first order one, given by equation (12), when 02 =γ  and 1γ  is calculated by equation (8). 

3 RESULTS 

The surface of many practical scatterers, such as fuselage of aircraft, missiles, etc. can be 
often represented by cylindrical structures (Li, 1998). Therefore, the cylinders are one of the 
most important classes of geometric surfaces (Balanis, 1989). The circular cylinder, due to its 
simplicity and the fact that the solution can be represented in terms of well known and 
tabulated functions (such as Bessel functions and Hankel functions) is one of the geometry 
most widely used to represent practical scatterers.  
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The formulation developed in the previous section – equations (12) and (13) – allows 
solving 2D electromagnetic scattering problems of arbitrary cross section. The problem 
proposed in this work consists of a dielectric circular cylinder of radius a and infinite in the z 
direction, illuminated at normal incidence by a monochromatic and uniform plane wave, as 
shown in figure 3. 

 
Figure 3: Description of the scatterer and the incident wave. Figure extracted and adapted from [14]. 

Figure 4 shows the geometry of this problem, a cross section of figure 3. This figure is 
essentially a simplification of the geometry shown in figure 2. 

 
Figure 4: The geometry of the proposed problem. 

After these simplifications, the validation of the formulation is made based on the 
calculation of the electric scattered field by the cylinder described in Figure 3. This is a 
classical problem of electromagnetic theory and it has analytical solution (Harrington, 1961). 
For comparison, the following parameters are chosen: angle of incidence of the wave, 

; frequency of the incident wave, f = 0.3 GHz ( λ = 1 m); radius of the cylinder, a = 
0.3 λ; relative electrical permittivity of the material that forms the cylinder, ε

0180=iθ
r = 3.0; relative 

magnetic permeability of the same material, μr = 1.0. 
In this paper, the domain is discretized by the software Triangle (Shewchuk, 1996), a two-

dimensional mesh generator of high quality that makes the Delaunay triangulation of a region 
from the description of the boundary of the region. 

3.1 The FEM formulation with first order ABC 

The results presented below are intended to continue the studies done in (Barbosa, 2009; 
Barbosa, 2010). Initially, the ABC boundary is set at 0.6λ from the surface of the cylinder. 
When the maximum area of any one element is fixed by the Triangle in, say, 0.002λ2, is 
generated a mesh, called mesh 1. This mesh has 2,384 elements, 296 of which are inside the 
scatterer, and 1,328 nodes, 90 of them on the surface of the cylinder and other 270 on the 
ABC boundary. 
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The first order FEM-ABC formulation, obtained in equation (12), when implemented from 
mesh 1, provides the solution presented in figure 5. 

 
Figure 5: Total electric field on the surface of dielectric cylinder:  

comparison between the first order FEM-ABC solution and the analytical one. 
In this figure, the total electric field is calculated on the surface of the cylinder. The 

numerical solution is shown in continuous line, while the analytical one is shown in dotted 
line. There is a reasonable agreement between the two solutions. 

To evaluate the distance between these two solutions, the percentage error at each point on 
the surface of the cylinder is determined by: 

 ( ) 100% ×
−

=Δ
exact

calculatedexact

E
EE

E . (17) 

This result and the average percentage error (6.0%) are presented in figure 6. 

 
Figure 6: Percentage error and average percentage error when using a first order ABC. 

Then, the ABC boundary is placed 1.2λ of the scatterer’s surface. The maximum area of an 
element, which determines the mesh density, remains the same. For this farther away 
boundary, the mesh generated by Triangle, called mesh 2, has 6,024 elements and 3,238 
nodes, with 450 of these on the ABC boundary. The number of elements inside the scatterer 
and the number of nodes on the surface of the cylinder remains the same. 

The information in this mesh, compared with mesh 1, indicates that when the ABC 
boundary is placed more distant from the scatterer, the number of nodes and elements 
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generated increases significantly, and this increases the computational cost. For mesh 2, the 
first order FEM-ABC formulation gives the solution shown in figure 7. 

 
Figure 7: Solution with first order FEM-ABC for mesh 2.  

The average percentage error in this case is 5.2%. It is noticed that the removal of the ABC 
boundary contributes to increase the accuracy of results. This is because the equation (6) is an 
approximate expression of the u field in the near-field region, which is more accurate the 
farther away the ABC boundary is placed the scatterer. 

3.2 The FEM formulation with second order ABC 

The same problem is, then, solved from the second order FEM-ABC formulation, 
presented in equation (13). The validation of the formulation presented in this equation is the 
more important objective of this paper. When the implementation is made from mesh 1, is 
obtained the solution shown in figure 8, with an average percentage error of 5.1%. 

 
Figure 8: Solution with second order ABC for mesh 1. 

When, however, the implementation is made from mesh 2, the average percentage error is 
reduced to 2.1%. Figure 9 shows this solution. In this case, the fit of the curves is 
significantly larger. 
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Figure 9: Solution with second order ABC for mesh 2.  

Note that, for both meshes, the results are more accurate with a second order ABC. In 
particular, the increase in accuracy is highest when there is a combination of factors: use of 
higher order ABC in a boundary further away. 

To measure the relationship between these factors and the computational cost, the total 
processing time is calculated for each implementation obtained. These times are shown in 
Table 1. 

 
 1st order ABC 2nd order ABC 

Mesh 1 1.8 1.7 
Mesh 2 8.0 8.2 

Table 1: Processing times, in seconds 

The hardware used is a computer Intel Core 2 Duo processor, 3GHz, 2GB DDR2. An 
analysis of this table shows that the use of a higher order ABC practically does not affect the 
computational cost. But the remoteness of the ABC boundary increases significantly this 
time. This is due to the increase in the size of the array to be reversed, where the number of 
rows or columns is given by the number of nodes in the mesh. 

With this paper one can emphasize several advantages of the FEM-ABC. A first one is the 
generation of sparse matrices. For example, for the array generated from the mesh 2, which 
has 3,238x3,238 elements, only 21,760 of them (0.21%) are not null. The location of these 
terms is represented by dark spots in figure 10. It is also observed in this figure that this 
matrix is symmetric. 

 
Figure 10: Location of non-zero terms in the matrix generated by the FEM-ABC for the mesh 2.  
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Thus, the use of efficient methods for solving sparse matrix systems allows that more 
complex problems are solved in reduced times, one of the main advantages of FEM-ABC. 
The use of such methods is proposed as future work. Another major advantage of FEM-ABC 
is the easiness to treats not homogeneous domains, since the value of εr is reported for each 
element.  

4 CONCLUSION 

This paper presents a study of two-dimensional electromagnetic scattering. It is shown that 
this problem has many practical applications in engineering and can be successfully solved by 
the Finite Element Method. An absorbing boundary condition of Bayliss-Turkel is 
incorporated in the formulation, which gives the solution of the problem. The results agree 
with the analytical solution. Both error and sensitivity analysis show that the accuracy of 
results increases when the boundary moves away from the scatterer or when a second order 
ABC is used. The determination of the density of matrix obtained and the processing time in 
each case show the importance of using efficient methods of solution of sparse matrix 
systems. 
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