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Abstract. Parabolic type problems involving a variational and complementarity formulation arise in
mathematical models of several applications in Engineering, Economy, Biology and different branches
of Physics. These kinds of problems present several analytical and numerical difficulties related, for
example, to time evolution and moving boundary.

In this work we implement a numerical method based on the finite difference scheme for time evo-
lution and nonlinear complementarity algorithm (FDA-NCP) for solving the problem at each time step.
We use the implicit finite difference scheme with adaptative time step implementation which allows us
to use bigger time steps and speed up the simulations. One of the advantages using the FDA-NCP is its
global convergence.

This method was applied to simple non-linear parabolic partial differential equation, which describes
oxygen diffusion problem inside one cell. This equation was rewritten in the quasi-variational form. The
main problem consists in tracking the moving boundary that represents the oxygen penetration depth
inside the cell.
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1 INTRODUCTION

The parabolic type problems involving variational formulation and complementarity prob-
lems appear in many applications. For example the liquid flow at the inner domain, diffusion,
heat flow including phase change and chemical reactions are modeled as parabolic type moving
boundary problems, see (Crank, 1984). Different examples arise in Engineering and Economics,
see (Ferris and Pang, 1997).

Since the analytic solutions of these kinds of non-linear problems are difficult to obtain, one
can transform them into the variational formulation in order to obtain an approximate solution.
Many works cited below work particular case of oxygen diffusion using the linear model. In
this paper we address more general case, which is interesting for many applications.

The diffusion of oxygen into absorbing tissue was first studied in (Crank and Gupta, 1972).
First the oxygen is allowed to diffuse into a medium, some of the oxygen can be absorbed by the
medium and the concentration of oxygen at the surface of the medium is maintained constant.
This phase of the problem continues until a steady state is reached in which the oxygen does
not penetrate any further into the medium. During the second phase the surface is sealed so that
no oxygen passes in or out, the medium continues to absorb the available oxygen already in it
and, as consequence, the boundary marking the furthest depth of penetration in the steady state
starts to recede towards the sealed surface.

The major challenge is that of tracking the movement of the moving boundary during this
stage of the process as well as determining the distribution of oxygen throughout the medium
at any instant in time. This type of problem is known as an implicit moving boundary problem,
see (Crank, 1984).

There is a number of analytical and numerical methods used to obtain the solution of this
problem, we recall some of them here. In (Crank and Gupta, 1972) the approximate analytical
solution is used for starting times, when the moving boundary is moving slowly. When the
speed of the moving boundary has increased the numerical scheme with a fixed grid network
is used. The concentration is calculated at each grid point using the Euler equation. For the
grid near the moving boundary, a Lagrange type formula is used and the location of the moving
boundary is determined using a Taylor series expansion.

In (Hansen and Hougaard, 1974) the integral equation was used for the function defining
the position of the moving boundary and an integral formula for the concentration distribution.
The integral equation is solved asymptotically during the entire motion of the moving boundary
whereas the concentration integral is solved asymptotically for small times and computed by
numerical quadrature at later times.

In (Gupta and Kumar, 1981) a Crank-Nicolson implicit finite difference scheme with vari-
able time step was used avoiding the large number of time steps generally required for the
methods in (Crank and Gupta, 1972) and (Hansen and Hougaard, 1974). Due to the implicit
boundary condition, an integral equation is used to determine the time steps.

One semi-analytical method is proposed in (Gupta and Banik, 1989), it solves the implicit
moving boundary problems using the constrained integral method. The problem of the diffusion
of oxygen in a sphere was studied as an example of an implicit moving boundary problem. The
distribution of the oxygen concentration was assumed to be a polynomial of even degree, in
which four unknown functions should be determined as a part of the required solution. These
unknowns were expressed in terms of the concentration at the outer surface of the sphere, which
is still unknown and to be determined. Finally, the number of unknowns were reduced to two:
the concentration at the outer surface and the position of the moving boundary. There are
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some recent works dealing with the problem of oxygen diffusion using modifications of the
constrained integral method, see (Ahmed, 2006; Çatal, 2003). In (Boureghda, 2006) the oxygen
diffusion problem was studied analytically.

In this work we propose a numerical method based on a combination of the implicit central
space finite difference scheme, (Strikwerda, 1989) and a nonlinear complementarity algorithm,
(Mazorche, 2007). This approach allows us to use bigger time steps and for each one of them we
expect better convergence compared to usual finite difference schemes using Newton’s method,
see (Strikwerda, 1989) and (Chapiro and Marchesin, 2008). In order to speed up the evaluation
we use time adaptative implementation were the choice of the next time step is made based on
the information given by the nonlinear complementarity algorithm. Some results of this method
addressing linear problems were presented in Mazorche et al. (2010).

Other methods dealing with complementarity problems can be found in
(Chen and Mangasarian, 1996; Cottle et al., 1980; Mazorche and Herskovits, 2005).

This paper is organized as follows. In Section 2 we introduce the physical model of oxygen
diffusion. In Section 3 we describe the non-complementarity algorithm used to solve the prob-
lem at each time step and the finite difference scheme used for time evaluation. In Section 4 we
describe the obtained results comparing them with the existing data. Finally, in Section 6 we
present some conclusions.

2 PHYSICAL FORMULATION

The oxygen diffusion problem appears in many applications. In (Crank and Gupta, 1972)
the linear mathematical model of biological diffusion examines the oxygen injection into the
sick cell and diffusion of injected oxygen inside it. Another example appears from the study of
the reaction kinetic of coke oxidation in porous media, see (Chapiro, 2009). Here we study a
one dimensional particular case involving oxygen diffusion that possesses a moving boundary.
For simplicity, the oxygen is allowed to diffuse into a medium which absorbs and immobilizes
oxygen at constant rate. The concentration of oxygen at the surface of the medium is maintained
constant. A moving boundary marks the limit of oxygen penetration.

The process is assumed to consist of two levels. The first phase of the problem continues
until a steady state is reached in which there is no oxygen transfer into the medium, see Figure
1, left. The oxygen absorption is considered.

At the second phase the surface of the medium is sealed so that no more oxygen passes in
or out. The medium continues to absorb the available oxygen already diffusing in it and, as a
consequence, the boundary marking the depth of penetration in the steady state recedes towards
the sealed surface, see Figure 1, right. The major problem is that of tracing this movement of
the boundary and determining the distribution of oxygen as a function of time. A secondary
problem is associated with numerical techniques that has to deal with the discontinuity in the
derivative boundary condition which results from the abrupt sealing of the outer surface.

Following (Crank, 1984) we denote by C(X,T ) the concentration of oxygen free to diffuse
at a distance X from the outer surface of the medium at a time T . D is the constant diffusion co-
efficient, r(C) is the rate of consumption of oxygen per unit volume of the medium (is assumed
constant for C(X, T ) > 0). The steady state is defined by a solution of

D
d2C

dX2
− r(C) = 0, (1)

where C satisfies the conditions C = ∂C/∂X = 0, for X0 ≤ X , where X0 corresponds to
the most extent oxygen penetration, and the outer surface C = C0 = const., for X = 0. The
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Figure 1: Schematic representation of the oxygen diffusion into the media sample. The first stage is represented on
the left. Here the oxygen enters the sample until equilibrium is reached. During the second phase, on the right, the
sample is sealed and the oxygen inside diffuses and is absorbed by the medium generating the moving boundary.

required solution for constant r(C) = r0 is given by:

C =
r0

2D
(X −X0)

2, X0 =

√
2DC0

r0

. (2)

After the surface X = 0 has been sealed, the position of the receding boundary is denoted by
X0(T ) and the problem to be solved becomes:

∂C

∂T
= D

∂2C

∂X2
− r(C), 0 ≤ X ≤ X0, (3)

∂C

∂X
= 0, X = 0, 0 ≤ T, (4)

C =
∂C

∂X
= 0, X = X0(T ), 0 ≤ T, (5)

C =
r0

2D
(X −X0)

2, 0 ≤ X ≤ X0, T = 0, (6)

where T = 0 is the moment when the surface is sealed. By making the changes of variables:

x =
X

X0

, t =
D

X2
0

T, c =
C

2C0

, (7)

and denoting by s(t) the value of x corresponding to X0(T ), the above system is reduced to the
following non-dimensional form:

∂c

∂t
=

∂2c

∂x2
− f(c), 0 ≤ x ≤ s(t), (8)

∂c

∂x
= 0, x = 0, 0 ≤ t, (9)

c =
∂c

∂x
= 0, x = s(t), 0 ≤ t, (10)

c =
1

2
(1− x)2, 0 ≤ x ≤ 1, t = 0, (11)

where c is the concentration of oxygen free to diffuse. In Crank and Gupta (1972) and others
works cited in the introduction the function f(c) = −1. In this work we introduce one small
non-linearity and consider the case f(c) = −1− c(1− c).
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Following (Baiocchi and Pozzi, 1975) we transform the system (8) - (11) into a variational
approach

∂c

∂t
− ∂2c

∂x2
+ 1 + c(1− c) ≥ 0, c ≥ 0, (12)

together with the equality
(

∂c

∂t
− ∂2c

∂x2
+ 1 + c(1− c)

)
c = 0. (13)

The inequality (12) is satisfied as equality by (8) inside the region 0 < x < s(t). When
s(t) ≤ x ≤ 1 by (10) we get c = 0 and thus (12) is equivalent to 1 > 0. The inequality
c ≥ 0 follows from (11). The equality (13) is valid because for any x ∈ [0, 1] one of the factors
vanishes.

Remark: The equivalence of the solution of the system equations in the variational approach
(12)-(13) and the weak solution of the Stefan problem described by the system (8)-(11) for the
linear case are studied in (Baiocchi and Pozzi, 1975) and (Baiocchi and Capelo, 1984). The
formal demonstration of this result for the non-linear case is left to the future work.

3 NUMERICAL SCHEME

In this section we describe how to solve the system (12)-(13) numerically. We use Finite
Difference Scheme (FDS) for the time evaluation and a nonlinear complementarity algorithm
to solve the problem at each time level. In this way the implementation is very adaptative, we
can change the finite difference scheme and the algorithm separately.

Although the Finite Element Method (FEM) is better to simulate the Neumann boundary
conditions we use FDS. There are two reasons for this. The implementation of FDS is simpler
than the FEM. All papers found and to which we compare our algorithm use FDS and as we
want to find out the gain we get when using nonlinear complementarity algorithms we have to
use the same type of schemes. We use both the classical Cranck-Nicolson scheme and central
space scheme.

For each time step we use an interior point algorithm for complementarity problems (FDA-
NCP) developed by (Mazorche, 2007). Next we present a brief description of the problem of
complementarity and the algorithm FDA-NCP.

3.1 Nonlinear complementarity algorithm

Let F : D ⊂ RM → RM be a nonlinear vector function defined on the domain D. The
nonlinear complementarity problem consists in finding c ∈ RM such that:

F (c) ≥ 0, c ≥ 0 and c ◦ F (c) = 0, (14)

where c ≥ 0 means that each component of the vector c is nonnegative, and “◦” denote the en-
trywise Hadamard product for vectors, given by (c ◦ y)i = ci yi. In our case the two inequalities
in (14) correspond to (12) and the Hadamard product is described by (13).

Defining the feasible set Υ = {c ∈ RM | c ≥ 0, F (x) ≥ 0}, it is easy to see that c is a
solution of the problem (14) if and only if c is in the feasible set and c ◦ F (c) = 0.

FDA-NCP is an iterative algorithm to find the solution of problem (14). It starts from an
initial point in Υ and generates a sequence of points in Υ that converge to the required solution.
It first defines a search direction and performs a line search along that direction to find a point
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with lower value for the potential function Φ(c) =
∑n

i=1 ci Fi(c). That point is defined to be the
next point of the sequence and the algorithm returns to the first step till a convergence criterion
is satisfied. The search direction is based on Newton’s direction for the nonlinear system of
equations c ◦F (c) = 0. To obtain a convergence to the solution, Newton’s direction is modified
by a restoration direction, as done in (Herskovits, 1998). The present approach is supported by
strong theoretical studies by (Mazorche and Herskovits, 2009).

The following notation will be employed to describe the algorithm FDA-NCP: F k = F (ck),
Mk = ∇(c ◦ F (c)), Φk = Φ(ck), ∇Φk = ∇Φ(ck) and λk = Φk/M .

FDA-NCP
Data: c0 ∈ int(Υ) , k = 0 , ε > 0 , E = [1, ..., 1]T , ν, ν1 ∈ (0, 1), α ∈ (0, 1/2).

Step 1: Computation of the search direction dk

Find dk solving the following linear system of equations:

Mk dk = −ck ◦ F k + α λk E. (15)

Step 2: Line search
Set t as the first number in the sequence {1, ν, ν2, ν3, ...} that satisfies:

ck + t dk ≥ 0;

F (ck + t dk) ≥ 0;

Φk + t ν1 (∇Φk.dk) ≥ Φ(ck + t dk).

(16)

Step 3: Update
Set ck+1 = ck + t dk and k = k + 1.

Step 4: Stop criterion
If ‖ck ◦ F k‖ ≤ ε stop, else go to step 1.

In (Mazorche and Herskovits, 2009) it has been shown that the search direction dk is well de-
fined in Υ when function F verifies some usual regularity assumptions.

3.2 Finite difference scheme

Explicit schemes can only use very small time steps because of the CFL restriction. Implicit
schemes allow for larger time steps and may be unconditionally stable, but they are computa-
tionally more expensive. As the quality of the solution is tied to its stability, we choose to solve
the system implicitly.

We consider the homogeneous grid for the variable x with M + 1 points, where x0 and xM

are the boundary points of the interval where the calculation takes place. The grid spacing is
h = xm+1 − xm = 1/M and the grid position m corresponds to x = m∆x. Analogously
the time is denoted by t with time index denoted by n and the time step is ∆t. However, we
consider time step-adaptative finite difference schemes, so ∆t may change from one grid level
to another. Generally we get ∆t = ∆tn and the time index n corresponds to t =

∑n
i=1 ∆tn.

Using the presented notation we denote the differential operator from the left side of the
inequality (12) as F (c) and rewrite it in the discrete form

F∆(c) =
cn+1
m − cn

m

∆t
− cn+1

m−1 − 2cn+1
m + cn+1

m+1

2∆x2
− cn

m−1 − 2cn
m + cn

m+1

2∆x2
+ f∆, (17)
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where f∆ = 1 in the linear case and f∆ = (cn
m(1− cn

m) + cn+1
m (1− cn+1

m ))/2 in the non-linear.
Substituting the differential operator F (c) in (12) by the discrete operator F∆(c), multiplying
the inequality by ∆t and isolating the terms for time step n + 1 on the left we obtain the equa-
tion describing the numerical scheme. In what follows we use µ = ∆t/∆x2. The evaluation
equation for the grid points m = 0 and m = M can not be described with (17) because of the
boundary conditions.

3.2.1 First phase of the problem

For the first phase of the problem, as described in Section 2, the concentration of oxygen at
the left end of the interval (x=0) is constant and is modeled with Dirichlet boundary conditions
c0 = cL. The right side of the interval (x=1) is sealed and is modeled as Neumann boundary
condition ∂c/∂x(xM) = 0. We use the ghost point method at the right boundary in order to
implement this condition. This method consists in increasing the grid by one point xN+1 and
use the Dirichlet condition. The value of the concentration at xN+1 is determined using the
boundary condition:

0 =
∂c

∂x
(xM , t) ≈ cn+1

M+1 − cn+1
M

∆x
. (18)

It follows that cn+1
M+1 = cn+1

M , substituting cn+1
M+1 into (17) for m = M we obtain

−µ

2
cn+1
M−1 +

(
1 +

µ

2

)
cn+1
M ≥ µ

2
cn
M−1 +

(
1− µ

2

)
cn
M −∆tf∆, (19)

The problem has M variables and can be rewritten in matrix form with the inequality is assumed
to be satisfied for each element.

3.2.2 Second phase of the problem

During the second phase of the problem the left end of the sample is sealed, proceeding
analogously to the previous case we introduce x−1 and determine the value of concentration at
x−1 using the boundary condition:

0 =
∂c

∂x
(x0, t) ≈

cn+1
0 − cn+1

−1

∆x
. (20)

It follows that cn+1
−1 = cn+1

0 , substituting cn+1
−1 into (17) for m = 0 we obtain:

(
1 +

µ

2

)
cn+1
0 − µ

2
cn+1
1 ≥

(
1− µ

2

)
cn
0 +

µ

2
cn
1 −∆tf∆, (21)

The right side is exactly the same as described in (19). Now the problem in matrix form with
Neumann conditions at both sides is:

A [cn+1
1 , cn+1

2 , · · · , cn+1
M ]T ≥ B [cn

1 , cn
2 , · · · , cn

M ]T −∆tf∆
T
, (22)

where

A =




1 + µ −µ 0 · · · 0

−µ
2

1 + µ −µ
2

. . . ...

0
. . . . . . . . . 0

... −µ
2

1 + µ −µ
2

0 · · · 0 −µ
2

1 + µ




, B =




1− µ µ 0 · · · 0
µ
2

1− µ µ
2

. . . ...

0
. . . . . . . . . 0

... µ
2

1− µ µ
2

0 · · · 0 µ
2

1− µ




(23)
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and
∆tf∆

T
= [∆tf 1

∆, · · · , ∆tf 2
∆, ∆tfM

∆ − µcL]T . (24)

Remark: There are some other possibilities to discretize the space derivative at the bound-
ary point, for example one can consider ∂c/∂x ≈ (c1 − c−1)/2∆x. This choice can have a big
impact in the stability of the scheme, see (Strikwerda, 1989) and (K.W. and D.F., 2005).

3.2.3 Adaptative time step implementation

The routine merging FDA-NCP algorithm described in Section 3.1 and the finite difference
scheme described in Section 3.2 was implemented in the following way.

Step 0: We start with the initial concentration distribution c0
n, n = 0, 1, . . . , N and the first time

step ∆t0.

Step 1: Next we use (22) (analogous equation if we are simulating the first phase of the prob-
lem) in order to obtain the operator F∆(c) in the discrete form.

Step 2: Use FDA-NCP algorithm to solve (14) with F∆(c). The number of iterations of FDA-
NCP is used to determine the next time step length.

Step 3: Use the solution obtained in step 2 as the concentration c(x) at the next time step.
Repeat the algorithm from the step 1 until reaching the final time.

4 NUMERICAL RESULTS: LINEAR CASE

In this Section we present the results of some numerical simulations addressing the linear
case described in Section 3. In all the iterations the FDA-NCP algorithm utilizes the linear
search step equal to 1. This fact indicates that the FDA-NCP algorithm converges quadratically
to the solution of the problem and agrees with the theoretical results presented in
(Mazorche and Herskovits, 2009).

4.1 First phase

The first phase of the problem was used to test our algorithm. The implementation uses the
Dirichlet boundary condition c(x0) = cL = 0.5 at the left and the Neumann boundary condition
∂c/∂x(x0) = 0 at the right side of the interval. The initial condition corresponds to the medium
filled with oxygen. Simulations results can be seen on Figure 2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.5

X

c(x,t)

Equilibrium solution

Figure 2: The plot represents the simulation of the first phase of the oxygen diffusion problem. Oxygen concen-
tration at different times: the initial concentration (dotted), some iterations (dashed) and the equilibrium solution
given by (11) (solid).
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In order to better represent the physics of our problem it would be interesting to consider
the medium with no oxygen as the initial condition. Unfortunately any oxygen distribution be-
low the equilibrium solution is not in the feasible set for the FDA-NCP algorithm. In order to
simulate this situation we substitute the nonlinear complementarity algorithm by the Extragra-
dient method with constant step length, see (Tinti, 2005). The simulation results can be seen on
Figure 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.1

0.2

0.3

0.4

0.50.5

x

c(
x,

t)

Equilibrium solution

Figure 3: The plot represents the simulation of the first phase of the oxygen diffusion problem. Oxygen concen-
tration at different times: the initial concentration (dotted), some iterations (dashed) and the equilibrium solution
given by (11) (solid).

4.2 Second phase

Next, we simulate the second phase of the problem using Neumann boundary conditions at
the left and right sides of the interval ∂c/∂x(x0) = 0 and ∂c/∂x(xN) = 0. We compare our
result with the one obtained in (Crank and Gupta, 1972) using semi-analytical techniques on
Figure 4.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.50.5

X

c(x,t)
t=0.06

t=0.1

t=0.15

t=0.18

t=0

Figure 4: Both plots represent the simulation of the second phase of the oxygen diffusion problem. The oxygen
concentration is represented for different times (from upper to lower) t = 0, t = 0.06, t = 0.1, t = 0.15
and t = 0.18. The left Figure corresponds to the results obtained in (Crank and Gupta, 1972); the right Figure
corresponds to our simulations.

We can describe the moving boundary behavior in time as shown on Figure 5. We compare
the moving boundary position at different times in Table 1.
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Table 1: Moving boundary position. In this table we compare the results of the present work to: A: (Ahmed, 2006);
HH: (Hansen and Hougaard, 1974); CG: (Crank and Gupta, 1972); G: (Gupta, 1973); GK: (Gupta and Kumar,
1981). CN-cub and CN-lin correspond to Cranck-Nicolson scheme with cubic and linear interpolation, CSBT
corresponds to implicit central space scheme with cubic interpolation.

Time CN-cub CN-lin CSBT A HH CG G GK
0.0 1.0000 1.0000 1.0000 1.0000 1.00000 - - -

0.02 1.0000 1.0000 1.0000 0.9992 1.00000 - - -
0.04 1.0000 1.0000 1.0000 0.9983 0.99918 0.9988 0.9988 0.9950
0.06 0.9840 0.9935 0.9900 0.9921 0.99918 0.9905 0.9903 0.9899
0.08 0.9640 0.9729 0.9620 0.9663 0.97155 0.9650 0.9613 0.9623
0.10 0.9303 0.9400 0.9260 0.9313 0.93501 0.9312 0.9301 0.9249
0.12 0.8730 0.8799 0.8720 0.8750 0.87916 0.8747 0.8719 0.8703
0.14 0.7928 0.8004 0.7940 0.7937 0.79891 0.7912 0.7882 0.7916
0.16 0.6748 0.6880 0.6780 0.6784 0.68337 0.6756 0.6682 0.6825
0.18 0.4942 0.5042 0.5000 0.4909 0.50109 0.4849 0.4766 0.4768
0.19 0.3419 0.3509 0.3520 0.3401 0.34537 - - -

0.195 0.2049 0.2193 0.2340 0.2012 0.20652 - - -

0 0.2 0.4 0.6 0.8 11
0

0.1

0.2

0.30.3

s(t)

t

Figure 5: Both plots represent the moving boundary position s(t) on the horizontal coordinate and time t on the
vertical one. The left Figure corresponds to the results obtained in (Crank and Gupta, 1972) and the right Figure
corresponds to our simulations.

5 NUMERICAL RESULTS: NON-LINEAR CASE

In this Section we present the results of some numerical simulations of the non-linear case
described in Section 3. As before, in all the iterations the FDA-NCP algorithm utilizes the linear
search step equal to 1.

There is no literature describing the non-linear case simulated in this text. In order to validate
our algorithm we use classical Crank-Nicolson finite difference scheme with adaptative time
step. At each time the moving boundary was obtained by truncation and new Cauchy problem
was formulated.

For this case we simulate the second phase of the problem using Neumann boundary condi-
tions at the left and right sides of the interval ∂c/∂x(x0) = 0 and ∂c/∂x(xN) = 0. We compare
the result using the (FDA-NCP) with the classical Crank-Nicolson scheme on Figure 6.

We can describe the moving boundary behavior in time as shown on Figure 7.
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Figure 6: Both plots represent the simulation of the second phase of the non-linear oxygen diffusion problem. The
oxygen concentration is represented for different times (from upper to lower) t = 0, t = 0.06, t = 0.1, t = 0.15
and t = 0.18. Left Figure corresponds to the results obtained using the (FDA-NCP); the right Figure corresponds
to the classical Crank-Nicolson scheme.
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Figure 7: Both plots represent the moving boundary position s(t) on the horizontal coordinate and time t on the
vertical one. Left Figure corresponds to the results obtained using the (FDA-NCP); the right Figure corresponds to
the classical Crank-Nicolson scheme.

6 CONCLUSIONS

In this work we propose a numerical method based on the implicit finite difference scheme
and nonlinear complementarity algorithm which can be applied to linear and non-linear parabolic
problems involving a variational formulation present in many applications. To illustrate this idea
we apply it to the oxygen diffusion problem.

We simulated both phases of the oxygen diffusion problem. The first phase was used to test
our algorithm. We started with some oxygen concentration close to the outer boundary. During
the simulations the concentration converges to the equilibrium solution (11) as expected, see
Figures 2 and 3.

In order to simulate the second phase of the problem we start with the equilibrium solution
of the first phase and obtain the evolution over time of the oxygen concentration. The results
show good agreement with (Crank and Gupta, 1972) as shown on Figure 4.

Finally, we obtain the moving boundary position s(t) as a function of time. Numerical results
obtained with the algorithm proposed in this paper show good agreement with those presented
in (Crank and Gupta, 1972), see Figure 5 and with other ones as shown in Table 1. For the
non-linear case the results were compared to the simulation using classical Crank-Nocolson
scheme.
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