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Abstract. Different boundary-only numerical frequency doméirmulations are here developed
and applied to simulate the two-dimensional (2D)ustic wave propagation in the vicinity of a
underwater configuration. This configuration cordsntwo sub-regions, one of them being a
wedge with rigid bottom and free surface, and theosd one being a waveguide with a rigid flat
bottom and a free flat surface. Both the Boundalgment Method (BEM) and the Method of
Fundamental Solutions (MFS) are used to solvepgtoblem. In either cases, Green’s functions that
take into account the presence of flat rigid arek fsurfaces of the waveguide and of a wedge are
used. A sub-region technique is used to connectvtbeparts of the domain, enforcing continuity of
the relevant quantities. The Green’s functions defined using two approaches: the image source
method is used to model the rigid flat bottom aree fflat interface, whereas the response proviged b
the wedge sub-region is based on a normal mode¢i®allA third boundary element formulation is
also considered, which makes use of Green’'s funstfor a perfect waveguide (using the image
source method), therefore requiring the discratimadf the sloping rigid bottom of the wedge. The
presented formulations are discussed, both in wbaterns accuracy and computational
effort. The results obtained by the authors indickiat the MFS has a significantly lower
computational cost and is very stable, therefoiegoadequate for the analysis of acoustic
wave propagation in the studied configurations.
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1 INTRODUCTION

Over the years, different computational methodsehbgen proposed to determine the
sound field in an underwater acoustic environmbtany methods have been applied with
success, as documented in the reference work skdeet al. (2000), but all of them with
specific drawbacks and limitations. In ocean adosssome of the most widely used methods
are based on acoustic ray theory, normal mode sisaffirst applied by Pekeris (1948)),
parabolic equations (introduced first by Hardin aragppert (1973)) or Green’s functions for
layered media (such as those defined by Schmidifando (1986) or Tadeu et al. (2000) and
Tadeu et al. (2005)).

Modern high-speed computing infrastructures allovilesl development of different and
more accurate approaches based on the wave tleagrhe specific problems in underwater
acoustics. Among those approaches are finite difig, finite element and boundary element
numerical methods.

Santiago and Wrobel (1999) and Santiago and Wi@®€l0) implemented the sub-region
technique in a boundary element formulation for #malysis of two-dimensional acoustic
wave propagation in a shallow water region wittegular seabed topography. In their
approach the bottom and surface boundaries ofeifiens are modeled using Neumann and
Dirichlet conditions, allowing for the use of Gréeriunctions that satisfy either the free
surface boundary condition or both the boundarydiémms on the free surface and rigid
bottom.

In many cases, the geometry of the propagation toozn be assumed to be constant in
one direction; additionally, if the acoustic extita is modeled as a three-dimensional (3D)
source, these problems are usually called 2.5D,th@dBD acoustic wave equation can be
mathematically manipulated to obtain the frequethograin solution as a summation of
simpler 2D problems (Bouchon and Aki, 1977). Bougdalement models have been
developed using this technique to compute the predteld in ocean environments (Branco
et al., 2002, Godinho et al., 2001)

When complex geometries are analyzed, boundaryegiemethods may present specific
problems, since it may become necessary to perfarge discretization schemes, leading to
high computational effort. One way of avoiding thdarge discretizations is incorporating
appropriate Green’s functions to account for pathe boundaries, such as a free surface.

Meshless methods have, in recent years, received attention of scientists and
researchers. These methods do not require exghaoitain or boundary discretization. One
such technique is the Method of Fundamental SaistidMFS) (Golberg et al., 1999, Cho et
al., 2004). Mathematically, the MFS is a rather @antechnique, but it requires previous
knowledge of the Green’s functions of the propagatiomains. Despite of the potential
interest in developing those techniques to tredenmater wave propagation problems, very
little can be found in the literature. The use wéls methods together with Green’s functions
that automatically satisfy specific boundary coiatis may be a further interesting option.

In the present paper the authors aim to analyzeeffi@ency and accuracy of different
numerical formulations developed to allow for themputation of the acoustic wave
propagation in a specific underwater acoustics igardtion. These formulations may
incorporate Green’s functions that allow reducihg discretization needs. Two different
numerical methods are used here: the first oneeBEM and the second is the MFS. In all
cases, the analyzed region is assumed to be twerdional, simulating underwater acoustic
problems which have little variation in the longosh direction, and is divided in two sub-
regions: the first one is a flat waveguide, compoe€ a flat rigid bottom and a flat free
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surface; the second is defined by a wedge, wiid bgttom and free surface.

Three formulations are discussed. The first two lzased on BEM and MFS models,
respectively, requiring the definition of two subrdains where appropriate Green’s functions
can be determined, and thus only requiring thefexte between sub-regions to be discretized.
In the first sub-domain, which assumes a flat rigattom and a flat free surface, Green’s
functions obtained using the Image Source Methedused. In the second one, defining a
wedge, the Green’s functions are obtained usingmproach based on the sum of normal
modes (Buckingham and Tolstoy, 1990). The third eh@dso makes use of the BEM, but
requires discretization of the inclined rigid battdhat forms the wedge. This model assumes
only one region and makes use of adequate Greaniéns based on the Image Source
Method.

This paper is organized as follows: first, the reathtical formulation of the problem is
presented, including a brief description of the BElvmulation and of the MFS; the Green’s
functions used are then defined, followed by a eogence analysis performed for the case of
the wedge; after this, the proposed models ardiegitby comparing the results they provide
against each other; the performance and accuradheothree models is then discussed,;
finally, a numerical application is presented.

2 PROBLEM FORMULATION

Consider the problem of acoustic wave propagatioa liegionQ of infinite extent along
the z direction, with irregular rigid seabed topograpdmyd flat free surface, as shown in
Figure 1.

y

F Free surface

- Source
s /
Q

Bottom

Figure 1: Geometry of the problem.

If the source of acoustic disturbance is time-hameathe sound velocity is constant and
the medium in the absence of perturbations is gar@sthe governing Helmholtz equation for
this problem can be written as:

Tprkip=-3 Q4 &), inregio (1)
1=1

where NS is the number of sources in domaig; is the velocity potential,Q is the
magnitude of the existing sourcé&$ located at(xif ,ygf); ¢ is a domain point located at

(Xe1 ¥e) s o(&',&) is the Dirac delta generalized function; akie «j/c is the wave number,

with w being the angular frequency andhe speed of sound in the medium.
In this problem the following conditions were pnelsed: the Dirichlet condition in the
boundary of the free surfade.; Neumann condition in the boundary of the bottbgand
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Sommerfeld radiation condition at infinity.
To solve this problem, two numerical strategieswmed in this paper, and are presented in
the following sections.

2.1 Boundary Element Method

To solve the proposed problem using the BEM togetlith full-space Green’s functions
requires discretization of all surfaces. Here, haavewe will make use of Green’s functions
that satisfy specific boundary conditions allowifag reduction of boundary discretization.
The formulations that will be described refer te tspecific geometry of a shallow water
configuration which combines two sub-regions, onghwflat surfaces and a second
corresponding to a wedge region as defined in Eiguexcited by a linear load.

Free surface

Bottom
(a)
A
Freesufece YD
r s
Y -
Q -
Q, P
Sourc% -7
‘Bottom X

Figure 2: Geometry of the BEM models: (a) Mode(t); Model 2.

Two different models are here proposed: one (Mddlehakes use of a Green’s function
that directly satisfies the boundary conditiongthe flat rigid bottom and flat free surface,
requiring only the discretization of the slopingttoon of the wedge (see Figure 2a); the
second model (Model 2) makes use of two differgpés of Green’s functions, and therefore
a sub-region technique is applied by defining tegions, with only the interface in-between
requiring discretization (see Figure 2b).

Considering Model 1 excited by a unit lo&4, if we introduce the appropriate boundary

conditions at the discretized sloping bottdig, and assumind\E; constant elements with

linear geometry, by applying the collocation metliodhe integral equation, in terms of an
intrinsic coordinatey, the following equation may be obtained:

NEg 1 aG frb_ ffs ,
CE e = | )

-1 on

@x,)[Id7 +G"™-"(E"8,), (2)

where & refers to the functional nogewith p ranging from 1 toNE; ; |J| Is the Jacobian;

. . . . frb_ ff .
#(x,) is the unknown velocity potential at the boundalgmentx,; G™-"(&,,x,) is the
fundamental solution for a waveguide with flat ddiottom and free surface at the boundary
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elementx,, whose details are given in a subsequent sec@dtt;™(&",&,) is the incident

field regarding the velocity potential generatedtmy real source placed at positigh.
Solving the resulting system &, x N, equations makes it possible to obtain the nodal
solid velocity potentials at the sloping bottdrg. The scattered wave field at any point of the

domain can then be calculated by applying the Bagnbhtegral equation.

If, as in Model 2, we use a Green’s function thatts$ies the boundary conditions of the
wedge, only the interfacd’,, between the flat waveguide and the wedge needseto
discretized (see Figure 2b), requiring a substiyt@ver number of boundary elements to be
used if analyzing wedges with small apex anglesgradter lengths.

In these conditions (Model 2), if we introduce #ypgoropriate boundary conditions at the
discretized interfacd™,, (which are continuity of velocity potentials andntinuity of the
normal derivative of the velocity potentials), sassumingNE, constant elements with linear

geometry, by applying the collocation method toititegral equation, in terms of an intrinsic
coordinater, the following equations may be obtained:
- RegionQ,
CE,)E,) = ZJ G- (8, X, ) (x BINEVE

aGwrb wfs
S 2 g, e 10)0 o g,

(3)

- RegionQ,

NE,
C(ap)qo(ép)=2 j_le"b—“@p,x )—(x 2|3/ -

6G frb_ ffs

In Egs. (3) and (4)ga(xq) and aqo/an(xq) represent, respectively, the unknown velocity

%) (4)
p’""q )(q |)]|d,7+l96frb ffs a ap

potential and its normal derivative at pox; the Green’s functiorG“”b—W‘S(gp,xq) directly
satisfies the wedge surfaces’ conditioifss 1 if the source is positioned in regidh,, while
J =0 if the source is placed in regidp, .

Solving the resulting system ofN2, x N2, equations makes it possible to obtain the
relevant unknowns at the vertical interfdce.

2.2 Method of Fundamental Solutions

An approximate solution for the Helmholtz equati&y. (1)) can also be obtained by
making use of the MFS. In this method, the solut@ran internal point of the domain is
obtained in terms of a linear combination of funéatal solutions centered ANFS virtual
sources, placed outside the region of interest.

The model developed in this article (designatedvimglel 3) using the MFS assumes an
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acoustic domain divided into two sub-regions, assitated in Figure 3, allowing the use of
two different Green'’s functions: in regidR, a fundamental solution that directly satisfies the

rigid bottom and free surface wedge conditionssisuaned, whereas in regid, a solution

that directly satisfies the rigid and free flatfage conditions is used. With this procedure, a
fictitious vertical interface is defined using anmoer of NFS collocation points (displayed in
Figure 3). A total of2NFS fictitious sources must then be used to definesdtecity potential
field at both regions.

y
Collocation Source
Free surface points points
x 7%
«~ 1 « RegionQ,
| |
RegionQ, x X
X X
Source i‘< i‘<
X
Bottom X

Figure 3: Geometry of the MFS model.

For each region, the velocity potential can themvliden as:

ﬂX) — NZFSAnGwrb_WfS(an,X) + (l_ 79) Gwrb_vvfs (gf ,X) regioan (sa)

n=1

NES

Ax)=> B,G™-"E,,x)+IG™-"E" X) , regiom, (5b)

where&' is the coordinateéng ; y{f) of the real source positiod; refers to the coordinate of

the " virtual source point placed along a fictitious hdary; A and B, are the amplitudes
to be determined for each of theNRS source pointsz? =1 if the source is positioned in
region Q, and# =0 if the source is placed in regid®,; G"-"*(£",x) is the incident field
regarding the velocity potential generated by ted source when placed in the wedge region
and G™-™(&" x) regards the incident field generated by the reatce when placed in the
flat region; NFS corresponds to the number of sources placed ah sab-region;
G™-"™(g,,x) refers to the Green’s function for a flat rigidttoon and a flat free surface and
G"™-"*(¢ ,x) regards the Green’s function for a wedge regioth iiee surface and rigid

bottom whose details are given in the next sectynadequately deriving the Egs. (5a) and
(5b), the normal derivative of the velocity potahtnay also be obtained.

If we impose, at each interface poirnt continuity of the velocity potential and of its
normal derivative, the following equations are aid:

NFS NES

z A G- x)+(1-9) G & x) = z B.G™-"E x)+ (6a)
9G frb_ ffs ((\;f , X)
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NFS aGwrb WfS(g X) aGwrb WfS(g X) NES aGfrb ffS(g X)
Ay (19 B, —— =M+
> a8 G (1) I
z9ac_:‘frb_ff3(§ ,X)
on

By writing these equations for the NFS collocatmmints a linear system &NFSx 2NFS
equations is obtained. Once the system of equatsosslved for the relevant unknowns, the
response at any point of the domain may be obtdigading expressions (5).

3 FUNDAMENTAL SOLUTIONS

3.1 Analytical solution for a region with flat rigid an d free surfaces

By applying the image source method one obtainsreeiss function, written as an
infinite series of source terms, which directlyisias both boundary conditions at the ocean
rigid bottom and free flat surface. However, thentration of the number of sources will lead
to the exact satisfaction of only one boundary dood and the approximate satisfaction of
the other. Therefore, two types of truncated seréas be constructed (Santiago and Wrobel,
2000, Santiago and Wrobel, 2004).

In the present work, we deal with the solution tlexiactly satisfies the boundary

conditions at the free surface, defined@¥-"(&,x), but which produces a very small non-
zero value at the rigid boundary. This solution bargiven as:

Gfrb ffS(‘)v6 X) — _{H (l)(kr) H (l)(kr (lF)) + ZG (}; X)} (78.)

m=1

Gr (€)= (D)™ [ HE (0 ™) = H P (kr,*7) = H ke, P+ H Mk, 3], (7b)

where the superscriptg=] identify the reflected source poinjs1...5).
The distances from the field poirtto the source point§'” are denoted as r*” and

rUP. These distances can be written asr:|x—§|:\/(x—x£)2+(y—yf)2;

9 = [x=g) = J(x=x) (Y- v ) * and 17 =[x =507 = (x= %)+ (Y= y,0)
which  y8P =2Y.-y,;  y2P ==2m-Y.+2mYy -y, VS0 =2m(-Y. +Yy)+y,;

(4F) —

Yoo =2m(Y. —Yg) + Y, and y,.) = 2(m+ L)Yz - 2mY, —y, . In these expressiony¥, and Y,

refer to they coordinate of the free surface and bottom, respaygt

It is worth noting that the above defined seriehileik a slow convergence, requiring a
large number of terms to obtain the solution. Hosvethis process can be greatly improved
by using complex frequencies, with the fon=w+i¢, with ¢ defining a damping effect
(Kausel and Roesset, 1992). One additional advartégsing this damping factor is that it
can also be used to remove aliasing effects whaa-series are to be calculated from the
frequency response. In the time domain, this dag@rater taken into account by applying
an exponential window" to the response.
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3.2 Analytical solution for an ideal wedge

The analytical solution for an ideal wedge, usedthis paper, exactly satisfies the
boundary condition on the flat free surface andtlon sloping bottom of the wedge. This
solution was obtained from the inhomogeneous Helmheguation and it is given by the
following expression (Buckingham and Tolstoy, 199%€nsen and Ferla, 1990, Stotts, 2002):

GW-ws :gi J, (kr.))H O (kr,) xsinp@)singd"), (8)

0 m=1

where g, is the wedge angle], is the Bessel function of the first kind of ordey H® is the
Hankel function of the first kind of order; r_. =min(r,r'), r, =max( r'), with r andr’

being the ranges of the receiver and source framagiex of the wedged and & are the
angular depths of the receiver and source measiredt the apex; the orders of the Bessel

and Hankel functions for rigid bottom are giveniby (m—%)n/é?o.

It is important to note that this fundamental solutposes some difficulties in its
implementation. In fact, when the real ordebecomes large in relation to the fixed argument
K, (i.e. whenv - o) the functionY, £ )- o while J, («) - 0. Noting thatY, («) is the

Bessel function of second kind, which correspondhé imaginary component of the Hankel
function, the product between the Hankel functiad the Bessel function of the first kind is
the product of a very large number by a very smathber. Fortran compilers, making use of
double precision variables, may not have the reguprecision to compute this product, as
necessary in Eq. (8). This may occur particulathewr andr’ are very close to each other,
for which a large number of terms (and very higldeorv) becomes necessary to attain
convergence. However, in the present work, the MF$ed to model the proposed system,
and the source point is always positioned away fiben receiver pointr( and r' are
markedly distinct). For this reason, the convergent the solution occurs with a small
number of terms and this fundamental solution prisse good behavior.

In order to understand the possible advantagesinguhis solution in either BEM or MFS
models, convergence tests were performed. Withphipose a geometry was chosen which
assumes a set of source and receiver’ positionsedeso that they would allow to understand
the behavior of the function when implemented inB& MFS codes. The example refers to
an ideal wedge, with sound veloct00ms', subjected to a harmonic line source S1 applied
at position (0.00m;19.00m and to a second source (S2) applied at position

(-5.00m;19.00m. The responses were computed at receiver R1 pktcé@00m;19.20m
and at another receiver (R2) placed at p¢h00m;10.00m, as illustrated in Figure 4. In the
analysis, complex frequencies with an imaginary pa({ =0.7x 2xzt xAf ) were used.
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y 40.0m

|
Free surface |

| R1 (0.00m,19.20m)

® S1(0.00m,19.00m)
S2
(-5.00m,19.00m)

4 R2 (0.00m,10.00m)

_— |

Figure 4: Geometry of the wedge used in the corererg tests.

The number of terms required to compute the Graerction for each frequency, in the
range [4.0; 256 Hz], with a frequency step of 4.9, i evaluated. Figure 5 displays the
obtained responses for receiver R1 and R2, respégtwhen the source is either S1 or S2.
From the analysis of this figure, which plots thember of terms required to achieve
convergence for each frequency of the defined rawgeconclude that the number of terms
increases with the proximity between source andivec. This behavior is consistent across
the full frequency range. It is also clear, in thgdots, that the number of terms needed for
convergence when the source is at S1 and the ezciR1 is vey large (around 4000), and it
decreases dramatically for all other cases.

T T T 70 T T T T T T
| | | | | | | | |
'“i 7 601 — — — — — | \__ 0 ____d__1__/]
! ! ! slg booossea_ ¢%e%g | pesseh 7y peedee
™ = I - [ 1 i |'see] |
| | | | o 50 I I I I |
i Sl el sl e e A £ I I I I |
S S 2 a0 L L i
T T :7 : ; | | | | | |
S i et el wiks Rl o o N
SRR e ehh b 2 o [T e ey e,
T [ [ | | | | | |
s I e o S
| | | | | | | | | = Source: S? | | | | -= Source: SP
0 . 0 T t } T T } } T } }
0 25 50 75 100 125 150 175 200 225 250 275 0 25 50 75 100 125 150 175 200 225 250 275
Frequency (Hz) Frequency (Hz)
(a) (b)
Figure 5: Number of terms responses as a funcfitimedrequency range 4-256Hz: (a) receiver R1 (@)d

receiver R2.

The described findings indicate that the implemgwriaof this functions in a BEM code
may poses difficulties, since it becomes time camsg to perform integrations over the
loaded element, and thus with the loaded point ekrse to the receiver point. Additionally, it
Is important to note that the implementation ofthinction in the BEM models requires
calculation of the Green’s function integration whee functional point and the nodal point
of the boundary element coincide, leading to a dar@y. To avoid this problem, the
integration was computed in two parts:

e numerical integration of the reflected field (usiGpuss quadrature scheme),
obtained from expression (8) by subtracting thédet field from the solution;

e analytical integration of the singular part, oraied by the source using the
expressions described by Tadeu et al. (1999 b,a).
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In practice, subtracting the full-space Green’scfion from Eg. (8) removes its
singularity, allowing for the numerical integratitmbe performed accurately.

4 BEHAVIOUR OF THE BEM AND MFS MODELS

The BEM and MFS algorithms used in this work wemgplemented and verified by
comparing the results with a BEM model, where a@een’s function for full space is used
(reference model). This model requires the diszatitn of both the bottom and the surface,
while the BEM models defined earlier in this worked only the discretization of either the
sloping bottom of the wedge (Model 1) or the vettinterface between sub-regions (Model
2), as illustrated in Figure 6. As for the MFS mio@Model 3), collocation points at the
interface and fictitious source points in each segion must be defined (see also Figure 3).

Free surface y

(29.0m,11.0m)

Source R1
(0.0m,0.05m); (21.0m,11.0m)

Bottom 25.0m X

(b)
Free surface y
x * % (29.0m,11.0m)
X ® X -7
ox ex 52 /////
Source R1* "~ 7

X ~

(0.0m,0.05m)gs (21.0m,11.0mj _ < -~

Bottom 25.0m X
(©)

Figure 6: Geometry of the problem: (a) Model 1:metry only with sloping bottom discretized (BEMI) (
Model 2: geometry with interface discretized (BEND) Model 3: geometry only with collocation andtiiious
points (MFS).

Consider, now, a propagation domain containingiia fimedium with a sound velocity of
1500ms', and consisting of a flat waveguid2).00ndepth connected to a wedge region,

40.00rr long, with an apex angle &f6.56 . The geometry was subjected to a harmonic line
load applied near the rigid bottom at po{0t00mM;0.05m’ The responses were calculated at

receiver R2 placed a{29.00m;11.00m’ as illustrated in Figure 6. Computations are

performed for frequencies up to 256.0 Hz, with aqfrency step of 4.0 Hz. Complex
frequencies with an imaginary part ¢f =0.7x 2xnxAf) were assumed. When using the

BEM models the number of boundary elements is ddfias a function of the frequency, by

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecénica Computacional Vol XXIX, pags. 2199-2214 (2010) 2209

using a relation between the incident wavelengtth e length of the boundary element,
equal to a minimum of 10. In Models 1 and 2, a mimin of 5 boundary elements was always
adopted. As in the BEM models, the number of callmn points used in the MFS is
computed using the same relation between the intidavelength and the distance between
collocation points. Additionally, for the MFS, tliistance between the fictitious sources and
the interface was fixed at 5 times the distancevéen interface points.

In order to illustrate the responses obtained m \vRrification, Figure 7 displays the
velocity potential recorded at receiver R2 compuisthg the three models defined. In this
figure the response provided by the reference BEdtlehis also included. Observation of
those figures confirms the very good agreement gnadirsolutions.

0.30

| | o BEM - Model 1
-——9 - -7 - —————=——-——-- * BEM - Model 2
| | s MFS - Model 3
— Re‘ference‘ Mod
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0.101 4t
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o

o
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Velocity Potential (m#/s)
o
=
o
T
|
Velocity Potential (m#/s)

,,,,,,,,,,, © BEM - Model 1
| | » BEM - Model 2
- -t - = o MFS - Model 3

: : — Re‘ference‘ Modi

0 25 50 75 100 125 150 175 200 225 250 275 0 25 50 75 100 125 150 175 200 225 250 275
Frequency (Hz) Frequency (Hz)

(a) (b)

Figure 7: Verification of the problem for Recei&r(a) Real part; (b) Imaginary part.

It is important to state that additional tests waeeformed to understand the sensitivity of
the MFS model with relation to the distance betw#en virtual sources and the interface.
Those tests (not shown in this work) allowed codirlg that there is very little variation of
the response with this distance, and that relatilete distances (of the order of 10 times the
distance between consecutive collocation pointsg) Ineaused. Those relatively large distances
can greatly help to improve the convergence ofdneamental solutions, and may render the
method efficiency for the analysis of ocean acaystbblems with this geometry.

This efficiency has been analyzed comparing the ptation times requires by the
different models. Two different geometries weredjdmth with the same dept2@.00m) in
the flat region and different wedge dimensions. Tilet geometry is the same as described
above (wedge length ofi0.00m), whereas in the second case, corresponding tmr@ m
realistic configuration, the wedge assumes a leaf@00.00rr, which leads to an apex angle
of 5.7F The calculations were performed assuming freqesnap to 256 Hz and a 2 Hz

frequency step. Once again, the sound velocitheffiuid medium used waks00ms'. The
responses were computed in a computer with an AMiom (tm) 64 mobile technology ML-
34 processor, with a clock frequency of 1.79GHzgd dahGB of RAM. To ensure that
comparable results were obtained, those comput#éiioes were obtained always using the
same relation between the incident wavelength aedédngth of the boundary element for
both BEM models, and also using the same relaboteefine the number of interface points
for the MFS model. Relations of 5 and 10 are tedwmte that both the BEM and the MFS
model display a good agreement with the referenbatisn even with a relation of 5 (not
displayed).

Figure 8a displays the results obtained for thst fireometry, while the corresponding
responses for the second geometry are illustratédgure 8b. In these plots the computation
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time provided by BEM - Model 2 was not included,céese it is at least one order of
magnitude higher than those obtained using BEM d®&ld and MFS model (Model 3). This
high computational time was expected, and is reldte the slow convergence of the
fundamental solution for the wedge geometry, whendgource and receiver points are near
each other, and over the same vertical line. Ttiecehas been identified and illustrated in
Section 3.

From the analysis of Figure 8 we observe that BEbIM 1 displays shorter computation
times than those obtained using the MFS, denokiagfor this geometry it is more efficient.
Note that the peaks in the curve regarding the Mfe8el are related to computations of the
Green’s function used to model the wedge regionjchvhsignificantly increase the
computation times. When a larger wedge length ssiraed (see Figure 8b), the MFS model
becomes significantly more efficient than the BEMo@el 1 and Model 2), mainly as
frequency increases, allowing to achieve shortempdation times. In fact, in this figure, the
difference between computation times for the twadets is striking, with the MFS model
being about 10 times faster than the BEM when tin@ber of points/elements is defined
using a relation of 10, and even faster for theclokelation.
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Figure 8: Computation time provided by the numénisadels assuming a geometry with a wedge regidm: wi
(a) 40m; (b) 200m.

5 NUMERICAL APPLICATION

To illustrate the applicability of the proposed MHSrmulation, the problem

illustrated in Figure 9 is analyzed in this sectidnset of three geometries with varying
wedge angles are considereédl=20°, §=10° and 8 =5°. For all geometries the depth of
the flat region is20.0 m. The responses were computed for a linear pressanece (S)
placed aty=19.50 m, 30.0 m away from the transition between the flat regiord @he
wedge. The acoustic medium is assumed to be waidr,a densityp, =1000.0 kg/mi and

allowing a dilatational wave velocity af, =1500.0 m/s.
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Figure 9: Geometry of the numerical example.

The pressure field generated by the source inghgad-temporal domain is assumed to be
defined by a Ricker wavelet,

u(r) = All-272)e ™, (9)
where A is the amplituder = (t-t.)/t, andt denotes timet, is the time when the maximum
occurs, whilert, is the characteristic (dominant) period of the alatz Its Fourier transform
is

U(w)= A[Z\/ﬁtoe"“‘s ]/\Ze"‘z , (20)

in which A = at_ /2. This wavelet form has been chosen because it deapylly in both time

and frequency, thereby reducing computational eiad allowing easier interpretation of the
computed time series and synthetic waveforms.
The analysis uses complex frequencies with0.7Aw, which avoid the aliasing

phenomena. In the time domain, this effect is ldatken into account by applying an
exponential windowe™ to the response (Kausel and Roesset, 1992). Tlealaaons were
performed over a frequency range betweemHz and 1024.0 Hz, assuming a frequency
step of 2.0 Hz, which gives a total time of =500.0 ms. Time domain signals are then
computed by means of an inverse Fourier transfdrne vertical interface between the
flat waveguide and the wedge was modeled usingnabeu of collocation points that was
defined according to the excitation frequency af tharmonic source. A ratio of 5 was
adopted between the wavelength of the incident wawel the distance between collocation
points. The minimum number of collocation pointedisvas 5. The distance between the
virtual sources used in the MFS and the boundaryg alavays 10 times the distance
between collocation points. Figure 10 displaystthme responses along a line of receivers,
located 1.0 m bellow the free surface, for the sadea flat waveguide (used as a reference)
and for the proposed wedge configuration. In thesptegarding the wedge configuration a
dashed line was included to mark the beginninghef wedge region. Analysis of these
responses allows identifying a sequence of pulseginated by multiple reflections at the
rigid bottom and at the free surface. When theesyss composed of a flat waveguide, the
response is composed of a first pulse, generatethépource, followed by a sequence of
reflected pulses at the top and bottom surfacesen®er a pulse impinges on the free
surface, its phase is shifted by 180°, invertisgpiblarity. As time progresses, the wavefront
associated with those pulses becomes flatter, géngran almost stationary wavefield.
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Comparing the reference case with the wedge camfigun, it becomes evident that, in the
later, the energy decays much faster, and thastdtmnary field is not formed, as the energy
is scattered away from the wedge. In fact, forvadidge angles, the response at receivers
placed above the inclined bottom is limited in tiree domain, disappearing after a few
reflections on the top and bottom surfaces. Asatbdge angle decreases, the responses on the
flat region tend to approach that provided by thewaveguide, although, even for the lowest
wedge angle analyzed, it is still possible to idgnimportant differences between both cases,
with a considerably lower number of reflectionsrigeregistered in the time signals.
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Figure 10: Time domain responses in a wedge coajan, when the source is placed at positionod2vedge
angles of: (a)d = 20°; (b) €=10°; (c) € =5°.
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6 CONCLUSIONS

In this paper, the Boundary Element Method andMle¢hod of Fundamental Solutions
were used to define numerical frequency domain @dations to simulate the propagation of
sound in the vicinity of a wedge costal region,oiporating two sub-regions: one is a flat
region with rigid bottom and free surface and teeond is a wedgeAppropriate Green’s
functions were used allowing to reduce discretoratiThese functions were defined using two
approaches: the method of multiple source poireécgbns was used to model the rigid flat
and free surfaces, whereas the response providdehyedge sub-region was given by a sum
of normal modes. The model based on the Methodin@i&mental Solutions has proved to be
an efficient tool, while still providing accuratesults.

A number of numerical examples were presentedltstibte the use of the proposed
model in the analysis of underwater wave propagatio those examples, a flat waveguide
coupled to perfect wedges with different apex angtere studied, and relevant differences in
the sound propagation patterns could be identified.

ACKNOWLEDGEMENTS

The financial support by FCT (Fundacédo para a @a€mec Tecnologia) and CAPES
(Coordenacéao de Aperfeicoamento de Pessoal de Siweérior), within the scope of the
FCT-CAPES convenium, is greatly acknowledged.

REFERENCES

Branco, F., Godinho, L., and Tadeu, A., Propagabiopressure waves inside a confined fluid
channel with an irregular floodpurnal of Computational Acoustics, 10: 183-194, 2002.

Bouchon, M., and K. Aki, Discrete Wave-number Reprgation of Seismic Source
Wavefields Bulletin of the Seismological Society of America, 67: 259-277, 1977.

Buckingham, M., and Tolstoy, A., An analytical siddem for benchmark problem 1. The
“ideal” wedge,Journal of the Acoustical Society of America, 87(4): 1511-1513, 1990.

Cho, H., Golberg, M., and Muleshkov, A., and Li, Xrefftz methods for time dependent
partial differential equation§MC: Computers, Materials and Continua, 1 (1): 1-38, 2004.

Godinho, L., Tadeu, A., and Branco, F., 3D acoustattering from an irregular fluid
waveguide via the BEMENgineering Analysis with Boundary Elements, 25: 443-453,
2001.

Golberg, M. A., and Chen, C. S., The method of &amdntal solutions for potential,
Helmholtz and diffusion problems, In: Boundary & Methods: Numerical and
Mathematical Aspects, M.A. Golberg (editor), WITeBs & Computational Mechanics
Publications, Boston, Southampton, pp. 103-1769199

Hardin, R.H., and Tappert, F.DApplications of the split-step Fourier method to the
numerical solution of nonlinear and variable coefficient wave equations SAM, 15: 423,
1973.

Jensen, F.B., Kuperman, W.A., Porter, M.B., and n8dh H., Computational Ocean
Acoustics American Institute of Physics, Woodbury, NY, 2000.

Jensen, F. B., and Ferla, C. M., Numerical Solgtimi Range-Dependent Benchmark
Problems in Ocean Acousticipurnal of the Acoustical Society of America, 87(4): 1499-

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



2214 E. COSTA, L. GODINHO, A. PEREIRA, J. SANTIAGO, R. DIAS

1510, 1990.

Kausel, E., and Roesset, J. M., Frequency Domaaly&is of Undamped Systendsurnal of
Engineering Mechanics ASCE, 118: 721-734, 1992.

Pekeris, C. L., Theory of propagation of explosseeind in shallow water in: Propagation of
Sound in the OcearGeological Society of America, Memoir 27 Geological Society of
America, New York, 1-117, 1948.

Santiago, J.A.F., and Wrobel, L.C., 2D Modelling Shallow Water Acoustic Wave
Propagation using Subregions Technique, Boundaeyn&ht Techniques, International
Conference, Queen Mary and Westfield College, Usityeof London, 1999.

Santiago, J.A.F., and Wrobel, L.C., A Boundary EetmModel for Underwater Acoustics in
Shallow Water Computer Modelingngineering & Sciences, 1 (3): 73-80, 2000.

Santiago, J. A. F., and Wrobel, L. C., Modified @rs Functions for Shallow Water
Acoustics Wave Propagatioiingineering Analysis with Boundary Elements, 28: 1375-
1385, 2004.

Schmidt, H., and Tango, G., Efficient global matgproach to the computation of synthetic
seismogramgzeophys. J. R. Astr. Soc., 84: 331-359, 1986.

Stotts, S., Coupled-mode Solutions in Generalize®a® Environmentsjournal of the
Acoustical Society of America, 111 (4): 1623-1643, 2002.

Tadeu, A., Pereira, A., and Godinho, L., Three Disienal Wave Scattering by Rigid
Circular Pipelines Submerged in an Acoustic Wawvegylournal of Computer Modeling
in Engineering and Sciences, 2(1): 49-61, 2000.

Tadeu, A., Godinho, L., and Anténio, J., Dynamispense of a three dimensional fluid
channel bounded by an elastic floor in the preserfce submerged inclusion via BEM,
Journal of Computational Acoustics, 13(1): 203-227, 2005.

Tadeu, A, Santos, P., and Kausel, E., Closed-fotegration of singular terms for constant,
linear and quadratic boundary elements - Part |: \8Bve PropagationiEngineering
Analysis with Boundary Elements, 23 (8): 671-681, 1999a.

Tadeu, A., Santos, P., and Kausel, E., Closed-fatagration of singular terms for constant,
linear and quadratic boundary elements — Part\\kEPSWave PropagatiorEngineering
Analysis with Boundary Elements, 23 (9): 757-768, 1999b.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



