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Abstract. This work presents a two-dimensional boundary element formulation for the analysis 
of electrical potential distribution in layered soils. The analyses are focused on the simulation 
of the Wenner method, which is widely used for the identification of the resistivity profile of 
soils. This problem involves current injection and retrieval from source and sinks points, 
respectively, while measuring potential values in other two electrodes, with varying spacing 
among them. Two-dimensional (2D) analyses are limited for obtaining the resistivity profile, 
but can provide an interesting insight to the studied problem. Sub-regions are employed to 
model each layer in the varying resistivity profile. The profiles used in this work are 
continuous curves adapted from practical experiment results. The influence of the number of 
adopted layers in the numerical potential values is evaluated and the quality of the numerical 
results is assessed for the different types of profiles. 
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1 INTRODUCTION 

The soil resistivity and its stratification are of extreme importance for dimensioning 
electrical equipment protection systems. It is known that the resistance of a grounding grid is 
directly proportional to the resistivity (ρ ) of the soil on which it sits (Visacro, 2002). So, 
when seeking a low resistance grounding, it is necessary to have a well based knowledge of 
the soil´s layers resistivity profile. (Zeng et al., 2000). 

A soil in its true form (a half-space) can have its resistivity to vary in every direction, in 
others words, anisotropic. One of the ways to address this issue in a simple solution is to use 
the use if the process of layer into stratification and applying the governing equation system 
for each layer, separately, with the proper resistivity to every one of them. There are many 
factors that have influence over the soil resistance (Kindermann et al. 1995). The Wenner 
method (Wenner, 1916) is a common technique used in soil resistance determination. The 
resistivity profile overlap is made using the group of measuring results and mathematical 
expressions developed from the three-dimensional fundamental solution for an infinite half-
space. 

In the last few years, several authors have been using the boundary elements technique for 
solving potential distribution problems (Wrobel and Aliabadi, 2002), such as cathodic 
protection problems (Yan, 1992; Brichau, 1994; Lacerda et al., 2006), which require the 
knowledge of the medium resistivity. 

This work presents a 2D boundary element formulation for the analysis of electrical 
potential distribution in layered soils. The analyses are focused on the simulation of the 
Wenner method, which is widely used for the identification of the resistivity profile of soils. 
The Wenner configuration consists of aligning four electrodes in the soil with constant 
spacing, using the two extreme electrodes for the injection and withdrawal of the electric 
current and measuring the potential difference between the intermediary electrodes. The 
analyses are limited on a 2D case for obtaining a resistivity profile, however, it can provide 
and interesting insight to the studied problem. The numerical method provides a great 
versatility to the analysis, due to the possibility of including in the measuring scenario diverse 
conditions, such as: juxtaposed sub-regions, parallel, or not, to the free surface, among others. 
Here, sub-regions are used to simulate the varying soil resistivity profile. The resistivity 
profiles analyzed in this article are continuous curves, adopted results from practical field 
experiments. The influence of the number of layers on the central electrodes potential 
difference with the varying spacing is evaluated. 

The implemented formulation forms a specific computational environment (in 
development) for this kind of analyses, aiming for soil resistivity evaluation. 

2 GOVERNING EQUATIONS 

Consider the problem of electrical potential distribution in a bi-dimensional layered soil 
domain nΩ∪Ω∪Ω=Ω ...21  and Ø1 =Ω∩Ω +ii  of infinity extent along the z direction, with 

different boundary conditions, as shown in Figure 1. 
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Figure 1: Geometry of the problem. 

In these conditions, the governing Poisson equation may be applied and can be written as 

 
1

.( ( )) ( , ),      in region 
NS

f
l l

l

k Qφ δ
=

∇ ∇ = − Ω∑x ξ ξ  (1) 

where NS is the number of sources in the domain; ( )φ x  is the electric potential; lQ  is the 

intensity of the existing source flξ  located at ( , )f f
l l

x yξ ξ ; ξ  is a domain point located at 

( , )x yξ ξ ; ( , )f
lδ ξ ξ  is the Dirac delta generalized function and 1k ρ=  is the conductivity in 

the medium. 
The described problem is subjected to the following boundary conditions: Dirichlet 

condition, ( ) 0φ =x , in the boundary BΓ  (bottom) and in the boundary LΓ (sides), Neumann 

condition, ( ) ( ) 0
n

i k
φ∂= =

∂
x x , only in the boundary of the plane free surface GΓ  (ground), 

where x  is the field point located at ( , )x y  and n is the unit outward normal vector. 

3 NUMERICAL FORMULATION 

3.1 Classical Boundary Element Method 

According to Green’s second identify, (Eq. (1)) can be transformed into the following 
boundary integral equation 

 
1

( ) ( ) ( , ) ( ) ( , ) ( ) ( , )
NS

f
l l

l

c i d i d Qφ φ φ φ∗ ∗ ∗

Γ Γ
=

= Γ − Γ +∑∫ ∫ξ ξ ξ x x ξ x x ξ ξ  (2) 

where Γ  is equal to G L BΓ = Γ ∪ Γ ∪ Γ ; ( , )φ ∗ ξ x  and ( , )i ∗ ξ x  are the electrical potential and 

current density fundamental solutions, respectively; the coefficient ( )c ξ  is dependent on the 
geometry at the source point ξ ; ( )φ x  and ( )i x  are the electrical potential and current density 
at the boundary Γ . The fundamental solution expressions are given by 
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and 
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where r  is the distance between the source point ξ  and the field point x . 
The boundary element method may be used to solve (Eq. (2)) requiring discretization of all 

surfaces, if appropriate fundamental solutions are not used. However, the previously described 
problem can be solved with Green’s functions that satisfy specific boundary conditions 
allowing the reduction of boundary discretization. The following integral equations refer to 
the specific geometry which combines several sub-regions with one of them including the two 
sources and the flat free surface ground, as shown in Figure 2. 

The BEM model used in this work makes use of the Green’s function that satisfy the 
boundary condition in the free surface ground, thus, requiring only the discretization of the 
boundaries of the bottom, sides and interfaces. Two models are used: a) single domain model 
with three different discretizations, which is used to evaluate the proper element size for the 
analyses (Figure 2 (a) and (b)) multi-domain model with sub-domain discretizations varying 
from 1 to 6 (Figure 2b). 
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Figure 2: Geometry of the BEM models: (a) Model 1 and (b) Model 2. 

In the first model, two unit loads of same magnitude, but opposite signs, are in the domain. 
Introducing the appropriate boundary conditions at the discretized bottom BΓ  and sides LΓ , 

into Eq. (2) and assuming NE constant elements with linear geometry, and applying the 
collocation method to the integral equation the following equation may be obtained 

 
1

1
1 1

( ) ( ) ( , ) ( ) ( , )
NE NS

f
p q fs p q q l fs l q

q l

c i J d Qφ φ η φ∗ ∗

−
= =

= +∑ ∑∫ξ ξ ξ x x ξ ξ  (5) 

where qξ  refers to the functional node p  with p  ranging from 1 to NE; J  is the Jacobian; 

( )qi x  is the unknown current density at point boundary element qx ; ( , )fs p qφ ∗ ξ x  is the Green’s 

function that satisfy the boundary condition at the free surface ground at the boundary element 

qx , and whose details are given in a subsequent section; ( , )f
fs l qφ ∗ ξ ξ  is the incident field 

regarding the electrical potential generated by the real source. 
The second model differs only by the presence of the sub-regions. Introducing the 
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appropriate boundary conditions at the discretized interfaces IΓ  (where continuity of electrical 

potentials and equilibrium of the current densities must exist) into Eq. (2), the following 
equation may be obtained: 

- Region ( 1Ω ) 

 

1

1
1

1

1
1 1

( ) ( ) ( , ) ( )

                     ( , ) ( ) ( , )

NE

p q fs p q q
q

NE NS
f

fs p q q l fs l q
q l

c i J d

i J d Q

φ φ η

φ η φ

∗

−
=

∗ ∗

−
= =

= −

+

∑∫

∑ ∑∫

ξ ξ ξ x x

ξ x x ξ ξ

 (6) 
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After assembling and solving the system of equations, it is possible to obtain the nodal 
values of the electrical potentials and current densities at all elements. The potential at any 
point of the domain can then be calculated by applying the boundary integral equation. 

4 GREEN’S FUNCTION 

4.1 Image Source Method 

By applying the image source method one obtains a Green’s function, which directly 
satisfies the boundary condition at the free surface, reducing the discretization of the problem. 

In the present article, this Green’s function is defined as ( , )fsφ ∗ ξ x and is given by 

 
1 1 1

( , ) ln ln
2 πfs k r r

φ ∗     = +    ′    
ξ x  (8) 

and its normal derivative is given by 

 
1 1 1

( , )
2πfs

r r
i

r n r n
∗ ′∂ ∂ = − + ′∂ ∂ 
ξ x  (9) 

where r  is the distance from the source to the field point and r ′  is the distance from the 
image of the source to the field point. 

5 NUMERICAL RESULTS 

5.1 Wenner method 

The Wenner configuration is a commonly used technique for determining the resistivity of 
the soil profiles. The Wenner configuration consists of four electrodes inserted in the soil, 
usually cylindrical with same length L  and diameter d , equally spaced by a distance a  and 
aligned in a certain direction as shown in Figure 2. 

In practice, it is observed that as the spacing between the rods increases, so does the depth 
of investigation. Figure 3 illustrates how the flow of electric current behaves in the soil, 
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depending on the resistivity of the layers. 

 

Figure 3: Behavior of electrical current depending on the soil resistivity in the case of two layers. Adapted 
from (Kindermann et al. 1995). 

The equation that allows us to determine the potential at a point p  any, away from the 
point q  of injection of an electric current, in a three-dimensional (3D) half-space is given by 
(Kindermann et al. 1995) 

 ( )
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Applying the Wenner method, the potential difference between the central rods is given by 
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The resistivity is given by 
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Where R  is the resistance of the soil, which is given by 






 Ω=
Φ

=
A

V

I
R 23 , a  is the spacing 

between the rods and p  is the depth of the rods. For large spacing between the rods pa 20> , 
the following equation can be adopted 

 aRπρ 2=  (13) 

It is important to note that 23Φ  decays in inverse proportion to the spacing (1−a ). In an 

analogous analysis, but using the 2D fundamental solution (Eq. (8)) the potential at some 
point between the two points of injection and withdrawal of electric current behaves according 
to Figure 4 and is given by 
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Figure 4: Lines of theoretical and real potential for the case with points of injection and withdrawal of electrical 
currents in the ground. 
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Thus 
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Analyzing Figure 4 we can show the following results 
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The Wenner configuration in the 2D case gives the following potential values at the central 
electrodes 
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Which results in 

 ( )( )2ln),(23 π
ρ

ξ d
I

X =Φ  (20) 

Isolating the resistivity in Eq. (14), one arrives at the following equation 

 ( )2ln
Rπρ =  (21) 

This constant behavior of the potential difference in the 2D case is curious, but can be verified 
through a limiting analysis of the superposition of two infinite series of electric sources and 
sinks (Dias 2009). 

5.2 Numerical simulations 

In the numerical analyses two resistivity profiles were adopted, obtained from experimental 
field tests - Example 3.5.1 and 3.9.1 of the Kindermann et al. (1995). These profiles are show 
in Figure 5.  

 
Figure 5: Resistive profiles adopted for the analyses. 

The profiles were simulated with average resistivity values for each sub-domain, according to 
the adopted domain discretization. These values are presented in the tables 1 and 2, one for 
each profile. 

Discretization 1 Discretization 2 Discretization 3 
ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) 

386,3 0 a 250 684,0 0 a 1 684,0 0 a 1 
  326,8 1 a 250 611,0 1 a 2 
    255,8 2 a 250 

a) 
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Discretization 4 Discretization 5 Discretization 6 
ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) 

684,0 0 a 1 684,0 0 a 1 684,0 0 a 1 
611,0 1 a 2 611,0 1 a 2 611,0 1 a 2 
415,0 2 a 4 415,0 2 a 4 415,0 2 a 4 
202,7 4 a 250 237,0 4 a 8 237,0 4 a 8 

  185,5 8 a 250 189,0 8 a 16 
    182,0 16 a 250 

b) 

Table 1: Resistivity profile 1 adapted to the analysis: (a) discretization 1 to 3; (b) discretization 4 to 6. 

Discretization 1 Discretization 2 Discretization 3 

ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) 

11,0 0 a 250 12,0 0 a 1 12,0 0 a 1 
  10,8 1 a 250 16,0 1 a 2 
    9,5 2 a 250 

a) 

Discretization 4 Discretization 5 Discretization 6 

ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) ρρρρ (Ohm.m) Layer (m) 

12,0 0 a 1 12,0 0 a 1 12,0 0 a 1 
16,0 1 a 2 16,0 1 a 2 16,0 1 a 2 
18,0 2 a 4 18,0 2 a 4 18,0 2 a 4 
6,7 4 a 250 11,0 4 a 8 11,0 4 a 8 

  4,5 8 a 250 5,0 8 a 16 
    4,0 16 a 250 

b) 

Table 2: Resistivity profile 2 adapted to the analysis: (a) discretization 1 to 3; (b) discretization 4 to 6. 

Aiming to evaluate the influence of the convergence of the discretization method, we adopt 
a mesh A with 179 elements a mesh B with 501 elements and a mesh C with 1000 elements 
for the single domain region, the same way we adopt a mesh A with 1181 elements a mesh B 
1740 elements a mesh C with 2001 elements for the case with two sub-regions. The remaining 
domain were used a single mesh for each domain with 2183, 3185, 2883 and 4167 elements 
for the cases with 3, 4, 5, 6 sub-regions respectively. Considering that for the case with one 
and two sub-regions were adopted with few meshes and meshes with many elements that we 
observed no major changes in numerical results. The results obtained with the BEM approach 
from the data specified above for one and two sub-regions for the profiles 1 and 2 are shown 
in Figures 6 and (a) and (b) are show the relative errors for the cases with the meshes A, B and 
C, and in the Figures 7 (a) and (b) the cases with 3, 4, 5 and 6 sub-regions respectively shown 
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the potential difference between the rods 2 and 3. 

 
a) 

 
b) 

Figure 6: Relative errors in logarithmic scale versus rod spacing obtained using the mesh A, mesh B and mesh C 
to the two profiles adopted solution: a) Profile 1, with one and two sub-regions; b) Profile 2, with one and two 
sub-regions. 

Due to potential difference via the Wenner method for the 2D case be constant, it was 
observed that with only two layers in the laminate, reached convergence for the cases 
analyzed. As shown in Figure 6 (a) and (b), both for the first profile how to profile the second 
domain with two sub-regions already gives us a relative error of about 61097.4 −×  that are 
practically the same order of magnitude of errors obtained for cases with 3, 4, 5 and 6 sub-
regions. How we view Figure 7 (a) and (b) the potential are practically identical. Thus it is not 
necessary with the use of domains 3, 4, 5 and 6 sub-regions for the case analyzed in 2D. 
Unlike what is observed in the 3D case that in most cases the discretization in layers is 
necessary. 
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a) 

 
b) 

Figure 7: The potential difference between the intermediary electrodes versus rod spacing obtained to cases with 
3, 4, 5 and 6 sub-regions: a) Profile 1 to 3, 4 5 and 6 sub-regions; b) Profile 2, with 3, 4, 5 and 6 sub-regions. 

As seen in Figure 6 (a) and (b) for profiles 1 and 2 the relative error for the case with a sub-
region has been increasing as the spacing each junior rods have been increasing. Usually in 
practice, the 3D case it is observed that as we increase the spacing between the stems the error 
tends to decrease because the current lines reach higher depths. This error analysis to the 
problem is due to having just one region and due to the fact that we have adopted an average 
resistivity in that region. 

6 CONCLUSIONS 

The analysis developed in this work shows that for the resistivity profiles analyzed, we do 
not need more than two layers in case of 2D to achieve good results with the BEM approach 
that is in agreement with the analytical response obtained for the problem. The results 
obtained with the 2D BEM formulation are in agreement with the theoretical responses 
obtained for the problem and contributes to the understanding of the phenomenon for future 
3D formulations already in early stages of development. The case analyzed 2D does not allow 
us to compare the result with the real 3D case. 
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