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Abstract. This work presents a two-dimensional boundary efgrf@mulation for the analysis
of electrical potential distribution in layered IsoiThe analyses are focused on the simulation
of the Wenner method, which is widely used for ithentification of the resistivity profile of
soils. This problem involves current injection aradrieval from source and sinks points,
respectively, while measuring potential values tineo two electrodes, with varying spacing
among them. Two-dimensional (2D) analyses are dichfbr obtaining the resistivity profile,
but can provide an interesting insight to the stddoroblem. Sub-regions are employed to
model each layer in the varying resistivity praofil€he profiles used in this work are
continuous curves adapted from practical experimesults. The influence of the number of
adopted layers in the numerical potential valuesveduated and the quality of the numerical
results is assessed for the different types ofilpsof
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1 INTRODUCTION

The solil resistivity and its stratification are ektreme importance for dimensioning
electrical equipment protection systems. It is kndhat the resistance of a grounding grid is
directly proportional to the resistivityd) of the soil on which it sits (Visacro, 2002). So,

when seeking a low resistance grounding, it is s&ag to have a well based knowledge of
the soil’s layers resistivity profile. (Zeng et &000).

A soil in its true form (a half-space) can haverésistivity to vary in every direction, in
others words, anisotropic. One of the ways to adtieis issue in a simple solution is to use
the use if the process of layer into stratificateord applying the governing equation system
for each layer, separately, with the proper restgtito every one of them. There are many
factors that have influence over the soil resistaitindermann et al. 1995). The Wenner
method (Wenner, 1916) is a common technique usesbiinresistance determination. The
resistivity profile overlap is made using the groojpmeasuring results and mathematical
expressions developed from the three-dimensiomaddmental solution for an infinite half-
space.

In the last few years, several authors have beig tise boundary elements technique for
solving potential distribution problems (Wrobel awddiabadi, 2002), such as cathodic
protection problems (Yan, 1992; Brichau, 1994; ldaeet al., 2006), which require the
knowledge of the medium resistivity.

This work presents a 2D boundary element formubafior the analysis of electrical
potential distribution in layered soils. The analysare focused on the simulation of the
Wenner method, which is widely used for the idecaiion of the resistivity profile of soils.
The Wenner configuration consists of aligning falectrodes in the soil with constant
spacing, using the two extreme electrodes for theciion and withdrawal of the electric
current and measuring the potential difference betwthe intermediary electrodes. The
analyses are limited on a 2D case for obtainingssstivity profile, however, it can provide
and interesting insight to the studied problem. Thaenerical method provides a great
versatility to the analysis, due to the possibitifyincluding in the measuring scenario diverse
conditions, such as: juxtaposed sub-regions, ghralt not, to the free surface, among others.
Here, sub-regions are used to simulate the vargwi resistivity profile. The resistivity
profiles analyzed in this article are continuousves, adopted results from practical field
experiments. The influence of the number of layensthe central electrodes potential
difference with the varying spacing is evaluated.

The implemented formulation forms a specific compional environment (in
development) for this kind of analyses, aimingdoil resistivity evaluation.

2 GOVERNING EQUATIONS

Consider the problem of electrical potential disition in a bi-dimensional layered soll
domainQ=Q, 0Q,..0Q, andQ, n Q,,, = @ of infinity extent along the direction, with

different boundary conditions, as shown in Figure 1
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Figure 1: Geometry of the problem.

In these conditions, the governing Poisson equatiay be applied and can be written as
NS
O.kO@(x))=-> QI &), in regiorQ (1)
1=1

where NS is the number of sources in the domag(x) is the electric potentialg) is the
intensity of the existing sourc&' located at(x{f : y{f); & is a domain point located at

(Xes ¥s) s o(¢',¢&) is the Dirac delta generalized function ake1/p is the conductivity in

the medium.
The described problem is subjected to the followhmundary conditions: Dirichlet
condition, ¢(x) =0, in the boundary”; (bottom) and in the boundary, (sides), Neumann

condition, i(x) :kg—w(x) =0, only in the boundary of the plane free surfdce (ground),
n

wherex is the field point located 4tx, y) and nis the unit outward normal vector.

3 NUMERICAL FORMULATION
3.1 Classical Boundary Element Method

According to Green’s second identify, (Eg. (1)) dam transformed into the following
boundary integral equation

c@)AE) = [ ¢ (& x)i(dr - [ 7 x)px)dr + > Qe &) (2)

where I is equal tof = O, Og; ¢'(&,x) andi™(&,x) are the electrical potential and
current density fundamental solutions, respectivdlg coefficientc(¢) is dependent on the
geometry at the source poiét ¢(x) andi(x) are the electrical potential and current density
at the boundary . The fundamental solution expressions are given by
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_ 1 (1
PN = ln( rj @3)
and

L

HEX)= 2nr on )

wherer is the distance between the source pgimind the field poink .

The boundary element method may be used to solye(2) requiring discretization of all
surfaces, if appropriate fundamental solutionsnateused. However, the previously described
problem can be solved with Green’s functions thatis/ specific boundary conditions
allowing the reduction of boundary discretizatidie following integral equations refer to
the specific geometry which combines several sgimrs with one of them including the two
sources and the flat free surface ground, as showigure 2.

The BEM model used in this work makes use of thee@'s function that satisfy the
boundary condition in the free surface ground, thliagquiring only the discretization of the
boundaries of the bottom, sides and interfaces. Mwdels are used: a) single domain model
with three different discretizations, which is ugedevaluate the proper element size for the
analyses (Figure 2 (a) and (b)) multi-domain maosigh sub-domain discretizations varying
from 1 to 6 (Figure 2b).
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Figure 2: Geometry of the BEM models: (a) Modehtl éb) Model 2
In the first model, two unit loads of same magn&uldut opposite signs, are in the domain.
Introducing the appropriate boundary conditionshat discretized bottonfi; and sided | ,

into Eq. (2) and assuminglE constant elements with linear geometry, and apglyhe
collocation method to the integral equation théofeing equation may be obtained

C(E)0E,) = D [ a6 X JiCx ]I 07+ X Qe & ) )

where g, refers to the functional nodp with p ranging from 1 toNE; |J| Is the Jacobian;

i(X,) is the unknown current density at point boundaeynentx ; qdfjs(é’;p,xq) is the Green’s

function that satisfy the boundary condition at fitee surface ground at the boundary element
X4, and whose details are given in a subsequentoseaﬂjs(zg,f,gq) Is the incident field
regarding the electrical potential generated byrd¢la¢ source.

The second model differs only by the presence ef $hb-regions. Introducing the
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appropriate boundary conditions at the discretinggtfacesl”;, (where continuity of electrical

potentials and equilibrium of the current densitesst exist) into Eq. (2), the following
equation may be obtained:
- Region @Q,)

C(E,)E,) = 2 [, (e X JiCx 9[9[ 07 -

NE 1 NS (6)
> & % X, Pldn+Y. QL& &,
g=1 =1
- Regions Q,, Q,,---,Q,)
CEAE) = X[, 0 X i(x |3 7 -
i (7)

ST % 9% Bldn

After assembling and solving the system of equatidinis possible to obtain the nodal
values of the electrical potentials and currentsdess at all elements. The potential at any
point of the domain can then be calculated by apglthe boundary integral equation.

4 GREEN’'S FUNCTION
4.1 Image Source Method
By applying the image source method one obtainsreers function, which directly

satisfies the boundary condition at the free serfeeducing the discretization of the problem.
In the present article, this Green’s function ifirded asg. (&,x) and is given by

A EX) =i{m Gj+ In(r—lﬂ ®8)

and its normal derivative is given by

ia&m=—55{

1ﬂ+1ﬁﬂ ©)
2n

ron r'on
where r is the distance from the source to the field paindl r' is the distance from the
image of the source to the field point.

5 NUMERICAL RESULTS
5.1 Wenner method

The Wenner configuration is a commonly used teammiipr determining the resistivity of
the soil profiles. The Wenner configuration corssisf four electrodes inserted in the soil,
usually cylindrical with same length and diameted , equally spaced by a distaneeand
aligned in a certain direction as shown in Figure 2

In practice, it is observed that as the spacing/&en the rods increases, so does the depth
of investigation. Figure 3 illustrates how the flaf electric current behaves in the soil,
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depending on the resistivity of the layers.
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Figure 3: Behavior of electrical current dependimgthe soil resistivity in the case of two layekdapted
from (Kindermann et al. 1995).

The equation that allows us to determine the pm@teat a pointp any, away from the
point g of injection of an electric current, in a threeséinsional (3D) half-space is given by
(Kindermann et al. 1995)

N Ao
e rfr)=—"+—"—"— 10
1= g (10)

Applying the Wenner method, the potential differeibetween the central rods is given by

o1 2 2
Dp="—| = - 11
4ﬂ[a+Ja2+<2p)2 J(Za)2+(2p)2J -

The resistivity is given by

48R

(12)

10 =
14 2a _ 2a
Ja?+@2p? Y(2a)’ +(@2py
. . . o ®,.(V _ , .
Where R is the resistance of the soil, which is given Fbytl— re Q |, a is the spacing

between the rods angd is the depth of the rods. For large spacing betwee rodsa > 20p,
the following equation can be adopted

p=278R (13)

It is important to note that,, decays in inverse proportion to the spaciag'). In an

analogous analysis, but using the 2D fundamentaitiso (Eqg. (8)) the potential at some
point between the two points of injection and witlal of electric current behaves according
to Figure 4 and is given by
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Figure 4: Lines of theoretical and real potentialthe case with points of injection and withdraw&électrical
currents in the ground.

I
P 1
o = Z—éln(;) (14)
and
I
PW =- 'Ozé In( C i x) where L =12 (15)
Thus

|
©,, = q)il) - q)$_4—)x = pZé (In(lj ) In( : j} (16)

X L-Xx

Analyzing Figure 4 we can show the following result

X >0 d - 4o in 1
X %% ® -0 in medium point (17)

The Wenner configuration in the 2D case gives ti®wing potential values at the central
electrodes

P, (&, X) :Llé(ln(z) +%(In((2a)2 +(2 p)z)— In(a2 + (Zp)z))j (18)
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pl 2 2 2
®,(£,X) :T/ﬂ(-m(z)%(m(az +(2pf)-In((2a)" + (2p) ))j (19)
Which results in
I
yoj
R @0
Isolating the resistivity in Eq. (14), one arrivagghe following equation
R
P="7 (21)

In(2)

This constant behavior of the potential differemcéhe 2D case is curious, but can be verified
through a limiting analysis of the superpositiontwb infinite series of electric sources and
sinks (Dias 2009).

5.2 Numerical simulations

In the numerical analyses two resistivity profiesre adopted, obtained from experimental
field tests - Example 3.5.1 and 3.9.1 of the Kindenn et al. (1995). These profiles are show
in Figure 5.
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Figure 5: Resistive profiles adopted for the aredys

The profiles were simulated with average resistivalues for each sub-domain, according to
the adopted domain discretization. These valueprsented in the tables 1 and 2, one for
each profile.

Discretization 1 Discretization 2 Discretization 3
p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m)
386,3 0 a 250 684,0 Oal 684,0 Oa
326,8 1a?250 611,0 laZ
255,8 2 a 25Q
a)
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Discretization 4 Discretization 5 Discretization 6

p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m)
684,0 Oal 684,0 Oal 684,0 Oafl
611,0 laz2 611,0 laz2 611,0 lap
415,0 2a4 415,0 2 a4 415,0 2a4
202,7 4 a 250 237,0 4a8 237,0 4 a8
185,5 8 a 250 189,0 8alb
182,0 | 16 a 250

b)

Table 1: Resistivity profile 1 adapted to the asmly(a) discretization 1 to 3; (b) discretizatibto 6.

Discretization 1 Discretization 2 Discretization 3
p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m)
11,0 0 a 250 12,0 Oal 12,0 Oall
10,8 1 a 250 16,0 laZ2
9,5 2 a 250
a)
Discretization 4 Discretization 5 Discretization 6
p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m) | p (Ohm.m) | Layer (m)
12,0 Oal 12,0 Oal 12,0 Oal
16,0 laZ2 16,0 la2 16,0 la?
18,0 2a4d 18,0 2a4d 18,0 2a4d
6,7 4 a 250 11,0 4a8 11,0 4a8
4,5 8 a 250 5,0 8 a 16
4,0 16 a 250
b)

Table 2: Resistivity profile 2 adapted to the arly(a) discretization 1 to 3; (b) discretizatibto 6.

Aiming to evaluate the influence of the convergeotthe discretization method, we adopt
a mesh A with 179 elements a mesh B with 501 el¢sn@md a mesh C with 1000 elements
for the single domain region, the same way we adapesh A with 1181 elements a mesh B
1740 elements a mesh C with 2001 elements forake with two sub-regions. The remaining
domain were used a single mesh for each domain 24838, 3185, 2883 and 4167 elements
for the cases with 3, 4, 5, 6 sub-regions respelgtiConsidering that for the case with one
and two sub-regions were adopted with few meshdsvashes with many elements that we
observed no major changes in numerical results.résgts obtained with the BEM approach
from the data specified above for one and two sgjens for the profiles 1 and 2 are shown
in Figures 6 and (a) and (b) are show the relaivers for the cases with the meshes A, B and
C, and in the Figures 7 (a) and (b) the cases3yith 5 and 6 sub-regions respectively shown
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the potential difference between the rods 2 and 3.
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Figure 6: Relative errors in logarithmic scale wsrsod spacing obtained using the mesh A, meshdBrash C
to the two profiles adopted solution: a) Profilewith one and two sub-regions; b) Profile 2, witiecand two
sub-regions.

Due to potential difference via the Wenner methodthe 2D case be constant, it was
observed that with only two layers in the laminateached convergence for the cases
analyzed. As shown in Figure 6 (a) and (b), botttte first profile how to profile the second
domain with two sub-regions already gives us atikeaerror of about497x10° that are
practically the same order of magnitude of errdstamed for cases with 3, 4, 5 and 6 sub-
regions. How we view Figure 7 (a) and (b) the po&tare practically identical. Thus it is not
necessary with the use of domains 3, 4, 5 and éreggibns for the case analyzed in 2D.
Unlike what is observed in the 3D case that in nuzses the discretization in layers is
necessary.
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Figure 7: The potential difference between thermtsliary electrodes versus rod spacing obtainedses with
3, 4, 5 and 6 sub-regions: a) Profile 1 to 3, 4& @& sub-regions; b) Profile 2, with 3, 4, 5 anslib-regions.

As seen in Figure 6 (a) and (b) for profiles 1 arttie relative error for the case with a sub-
region has been increasing as the spacing eaotr juods have been increasing. Usually in
practice, the 3D case it is observed that as wease the spacing between the stems the error
tends to decrease because the current lines regbhbrtdepths. This error analysis to the
problem is due to having just one region and duthédfact that we have adopted an average
resistivity in that region.

6 CONCLUSIONS

The analysis developed in this work shows thatHerresistivity profiles analyzed, we do
not need more than two layers in case of 2D toeaehgood results with the BEM approach
that is in agreement with the analytical responb&ained for the problem. The results
obtained with the 2D BEM formulation are in agreemeith the theoretical responses
obtained for the problem and contributes to theewstdnding of the phenomenon for future
3D formulations already in early stages of develepinThe case analyzed 2D does not allow
us to compare the result with the real 3D case.
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