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Abstract. In this paper, we present numerical simulations of saline, discontinuous density currents, 
in two and three dimensions. The simulation of these flows poses a severe challenge for all codes. In 
fact, the currents present characteristic flow instabilities at the interface which are constituted by 
small spatial scales. A very fine resolution of these scales is needed to adequately capture the 
instabilities.  
The two-dimensional simulations reported herein were performed with two CFD codes. The first one 
is a comprehensive finite-element platform, whereas the other one is a commercial code. The runs 
were undertaken under quite similar conditions. Simulations show that only when the mesh employed 
in the commercial code is strongly refined a convergent solution is attained, which is similar to the 
solution obtained with the finite-element CFD code. This result would warn about the indiscriminate 
use of commercial codes with supposedly “fine” meshes when simulating complex underflows. The 
solution with the finite-element code, in turn, shows the shedding of large vortices containing salt. 
These vortices do not have a physical basis, but they correspond to the true solution of the two-
dimensional Navier-Stokes Equations. 
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1 INTRODUCTION 

Density currents are one of the most beautiful flows that Nature has to offer. They can be 
broadly defined as flows driven by density differences. As such, they can be encountered in a 
host of natural conditions.  

For instance, they can manifest themselves as dust storms and snow avalanches in the 
atmosphere. In addition, sudden, cold down flows can generate atmospheric micro-bursts that 
have been dubbed as the source of accidents of airplanes1. The scales of these atmospheric 
flows can be really large: dust storms can reach velocities of tens of meters per second, and 
heights of hundreds of meters. Volcanic eruptions also promote the formation of density 
currents, since heavy material ejected up by the volcano can then move down to spread as an 
underflow. Lava flows constitute another expression of atmospheric density currents. 

In water environments, density currents appear in the form of saline intrusions in 
estuaries, and as sediment pulses in rivers, among other kinds of flow.     

Density currents may be initiated by diverse mechanisms, such as inflow of turbid water 
to ponds, sub-aqueous slumps, discharges of mining tailings, temperature gradients, or 
dredging operations. The relevance of density currents consists in that they are capable of 
transporting contaminants for very long distances. Therefore, their motion can underscore a 
severe pollution problem. Typically, tiny density differences can produce relatively important 
flows. 

The heavier constituent of density currents could be dissolved (salinity type), or it could 
be formed by solid particles in suspension (“turbidity current”). The currents could also be 
continuous or discontinuous, depending on whether or not there is constant supply of heavier 
material from the source. 

One of the characteristics of these underflows is that they present Kelvin-Helmholtz 
instabilities at the interface of the two fluids (see Fig. 1). These instabilities are the result of 
the motion of masses of fluid of different density at different velocities. Clearly, the 
instabilities possess length scales much smaller than the size of the body of the density 
current.  

 
Figure 1: View of a density current in a laboratory water environment moving in an incline (towards the right). 
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An accurate simulation of these instabilities is needed for the precise determination of the 
current location. The underflow is powered by the density difference, which determines how 
far the current goes. This difference in turn decreases as the current moves downwards, due to 
dilution promoted by water entrainment. In fact, in the tail of the current, vortices shed from 
the front break down, mixing the entrained water with the heavier water in the current. This 
process leads to the formation of a well-mixed layer as the front passes by. 

In order to correctly simulate those instabilities by numerical means, i.e., in order to be 
able to adequately capture all the spatial scales of the phenomenon, a very fine resolution in 
the region in which the instabilities are expected to occur becomes necessary. Since this 
region can be approximated in principle, but it is a priori unknown, the zone of refined mesh 
must of necessity cover a larger portion of the domain. Oftentimes, the available computer 
resources do not allow for such a refined solution, and issues of convergence appear. 
Furthermore, issues associated with numerical diffusion when using commercial codes may 
very likely appear. 

 In a pioneering paper, Straka et al.2 presented a decade ago the results of a workshop 
aimed at studying better ways to simulate dense atmospheric underflows. The simulations 
were performed with the supercomputers of the time. Those simulations showed that when the 
flow is “adequately resolved,” the high-order and spectral methods perform better in 
describing the flow instabilities. Obviously, discerning the exact meaning of what is 
“adequately resolved” in each application implies some careful analysis. Overall, the results 
of that workshop could be summarized in that care must be taken when interpreting the 
physics described by simulations with resolutions that might be considered “marginal.” 

In addition to the flow instabilities at the interface, the base of the head of density currents 
also poses a challenge for modeling. In fact, the base of the head possesses sharp gradients of 
concentration. Some numerical codes may produce “over-shooting” at those locations, if the 
numerical scheme does not handle appropriately sharp fronts. An adequate description of this 
zone of density currents becomes instrumental for a correct prediction of sediment 
entrainment to the current from movable beds. This has in turn important implications on 
erosion processes of the bed, and potential pollution of the water body, if the sediments are 
contaminated.  

This paper reports a comparison of two-dimensional numerical results obtained with two 
Computational-fluid-dynamics (CFD) codes, when simulating dense underflows originating 
in a lock-exchange operation. One of the codes is a finite-volume commercial code, and the 
other one is a finite-element, open-source code. Convergence tests were performed with both 
codes, addressing their different response to mesh refinement.   

2  PREVIOUS NUMERICAL EFFORTS RELATED TO DENSITY CURRENTS 

One-dimensional (1D) numerical solutions for density currents have been presented by 
Bonnecaze et al.3 (two-layer fluid solution for particle-driven gravity currents), and Choi & 
García4 (turbidity currents). The balance equations solved in the above efforts were those for 
fluid mass, streamwise momentum and suspended-sediment mass. Bradford & Katopodes5, 6 
presented a depth-averaged, two-dimensional (2D) solution for turbid underflows in the sea. 
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In general, 2D numerical simulations in vertical planes have been directed to atmospheric, 
large-scale flows (of the order of several kilometers in length and height), and viscous-flow 
models have been employed in these large-scale numerical computations.  

The first numerical efforts can be traced back to the classic paper by Daly and Pratch7 
(laboratory scale). Similarly, interesting studies were presented by Mitchell and Hovermale8, 
Thorpe et al.9, Crook et al.10, Haase and Smith11, and Straka et al.2 (all of them related to 
atmospheric phenomena). Some authors have presented a 2-D solution based on multiple 
layers12. Chen and Lee13 added a RNG -ε  turbulence closure model in their 2-D study. 
Pacheco et al.

k
14 presented a simulation of the collision of two unequal gravity currents 

through a viscous-flow model. In turn, De Cesare15, and De Cesare et al.16 employed a 
commercial code to implement a 3-D, two-phase model for the study of density currents in a 
reservoir, and used the -  turbulence closure in the solution.  k ε

In addition to the numerical issues discussed in Section 1, there is another issue associated 
with the simulation of turbulence. Several papers have presented simulations with turbulence 
closure (typically with the k-ε model) but others have used a viscous model. Recent papers 
have been devoted to the Direct Numerical Simulation (DNS) of density currents (see for 
instance Hartel et al.17, Necker et al.18, and Cantero et al.19).    

3 TEST CASE AND THEORETICAL MODEL 

The tests we selected for our analysis correspond to an unpublished set of measurements 
performed by Prof. M. H. García at the University of Minnesota. They correspond to a lock-
exchange device (see Fig. 2). Denser fluid consisting of a salt-water mixture was placed in an 
almost square box on the top of a flume. This denser fluid was separated from fresh water 
laying in the rest of the flume by a thin gate. This gate was released at time , allowing 
for the motion of the denser fluid as a discontinuous underflow. Several tests were developed 
for different densities of the salty fluid, and for different sizes of the box (the size of the box 
determines an initial length scale that characterizes the flow).  

0=t

 
Figure 2: Schematic of the experimental device numerically simulated. Distances are expressed in meters. 

 
The motion of the discontinuous current was video recorded. Snapshots of the front of the 
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current in the sloping part of the flume showed the presence of lobes and clefts, whereas the 
instabilities dominated the interface, very much as shown in Fig. 1. 

The initial condition of lock-exchange flows has the interesting, unique property of a 
distinct direction of the gradients of pressure and density. In fact, meanwhile the pressure 
gradient is vertical, the gradient in density is horizontal. Vertical density gradients appear 
later as the current moves.  

In order to simulate this flow, a relatively simple theoretical model was adopted. Since the 
salt is dissolved in the water and the concentration diminishes when the current moves 
downwards, a viscous, single-phase, continuously-stratified-fluid model was adopted, as 
follows:  
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where  denotes the velocity component in the i-th direction (i goes from 1 to 3),  is the 
spatial coordinate in the i-th direction,  is the pressure,  the local density, and τ  denotes 
the viscous stresses. For the viscous stresses, the Newtonian model was employed. The 
standard incompressible form of the mass balance equation was used in (1), whereas the 
Boussinesq approximation has been used in the momentum conservation equation (2). Eq. (3) 
is often called the “density equation,” in order to distinguish it from the mass conservation 
equation. Eq. (3) allows for the transport of a scalar; this scalar was the density for the 
commercial code and a saline concentration for the finite-element code. Since the differences 
in density are driven by differences in salt content, Eq. (3) comes from  and, 
therefore, both approaches are formally equivalent. 
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The soundness of a viscous model for a salty density current in laboratory conditions, 
when low concentrations of suspended sediment are present and the bed is not erodible, is 
supported by observations made by Lin & Mehta20 and several other comparisons (see Daly 
and Pratch7). 

4 OVERVIEW OF THE NUMERICAL MODELS 

The first code we used in this research corresponds to the three-dimensional (3D) platform 
BUCHESS. The theoretical model presented above was implemented in BUCHESS through 
the addition of suitable subroutines. This platform represents a long-term development of the 
Grupo de Mecánica Computacional del Centro Atómico Bariloche, Comisión Nacional de 
Energía Atómica, CNEA, Argentina. Early versions of the platform can be found in 

F. Bombardelli, M. Cantero, G. Buscaglia, M. Garćıa
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Buscaglia21, Buscaglia et al.22, Lew23, and Cantero24. We have extended the scope of the 
model to simulate two-phase flows (see Buscaglia et al.25, Bombardelli26, and Cantero27). It 
runs in a cluster of PCs. 

The code is based on the finite-element method, and uses equal-order interpolation. 
Several choices for numerical stabilization of the equations are available: SUPG, SGS, and 
GLS. In addition, a discontinuity-capturing technique has been implemented for the adequate 
description of the sharp gradients at the base of the head27, 28. The technique introduces 
numerical diffusion in the direction parallel to the concentration gradient. Several elements in 
2D and 3D are available in the platform. 

The commercial code, although not originally devised for hydraulic problems, is being 
increasingly used in the civil engineering community. The code is based on a quite standard 
finite-volume formulation, so that we believe the results reported herein are representative of 
a wide class of available commercial software. It incorporates partially blocked volumes to 
account for the solid obstacles, which marks a clear difference with BUCHESS. The 
commercial code is explicit.  

5   PRELIMINARY NUMERICAL TESTS 

The commercial code was first employed to test the theoretical model in 3D under an 
axisymmetric lock-exchange device. The flow field associated with a density current 
corresponding to this case was obtained by Alahyari and Longmire29, via the use of Particle 
Image Velocimetry (PIV) in a circular sector of 55°. The purpose of this test was to initially 
address the concept of “adequate resolution” by Straka et al. The 3D device of Alahyari and 
Longmire was set up in a rectangular Eulerian grid. A dense mesh of 130x90x70 (radial, 
tangential, and vertical directions) was used in the computations, for a domain of 0.90 m in 
the radial direction and 0.26 m in the vertical. The initial denser region was a circular sector 
of 13 cm in height and 8 cm in radius. Thus, more cells were located below 13 cm in height 
(60 cells). In the radial direction, 120 cells were included in the first 68 cm. Based on the 
almost 700,000 open cells used, this mesh was judged as an important resolution according to 
Straka et al.’s concepts. 

A rigid-lid boundary condition at the free surface was adopted.  Figures 3 show measured 
and computed vector fields for a time of 2.5 seconds after the gate release, at the center plane, 
for this numerical test. It can be seen that the model can predict satisfactorily the presence of 
two vortical structures, denoted by 1 and 2 by Alahyari and Longmire. Vortex 1 is generated 
by the relative motion between the current head and the surrounding fluid, and vortex 2 is the 
result of the boundary-layer separation induced by the adverse pressure gradient ahead vortex 
1. From the simulations, it can be seen that both vortices are located in similar positions with 
respect to the measured ones. However, the boundary layer appears to be less pronounced in 
the simulations than in the experiments. Also, some other local discrepancies are identified. 
Same results were observed for smaller and larger times, not reproduced herein. This means 
that, despite the important number of cells devoted to capture the current, and the intrinsic 
issues associated with the measurements (accuracy, averaging, etc.), the comparison of the 
above figures reveals some discrepancies at several scales. 
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                                    (a)           : 0.15 m/s                                      (b)  0.15 m/s:     

Figure 3: Modeled (left) and measured (right) flow field associated with a density current in an axysimmetric 
device. 

6 NUMERICAL IMPLEMENTATION OF THE 2D TESTS AND RESULTS 

6.1 Numerical implementation 
Runs in two dimensions based on the experiments explained in Section 3 were defined. 

These runs can be dubbed as “mathematical,” in the sense that 3D physical effects are not 
accounted for (we are not solving the third dimension). Since it is well-known that the 
behavior of these currents is fully 3D even in relatively-narrow flumes, we expect to address 
to what extent 2D simulations can capture the main features of the flow.    

A condition corresponding to an initial density for the salty water of 1007 kg/m3 was 
implemented in both codes. For the finite-element code, quadrilateral elements were 
employed, to make the comparison rigorous. (It is fair to point out that the comparison is not 
totally rigorous because of the inherent nature of the codes; however, the comparison can be 
considered fair enough for the purpose of extracting valuable conclusions.) The time step for 
the finite-element run was fixed in 0.01 s. (For the commercial code, the time step is 
controlled automatically.) A second-order, monotonicity-preserving method was selected for 
the solution of the density equation in the commercial code. 

In both cases, the boundary at the top was considered as a symmetry plane. Also, a 
symmetry plane was imposed on the downstream boundary.  

The initial conditions for the codes were defined specifying initial regions of density 
(commercial code) or concentration of the dissolved phase (finite-element code). In this way, 
solutions differ quantitatively but the distributions of values should be the same. 

In the following comparisons, we quote number of nodes for the finite-element code, and 
number of “open cells” for the commercial code, in an attempt to offer comparative measures 
of the computational effort. 

In Fig. 4 and 5, blue-like colors indicate concentrations close to zero, while reddish colors 
denote larger concentrations. 
6.2 Numerical results 

Fig. 4 shows the evolution in time of contours of salinity/density for the current every 10 
s, up to 50 s, obtained from the numerical simulations with the two codes. The run with 
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BUCHESS has been obtained using about 20,500 nodes while the run with the commercial 
code was produced using 58,500 open cells. 

It is possible to see in first place that both runs are quite different. Whereas the run with 
the commercial code shows the density current falling in a drop-like manner along the slope, 
the results with BUCHESS reveal a very rich structure of salty vortices in the tail. This is a 
significant qualitative disagreement that we sought to analyze. 

For this purpose, we refined the meshes for both runs. Results with BUCHESS proved to 
be independent of mesh refinement in its qualitative features (see Fig. 5, left). Results with 
the commercial code, on the other hand, revealed more and more features as the mesh was 
refined. This mesh-convergence process was, however, extremely slow. In Fig. 5 (right) we 
show the results of the commercial code using 630,000 open cells. It is evident there that both 
codes predict the same type of instabilities and global behavior, but the commercial code 
requires an enormous amount of cells to arrive to a qualitatively-correct result. This is quite 
striking for a formally second-order-accurate method. We believe the explanation comes from 
numerical limiters added in commercial codes to "increase robustness," which end up yielding 
"numerically over-damped" methods that are inadequate for instability-driven flows such as 
the tail of the density current considered here. 
 
7    DISCUSSION 

To address whether or not a 2D, mathematical solution can reproduce the basic aspects of 
the current motion, we plotted in Fig. 6 the evolution in time of the current front. We have 
used the results of the commercial code, for the run with 58,500 open cells, to that end. We 
see from the comparison between modeled and measured non-dimensional values that the 2D 
solution can capture the front motion at the beginning, with reasonable accuracy. One may 
think that this solution with the commercial code is “correct,” based on this “good agreement” 
with experiments. 

The runs presented above are essentially mathematical. It is well known that the evolution 
of vorticity in 2D is completely different to that in 3D, because vortex-stretching and self-
induced velocity both contribute to the “dissipation” of eddies in 3D. 

In the solution with the finite-element code, the vortices shed by the current remain in the 
flume during an exaggerated long period, because the mechanisms for their dissipation 
(vortex-stretching and self-induction velocity) are not present in the simulation. This result is 
clearly unphysical, but we think that it corresponds to the true solution of the 2D Navier-
Stokes Equations, given the sources of instability through the Kelvin-Helmholtz structures, 
and the weak mechanisms of eddy dissipation in 2D. Several solutions of density currents in 
2D in papers described in Section 2 do not show this vortex shedding. 

In comparison, the tail obtained with the commercial code seems to be more physically 
“correct,” but this is just an artifact. The tests indicate that the commercial code spuriously 
damps the instabilities for a moderate number of cells and, although some aspects of the flow 
show an apparently “better” agreement with experiments, in reality there is an erroneous 
description of the flow dynamics. This is explained by the fact that, when we refine the mesh 
using a very large number of cells in the commercial code, the structures predicted with the 
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finite-element code do appear. Commercial codes need to offer the users numerical answers in 
most of the cases the users attempt to obtain a solution. This means that they often pay a great 
deal of attention to the robustness of the code at the expense of numerical accuracy. Stability 
is gained at the price of a large numerical diffusion, one of the well-known quandaries in 
Numerics. This fact calls for a careful analysis of convergence of the numerical solutions 
obtained with commercial codes when simulating underflows. Fig. 4 is a remarkable example 
on how over-diffusive codes may offer a solution that may look as “better” compared with 
other solutions in some aspects, a solution that may not show any indication of sub-resolution 
(i.e., wiggles, etc.), but in the end a solution which may be far from being converged! 

The finite-element code, which due to the stabilization with an equal-order formulation 
and first-order interpolation can have the reputation of being “over-diffusive,” has proved to 
be more accurate than the implemented method in the commercial code. This fact is even 
more relevant considering that a second-order scheme was selected in the commercial code. 
 

 
Figure 4: Numerical results obtained with the two codes. Left: BUCHESS solution with 20,451 nodes. Right: 

solution with the commercial code with 50,500 open cells. 
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Figure 5: Numerical results obtained with the two codes. Left: BUCHESS solution with 
45,676 nodes. Right: solution with the commercial code with 630,000 open cells. 

 

8 CONCLUSIONS 

The presented numerical results show that: 
a) The issue of “adequate resolution” put forward by Straka et al. is clearly 

dependent on the numerical code employed, as expected, but it is especially 
critical with commercial codes. In this sense, meshes for numerical solutions that 
would be judged as “fine” in some cases, need to be carefully tested as 
producing converged results when simulating dense underflows. This is due to 
the fact that the small scales in the instabilities are really smaller than what can 
be anticipated with a simple computation. In complex flows, the “formal” order 
of certain schemes may be lost due to implementation details of commercial 
codes included to make them robust. 

b) Two-dimensional solutions of density currents present shedding vortices that are 
not shown in solutions found in the literature. These vortices correspond to the 
true solution of the 2D Navier-Stokes Equations, and they do not appear in the 
experiment. In some published numerical solutions, we believe that they have 
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been damped by a “global numerical error.” This error may arise from the 
(usually small) discretization errors introduced in each equation, amplified by 
the different stabilizing tricks usually included in commercial codes. The net 
effect, for density currents, appears as a strong over-damping of the tail’s 
dynamics and mixing.  

c) We believe to have shown a good example in which a “good agreement with 
experiments” can be misunderstood. When we used a 3D solution with the finite-
element code, the tail has the adequate shape and the shed vortices decay, 
showing that the exaggerated vorticity in the current’s tail in the finite-element 
code is not an artifact from the method but, rather, is a result of the 2D 
approximation (see Cantero et al.28). 
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Figure 6: Comparison between measured and modeled position of the front of density current. 
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