# SPECTRAL ANALYSIS OF THE THREE-DIMENSIONAL LAPLACE TRANSFORM NODAL METHOD FOR TWO-GROUPS DISCRETE ORDINATES PROBLEMS IN CARTESIAN GEOMETRY 

Eliete B. Hauser<br>PUCRS - Departamento de Matemática, Av. Ipiranga 6681 P30 Sala 110 90619-900-Porto Alegre-RS, Brasil, eliete@pucrs.br

Keywords: Three-dimensional $S_{N}$ Equations, Two Energy Groups, Spectral Analysis, Laplace Transform.


#### Abstract

In this work, we describe a spectrum of the three-dimensional Laplace Transform Nodal method $\left(L T S_{N}\right)$ in order to solve the transport problem in a parallelepiped domain with two energy groups.

We present the $L T S_{N}$ nodal method to generate an analytical solution for discrete ordinates ( $S_{N}$ ) problems in three-dimensional cartesian geometry and two energy groups. We first transverse integrate the $S_{N}$ equations and then we apply the Laplace transform. The essence of this method is the diagonalization of the $L T S_{N}$ transport matrices and the spectral analysis garantees this, because the eigenvalues can have multiplicity greater than one and corresponding linearly independent eigenvectors.

The transverse leakage terms that appear in the transverse integrated $S_{N}$ equations are represented by exponential functions with decay constants that depend on the characteristics of the material of the medium of the particles leave behind. We use continuity conditions across the region interfaces, in order to obtain the approximated problem solution. The only approximation we use in the derivation of the present method is the exponential approximation for the transverse leakage terms.


## 1 INTRODUCTION

The linear Boltzmann equation is an integro-differential equation wich describes the angular, energy and spatial variations of the neutral particle transport. The complexity of the mathematical models associated with transport problems, mainly in multidimensional geometries, is always an important issue of investigations and developments, taking into account the wide range of applications for these problems. The discrete ordinate method $\left(S_{N}\right)$ is a technique used for solving the linear Boltzmann equation (Lewis and Miller, 1991). The present research work present the Laplace transform nodal method ( $L T S_{N}$ ), (Panta and Vilhena, 1999; Hauser et al., 2009), to generate an analytical solution for discrete ordinates problems in three-dimensional cartesian geometry and two energy groups. We first transverse integrate the SN equations and then we apply the Laplace transform.

The $L T S_{N}$ nodal method is based on three transverse integrations across the three coordinate planes within a homogeneous region of the domain of solution. These transverse integrations lead to three one-dimensional equations coupled by the leakage terms, that we approximate by exponential functions and solve the resulting equations analytically by the Laplace transform technique in space The present $L T S_{N}$ nodal method is based on the the spectral nodal methods for discrete ordinates problems (Barros and Larsen, 1990), wherein the only approximation involved is the approximation for the transverse leakage terms. we approximate the transverse leakage terms by exponential functions, that are chosen based on the physics of shielding problems, where the neutron flux attenuates exponentially with increasing distance from the source.

The essence of this method is the diagonalizability of the LTSN transport matrices and we developed the spectral analysis for to garant this, in a way that is very similar that was performed for the spectral Green's Function method by Barros and Larsen (1992).

An outline of the remainder of this paper follows. In Section 2 we describe the threeDimensional two-Group $L T S_{N}$ nodal method. Finally, we present spectral analysis and and we list some numerical results in Section 3.

## 2 THE TWO-GROUP LTS $_{\mathrm{N}}$ NODAL METHOD IN X - Y - Z GEOMETRY

We consider the two-group energy $S_{N}$ equations with linearly isotropic scattering in a homogeneous $x-y-z$ geometry

$$
\begin{align*}
& \mu_{m} \frac{d}{d x} \Psi_{m, g}(x, y, z)+\eta_{m} \frac{d}{d y} \Psi_{m, g}(x, y, z)+\xi_{m} \frac{d}{d z} \Psi_{m, g}(x, y, z)+\sigma_{t, g}(x, y, z) \Psi_{m, g}(x, y, z)= \\
& \frac{1}{8}\left[\sigma_{s, 1, g} \sum_{n=1}^{M} w_{n} \Psi_{n, 1}(x, y, z)+\sigma_{s, 2, g} \sum_{n=1}^{M} w_{n} \Psi_{n, 2}(x, y, z)\right]+Q_{m, g}(x, y, z) \tag{1}
\end{align*}
$$

where, for $g=1,2$, we have defined $\Psi_{m, g}(x, y, z)=\Psi_{g}\left(x, y, z, \mu_{m}, \eta_{m}, \xi_{m}\right)$ as the $g^{\text {th }}$ group angular flux in the discrete direction $\left(\mu_{m}, \eta_{m}, \xi_{m}\right), m=1: M, M=N(N+2), \omega_{m}$ the angular quadrature weights, $(x, y, z) \in[0, a] \times[0, b] \times[0, c], \sigma_{t, g}, \sigma_{s, 1, g}, \sigma_{s, 2, g}$ are the cross section, and $Q_{m, g}(x, y)$ is the isotropic interior source.

By transverse-integrating Eq.(1) with respect to $y-z$ plane, we obtain


Figure 1: $S_{4}$ and $S_{8}$ Discrete Directions with Level Simetric

$$
\begin{align*}
& \mu_{m} \frac{d \Psi_{m x, g}}{d x}(x)+\sigma_{t, g} \Psi_{m x, g}(x)-\frac{1}{8}\left[\sigma_{s, 1, g} \sum_{n=1}^{M} w_{n} \Psi_{n x, 1}(x)+\sigma_{s, 2, g} \sum_{n=1}^{M} w_{n} \Psi_{n x, 2}(x)\right]  \tag{2}\\
& =S_{m x, g}(x)
\end{align*}
$$

where the mean angular flux in the in the discrete direction $\Omega_{m}=\left(\mu_{m}, \eta_{m}, \xi_{m}\right)$ is

$$
\begin{equation*}
\Psi_{m x, g}(x)=\frac{1}{b c} \int_{0}^{c} \int_{0}^{b} \Psi_{m, g}(x, y, z) d y d z \tag{3}
\end{equation*}
$$

The source term $S_{m x, g}(x)$ includes the external source and the transverse leakage terms.

$$
\begin{gather*}
S_{m x, g}(x)=\frac{1}{b c \mu_{m}}\left[Q_{x, g}(x)-\eta_{m} \int_{0}^{c}\left[\Psi_{m, g}(x, b, z)-\Psi_{m, g}(x, 0, z)\right] d z\right]- \\
-\frac{1}{b c \mu_{m}}\left[\xi_{m} \int_{0}^{b}\left[\Psi_{m, g}(x, y, c)-\Psi_{m, g}(x, y, 0)\right] d y\right]  \tag{4}\\
Q_{x, g}(x)=\int_{0}^{c} \int_{0}^{b} Q_{g}(x, y, z) d y d z \tag{5}
\end{gather*}
$$

The transverse integrated $S_{N}$ equations for the $y$ and z spatial directions are obtained in a similar fashion.

Equation(2) forms a system of $2 M$ linear ordinary differential equations in the $2 M$ unknown functions $\Psi_{m, g}(x)$ in $D$. For $m=1: M$, we write Eq.(2) in the following explicit form

$$
\begin{align*}
& \frac{d}{d x} \Psi_{m x, 1}(x)+\frac{\sigma_{t, 1}}{\mu_{m}} \Psi_{m x, 1}(x)-\frac{1}{8 \mu_{m}}\left[\sigma_{s, 1,1} \sum_{n=1}^{M} w_{n} \Psi_{n x, 1}(x)+\sigma_{s, 2,1} \sum_{n=1}^{M} w_{n} \Psi_{n x, 2}(x)\right] \\
& =\frac{S_{m x, 1}(x)}{\mu_{m}}  \tag{6}\\
& \frac{d}{d x} \Psi_{m x, 2}(x)+\frac{\sigma_{t, 2}}{\mu_{m}} \Psi_{m x, 2}(x)-\frac{1}{8 \mu_{m}}\left[\sigma_{s, 1,2} \sum_{n=1}^{M} w_{n} \Psi_{n x, 1}(x)+\sigma_{s, 2,2} \sum_{n=1}^{M} w_{n} \Psi_{n x, 2}(x)\right] \\
& =\frac{S_{m x, 2}(x)}{\text { Copyright बtQ10 Asociación Argentina de Mecánica Computacional http://mww.amcaonline.org.ar }}
\end{align*}
$$

We apply the Laplace transform with respect $x$ to Eq.(6). For $g=1,2$ we denote

$$
£\left\{S_{m x, g}(x)\right\}=\bar{S}_{m x, g}(s), £\left\{\Psi_{m x, g}(x)\right\}=\bar{\Psi}_{m x, g}(s)
$$

and

$$
£\left\{\frac{d \Psi_{m x, g}}{d x}(x)\right\}=s \bar{\Psi}_{m x, g}(s)-\Psi_{m x, g}(0) .
$$

For $m=1: M$, we obtain two algebric systems of $2 M$ equations

$$
\begin{align*}
& s \bar{\Psi}_{m x, 1}(s)+\frac{\sigma_{t, 1}}{\mu_{m}} \bar{\Psi}_{m x, 1}(s)-\frac{\sigma_{s, 1,1}}{8 \mu_{m}} \sum_{n=1}^{M} w_{n} \bar{\Psi}_{n x, 1}(s)-\frac{\sigma_{s, 2,1}}{8 \mu_{m}} \sum_{n=1}^{M} w_{n} \bar{\Psi}_{n x, 2}(s) \\
& =\Psi_{m x, 1}(0)+\frac{\bar{S}_{m x, 1}(s)}{\mu_{m}} \\
& s \bar{\Psi}_{m x, 2}(s)+\frac{\sigma_{t, 2}}{\mu_{m}} \bar{\Psi}_{m x, 2}(s)-\frac{\sigma_{s, 2,2}}{4 \mu_{m}} \sum_{n=1}^{M} w_{n} \bar{\Psi}_{n x, 2}(s)-\frac{\sigma_{s, 1,2}}{4 \mu_{m}} \sum_{n=1}^{M} w_{n} \bar{\Psi}_{n x, 1}(s)  \tag{7}\\
& =\Psi_{m, 2}(0)+\frac{\bar{S}_{m x, 2}(s)}{\mu_{m}}
\end{align*}
$$

We can be writte Eq.(7) in matrix form as

$$
\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]\left[\begin{array}{c}
\bar{\Psi}_{m x, 1}(s)  \tag{8}\\
\bar{\Psi}_{m x, 2}(s)
\end{array}\right]=\left[\begin{array}{c}
\Psi_{m x, 1}(0) \\
\Psi_{m x, 2}(0)
\end{array}\right]+\frac{1}{\mu_{m}}\left[\begin{array}{c}
\bar{S}_{m x, 1}(s) \\
\bar{S}_{m x, 2}(s)
\end{array}\right]
$$

where $\mathbf{I}$ is identity matrix and we have defined the $2 M \times 2 M$ matrix $\mathbf{A}_{\mathbf{x}}$

$$
\mathbf{A}_{\mathbf{x}}=\left[\begin{array}{ll}
\mathbf{A}_{\mathbf{x}, 11} & \mathbf{A}_{\mathbf{x}, 12}  \tag{9}\\
& \\
\mathbf{A}_{\mathbf{x}, 21} & \mathbf{A}_{\mathbf{x}, 22}
\end{array}\right]
$$

which is composed of the $M \times M$ submatrices $\mathbf{A}_{\mathbf{x}, \mathbf{g}^{\prime}, \mathbf{g}}, g^{\prime}, g=1,2$.
In matrix (9) we have definedd submatrices

$$
\mathbf{A}_{\mathbf{x}, \mathbf{1 1}}=\left[\begin{array}{cccc}
-\frac{8 \sigma_{t, 1}-\sigma_{s, 1,1} \omega_{1}}{8 \mu_{1}} & \frac{\sigma_{s, 1,1} \omega_{2}}{8 \mu_{1}} & \cdots & \frac{\sigma_{s, 1,1} \omega_{M}}{8 \mu_{1}}  \tag{10}\\
\frac{\sigma_{s, 1,1} \omega_{1}}{8 \mu_{2}} & -\frac{8 \sigma_{t, 1}-\sigma_{s, 1,1} \omega_{2}}{8 \mu_{2}} & \cdots & \frac{\sigma_{s, 1,1} \omega_{M}}{8 \mu_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{s, 1,1} \omega_{1}}{8 \mu_{M}} & \frac{\sigma_{s, 1,1} \omega_{2}}{8 \mu_{M}} & \cdots & -\frac{8 \sigma_{t, 1}-\sigma_{s, 1,1} \omega_{M}}{8 \mu_{M}}
\end{array}\right]
$$

$$
\mathbf{A}_{\mathbf{x}, \mathbf{2 2}}=\left[\begin{array}{cccc}
-\frac{8 \sigma_{t, 2}-\sigma_{s, 2,2} \omega_{1}}{8 \mu_{1}} & \frac{\sigma_{s, 2,2} \omega_{2}}{8 \mu_{1}} & \cdots & \frac{\sigma_{s, 2,2} \omega_{M}}{8 \mu_{1}}  \tag{11}\\
\frac{\sigma_{s, 2,2} \omega_{1}}{8 \mu_{2}} & -\frac{8 \sigma_{t, 2}-\sigma_{s, 2,2} \omega_{2}}{8 \mu_{2}} & \cdots & \frac{\sigma_{s, 2,2} \omega_{M}}{8 \mu_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{s, 2,2} \omega_{1}}{8 \mu_{M}} & \frac{\sigma_{s, 2,2} \omega_{2}}{8 \mu_{M}} & \cdots & -\frac{8 \sigma_{t, 2}-\sigma_{s, 2,2} \omega_{M}}{8 \mu_{M}}
\end{array}\right]
$$

and for $g^{\prime}, g=1,2$, which is composed of the $M \times M$ submatrices $\mathbf{A}_{\mathbf{g}^{\prime}, g}$,

$$
\begin{align*}
& \mathbf{A}_{\mathbf{x}, \mathbf{2 1}}=\left[\begin{array}{cccc}
\frac{\sigma_{s, 1,2} \omega_{1}}{8 \mu_{1}} & \frac{\sigma_{s, 1,2} \omega_{2}}{8 \mu_{1}} & \cdots & \frac{\sigma_{s, 1,2} \omega_{M}}{8 \mu_{1}} \\
\frac{\sigma_{s, 1,2} \omega_{1}}{8 \mu_{2}} & \frac{\sigma_{s, 1,2} \omega_{2}}{8 \mu_{2}} & \cdots & \frac{\sigma_{s, 1,2} \omega_{M}}{8 \mu_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{s, 1,2} \omega_{1}}{8 \mu_{M}} & \frac{\sigma_{s, 1,2} \omega_{2}}{8 \mu_{M}} & \cdots & \frac{\sigma_{s, 1,2} \omega_{M}}{8 \mu_{M}}
\end{array}\right]  \tag{12}\\
& \mathbf{A}_{\mathbf{x , 1 2}}=\left[\begin{array}{cccc}
\frac{\sigma_{s, 2,1} \omega_{1}}{8 \mu_{1}} & \frac{\sigma_{s, 2,1} \omega_{2}}{8 \mu_{1}} & \cdots & \frac{\sigma_{s, 2,1} \omega_{M}}{8 \mu_{1}} \\
\frac{\sigma_{s, 2,1} \omega_{1}}{8 \mu_{2}} & \frac{\sigma_{s, 2,1} \omega_{2}}{8 \mu_{2}} & \cdots & \frac{\sigma_{s, 2,1} \omega_{M}}{8 \mu_{2}} \\
\vdots & \vdots & \ddots & \vdots \\
\frac{\sigma_{s, 2,1} \omega_{1}}{8 \mu_{M}} & \frac{\sigma_{s, 2,1} \omega_{2}}{48 \mu_{M}} & \cdots & \frac{\sigma_{s, 2,1} \omega_{M}}{8 \mu_{M}}
\end{array}\right] \tag{11}
\end{align*}
$$

In addition, we have defined the $M$-dimensional vector functions

$$
\begin{align*}
& \bar{\Psi}_{m x, g}(s)=\left[\bar{\Psi}_{1 x, g}(s) \bar{\Psi}_{2 x, g}(s) \cdots \bar{\Psi}_{M x, g}(s)\right]^{T},  \tag{14}\\
& \Psi_{m x, g}(0)=\left[\Psi_{1 x, g}(0) \Psi_{2 x, g}(0) \cdots \Psi_{M x, g}(0)\right]^{T} \tag{15}
\end{align*}
$$

and

$$
\begin{equation*}
\bar{S}_{m x, g}(s)=\left[\bar{S}_{1 x, g}(s) \bar{S}_{2 x, g}(s) \cdots \bar{S}_{M x, g}(s)\right]^{T} . \tag{16}
\end{equation*}
$$

The solution of the algebric sistem (8) is

$$
\left[\begin{array}{c}
\bar{\Psi}_{m x, 1}(s)  \tag{17}\\
\bar{\Psi}_{m x, 2}(s)
\end{array}\right]=\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\left(\left[\begin{array}{c}
\Psi_{m x, 1}(0) \\
\Psi_{m x, 2}(0)
\end{array}\right]+\frac{1}{\mu_{m}}\left[\begin{array}{c}
\bar{S}_{m x, 1}(s) \\
\bar{S}_{m x, 2}(s)
\end{array}\right]\right)
$$

In order to determine the angular flux we apply the inverse transform Laplace in (17).

$$
\left[\begin{array}{c}
\Psi_{m x, 1}(x)  \tag{18}\\
\Psi_{m x, 2}(x)
\end{array}\right]=£^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\left(\left[\begin{array}{c}
\Psi_{m x, 1}(0) \\
\Psi_{m x, 2}(0)
\end{array}\right]+\frac{1}{\mu_{m}}\left[\begin{array}{c}
\bar{S}_{m x, 1}(s) \\
\bar{S}_{m x 2}(s)
\end{array}\right]\right)\right\}
$$

Then,

$$
\begin{align*}
& {\left[\begin{array}{c}
\Psi_{m x, 1}(x) \\
\Psi_{m x, 2}(x)
\end{array}\right]=\mathscr{L}^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\right\}\left[\begin{array}{c}
\Psi_{m x, 1}(0) \\
\Psi_{m x, 2}(0)
\end{array}\right]}  \tag{19}\\
& +\frac{1}{\mu_{m}} £^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\right\} *\left[\begin{array}{c}
\bar{S}_{m x, 1}(x) \\
\bar{S}_{m x, 2}(x)
\end{array}\right]
\end{align*}
$$

where $*$ denote the convolution operation.
Furthermore, in order to determine $£^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\right\}$ we assume the diagonalizability of $\operatorname{matrix} \mathbf{A}_{\mathbf{x}}, \mathbf{A}_{\mathbf{x}}=\mathbf{V}_{\mathbf{x}} \mathbf{D}_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}{ }^{-1}$, to write

$$
\begin{align*}
& £^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\right\}=£^{-1}\left\{\left[s \mathbf{V}_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}^{-1}-\mathbf{V}_{\mathbf{x}} \mathbf{D}_{\mathbf{x}} \mathbf{V}_{\mathbf{x}}^{-1}\right]^{-1}\right\} \\
& =£^{-1}\left\{\left[\mathbf{V}_{\mathbf{x}}\left(s \mathbf{I}-\mathbf{D}_{\mathbf{x}}\right) \mathbf{V}_{\mathbf{x}}^{-1}\right]^{-1}\right\}=\mathbf{V}_{\mathbf{x}} £^{-1}\left\{\left[s \mathbf{I}-\mathbf{D}_{\mathbf{x}}\right]^{-1}\right\} \mathbf{V}_{\mathbf{x}}^{-1} \tag{20}
\end{align*}
$$

where $\mathbf{D}_{\mathbf{x}}$ is an $M$ - order diagonal matrix of the eigenvalues of $\mathbf{A}_{\mathbf{x}}$ and $\mathbf{V}_{\mathbf{x}}$ is the matrix whose columns are $M$ eigenvectors of $\mathbf{A}_{\mathbf{x}}$.

We apply the inverse Laplace transform

$$
\begin{equation*}
£^{-1}\left\{\left(s \mathbf{I}-\mathbf{D}_{\mathbf{x}}\right)^{-\mathbf{1}}\right\}=e^{\mathbf{D}_{\mathbf{x}} x} \tag{21}
\end{equation*}
$$

Substituing Eq.(21)in Eq.(20), we obtain

$$
\begin{equation*}
£^{-1}\left\{\left(s I-A_{x}\right)^{-1}\right\}=\mathbf{V}_{x} e^{\mathbf{D}_{x} x} \mathbf{V}_{x}^{-1} \tag{22}
\end{equation*}
$$

As a result, the analytical solution for the two-group $S_{N}$ equations with linearly isotropic scattering (1).

$$
\begin{align*}
& {\left[\begin{array}{c}
\Psi_{m x, 1}(x) \\
\Psi_{m x, 2}(x)
\end{array}\right]=\left[\mathbf{V}_{\mathbf{x}} e^{\mathbf{D}_{\mathbf{x}} x} \mathbf{V}_{\mathbf{x}}^{-1}\right]\left[\begin{array}{c}
\Psi_{m x, 1}(0) \\
\Psi_{m x, 2}(0)
\end{array}\right]} \\
& +\frac{1}{\mu_{m}}\left[\mathbf{V} e^{\mathbf{D}_{\mathbf{x}} x} \mathbf{V}_{\mathbf{x}}^{-1}\right] *\left[\begin{array}{c}
\bar{S}_{m x, 1}(x) \\
\bar{S}_{m x, 2}(x)
\end{array}\right] \tag{23}
\end{align*}
$$

We proceed in a similar form with the $S_{N}$ nodal equations transversally in the $x-y$ and $x-z$ planes and we obtain the following analytical solutions

$$
\begin{align*}
& {\left[\begin{array}{l}
\Psi_{m y, 1}(y) \\
\Psi_{m y, 2}(y)
\end{array}\right]=\left[\mathbf{V}_{\mathbf{y}} e^{\mathbf{D}_{\mathbf{y}} y} \mathbf{V}_{\mathbf{y}}^{-1}\right]\left[\begin{array}{l}
\Psi_{m y, 1}(0) \\
\Psi_{m y, 2}(0)
\end{array}\right]}  \tag{24}\\
& +\frac{1}{\eta_{m}}\left[\mathbf{V} e^{\mathbf{D}_{\mathbf{y}} y} \mathbf{V}_{\mathbf{x}}^{-1}\right] *\left[\begin{array}{l}
\bar{S}_{m y, 1}(y) \\
\bar{S}_{m y, 2}(y)
\end{array}\right] \\
& {\left[\begin{array}{l}
\Psi_{m z, 1}(z) \\
\Psi_{m z, 2}(z)
\end{array}\right]=\left[\mathbf{V}_{\mathbf{z}} e^{\mathbf{D}_{\mathbf{z}} z} \mathbf{V}_{\mathbf{z}}^{-1}\right]\left[\begin{array}{l}
\Psi_{m z, 1}(0) \\
\Psi_{m z, 2}(0)
\end{array}\right]}  \tag{25}\\
& +\frac{1}{\xi_{m}}\left[\mathbf{V} e^{\mathbf{D}_{\mathbf{z}} z} \mathbf{V}_{\mathbf{z}}^{-1}\right] *\left[\begin{array}{l}
\bar{S}_{m z, 1}(z) \\
\bar{S}_{m z, 2}(z)
\end{array}\right]
\end{align*}
$$

Now, we denote the mean angular flux as

$$
\begin{equation*}
\Psi_{x, g}(x)=\sum_{i=1}^{M} A_{l, g} V_{x_{l}} e^{r_{l} x}=\mathbf{V}_{\mathbf{x}} e^{\mathbf{D}_{\mathbf{x}} x} \mathbf{A}_{\mathbf{g}} \tag{26}
\end{equation*}
$$

where $\mathbf{A}_{\mathbf{g}}=\left[A_{1, g}, A_{2, g}, \cdots, A_{M, g}\right]^{T}$,

$$
\begin{equation*}
\Psi_{y, g}(y)=\sum_{l=1}^{M} B_{l, g} V_{y_{l}} e^{s_{l y}}=\mathbf{V}_{\mathbf{y}} e^{\mathbf{D}_{\mathbf{y}} y} \mathbf{B}_{\mathbf{g}} \tag{27}
\end{equation*}
$$

where $\mathbf{B}_{\mathbf{g}}=\left[B_{1, g}, B_{2, g}, \cdots, B_{g, M}\right]^{T}$, e

$$
\begin{equation*}
\Psi_{z, g}(z)=\sum_{l=1}^{M} C_{l, g} V_{y_{l}} e^{t_{l y}}=\mathbf{V}_{\mathbf{z}} e^{\mathbf{D}_{\mathbf{z}} z} \mathbf{C}_{\mathbf{g}} \tag{28}
\end{equation*}
$$

where $\mathbf{C}_{\mathbf{g}}=\left[C_{1, g}, C_{2, g}, \cdots, C_{M, g}\right]^{T}$.
Now, based on the physics of shielding problems, we assume that:
(1) the neutron flux attenuates exponentially with increasing distance from the source along the edges of each region inside the domain;
(2) the attenuation constant, depen depends upon, the nuclear data of the region the neutrons leave
behind as they stream across the system.
We can choose the attenuation constant as the macroscopic absorption cross section of the region the neutrons leave behind. With this heuristic approximation, we claim that for diffusive regions, where the macroscopic absorption cross sections are relatively small, the attenuation of the transverse leakage terms along the $y$ and $z$ directions is smoother than for highly absorbing regions, where the absorption event dominates.

Then, we define the transverse leakage terms as

$$
\begin{align*}
& \int_{0}^{c} \Psi_{m, g}(x, 0, z) d z=\mathbf{D}_{m, g} e^{-\operatorname{sign}\left(\mu_{m}\right) \lambda x},  \tag{29}\\
& \int_{0}^{c} \Psi_{m, g}(x, b, z) d z=\mathbf{E}_{m, g} e^{-\operatorname{sign}\left(\mu_{m}\right) \lambda x},  \tag{30}\\
& \int_{0}^{b} \Psi_{m, g}(x, y, 0) d y=\mathbf{F}_{m, g} e^{-\operatorname{sign}\left(\mu_{m}\right) \lambda x},  \tag{31}\\
& \int_{0}^{b} \Psi_{m, g}(x, y, c) d y=\mathbf{G}_{m, g} e^{-\operatorname{sign}\left(\mu_{m}\right) \lambda x},  \tag{32}\\
& \int_{0}^{c} \Psi_{m, g}(0, y, z) d z=\mathbf{H}_{m, g} e^{-\operatorname{sign}\left(\eta_{m}\right) \lambda y},  \tag{33}\\
& \int_{0}^{c} \Psi_{m, g}(a, y, z) d z=\mathbf{I}_{m, g} e^{-\operatorname{sign}\left(\eta_{m}\right) \lambda y},  \tag{34}\\
& \int_{0}^{a} \Psi_{m, g}(x, y, 0) d x=\mathbf{J}_{m, g} e^{-\operatorname{sign}\left(\eta_{m}\right) \lambda y},  \tag{35}\\
& \int_{0}^{a} \Psi_{m, g}(x, y, c) d x=\mathbf{K}_{m, g} e^{-\operatorname{sign}\left(\eta_{m}\right) \lambda y},  \tag{36}\\
& \int_{0}^{b} \Psi_{m, g}(0, y, z) d y=\mathbf{L}_{m, g} e^{-\operatorname{sign}\left(\xi_{m}\right) \lambda z},  \tag{37}\\
& \int_{0}^{b} \Psi_{m, g}(a, y, z) d y=\mathbf{O}_{m, g} e^{-\operatorname{sign}\left(\xi_{m}\right) \lambda z},  \tag{38}\\
& \int_{0}^{a} \Psi_{m, g}(x, 0, z) d x=\mathbf{P}_{m, g} e^{-\operatorname{sign}\left(\xi_{m}\right) \lambda z},  \tag{39}\\
& \int_{0}^{a} \Psi_{m, g}(x, b, z) d x=\mathbf{R}_{m, g} e^{-\operatorname{sign}\left(\xi_{m}\right) \lambda z} . \tag{40}
\end{align*}
$$

Finally analytical solution is completely determined if to find the 30 M unknowns present in the expressions Eq. (26)to Eq.(40). Thus, it is a system solves linear compatible of 30 M equations, derived from the definitions of the mean angular flux in the $x=a, y=b \mathrm{e} z=c$, and the application of the boundary conditions.

## 3 SPECTRAL ANALYSIS OF THE TWO-GROUP $S_{N}$ EQUATIONS WITH ISOTROPIC SCATTERING

The main purpose this section is to proof the diagonalizability of matrix $\mathbf{A}_{\mathbf{x}}$ in order to determine $£^{-1}\left\{\left[s \mathbf{I}-\mathbf{A}_{\mathbf{x}}\right]^{-1}\right\}=\mathbf{V}_{\mathbf{x}} e^{\mathbf{D}_{\mathbf{x}} x} \mathbf{V}_{\mathbf{x}}{ }^{-1}$. For this reason, we perform a spectral analysis of the two-group slab-geometry $S_{N}$ equations with isotropic scattering in a way that is very similar that was performed for the spectral Green's Function method by Barros and Larsen, (3).

We need to obtain a linearly independent set of any $2 M$ vectors, the eigenvectors of the matrix $\mathbf{A}_{\mathbf{x}}$.

To do this, we consider the homogeneous equations associated to the two-group slab-geometry $S_{N}$ equations with isotropic Scattering Eq.(2)

$$
\begin{equation*}
\mu_{m} \frac{d \Psi_{m x, g}}{d x}(x)+\sigma_{t} \Psi_{m x, g}(x)-\frac{1}{8}\left[\sigma_{s, 1, g} \sum_{n=1}^{M} w_{n} \Psi_{n x, 1}(x)+\sigma_{s, 2, g} \sum_{n=1}^{M} w_{n} \Psi_{n x, 2}(x)\right]=0 \tag{41}
\end{equation*}
$$

We supose that, for $m=1: M$ and $g=1,2$, the solution of Eq.(41) is

$$
\begin{equation*}
\Psi_{m x, g}(x)=\alpha_{m, g}(\nu) e^{x \nu} . \tag{42}
\end{equation*}
$$

Substituing Eq.(42) into Eq.(41) leads to

$$
\begin{align*}
& \nu \mu_{m} \alpha_{m, g}(\nu) e^{x \nu}+\sigma_{t, g} \alpha_{m, g}(\nu) e^{x \nu}= \\
& \frac{1}{8}\left[\sigma_{s, 1, g} \sum_{n=1}^{M} w_{n} \alpha_{n, 1}(\nu) e^{x \nu}+\sigma_{s, 2, g} \sum_{n=1}^{M} w_{n} \alpha_{n, 2}(\nu) e^{x \nu}\right] . \tag{43}
\end{align*}
$$

and we obtain the eigenvalue problem

$$
\begin{equation*}
\left(\nu \mu_{m}+\sigma_{t, g}\right) \alpha_{m, g}(\nu)=\frac{1}{8}\left[\sigma_{s, 1, g} \sum_{n=1}^{M} w_{n} \alpha_{n, 1}(\nu)+\sigma_{s, 2, g} \sum_{n=1}^{M} w_{n} \alpha_{n, 2}(\nu)\right] . \tag{44}
\end{equation*}
$$

In Eq.(44) we need to determine the eigenvalues $\nu$ and the $m^{t h}$ components the eigenvectors. We have

$$
\begin{equation*}
\alpha_{m, 1}(\nu)=\frac{1}{8\left(\nu \mu_{m}+\sigma_{t, 1}\right)}\left[\sigma_{s, 1,1} \sum_{n=1}^{M} w_{n} \alpha_{n, 1}(\nu)+\sigma_{s, 2,1} \sum_{n=1}^{M} w_{n} \alpha_{n, 2}(\nu)\right] \tag{45}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{m, 2}(\nu)=\frac{1}{8\left(\nu \mu_{m}+\sigma_{t, 2}\right)}\left[\sigma_{s, 1,2} \sum_{n=1}^{M} w_{n} \alpha_{n, 1}(\nu)+\sigma_{s, 2,2} \sum_{n=1}^{M} w_{n} \alpha_{n, 2}(\nu)\right] . \tag{46}
\end{equation*}
$$

Now, for $g=1,2$ we denote the normalization as

$$
\begin{equation*}
F_{g}(\nu)=\sum_{n=1}^{M} w_{n} \alpha_{n, g}(\nu) \tag{47}
\end{equation*}
$$

where, $F_{g}(\nu)=0$ or $F_{g}(\nu) \neq 0$.
First, for $g=1,2$, we consider that

$$
\begin{equation*}
F_{g}(\nu)=\sum^{M} w_{n} \alpha_{n, g}(\nu) \neq 0 \tag{48}
\end{equation*}
$$

and substituting into Eqs.(45) and (46), we obtain

$$
\begin{equation*}
\left.\alpha_{m, 1}(\nu)=\frac{1}{8\left(\nu \mu_{m}+\sigma_{t, 1}\right)}\left[\sigma_{s, 1,1} F_{1}(\nu)+\sigma_{s, 2,1} F_{2}(\nu)\right)\right] \tag{49}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{m, 2}(\nu)=\frac{1}{8\left(\nu \mu_{m}+\sigma_{t, 2}\right)}\left[\sigma_{s, 1,2} F_{1}(\nu)+\sigma_{s, 2,2} F_{2}(\nu)\right] . \tag{50}
\end{equation*}
$$

Now, we multiply both Eqs.(49) and (50) by $w_{n}$ and summing the resulting equations over all $m=1: M$, we have

$$
\begin{equation*}
\left.\sum_{m=1}^{M} w_{m} \alpha_{m, 1}(\nu)=\sum_{n=1}^{M} \frac{w_{m}}{8\left(\nu \mu_{m}+\sigma_{t, 1}\right)}\left[\sigma_{s, 1,1} F_{1}(\nu)+\sigma_{s, 2,1} F_{2}(\nu)\right)\right] \tag{51}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum_{m=1}^{M} w_{m} \alpha_{m, 2}(\nu)=\sum_{n=1}^{M} \frac{w_{m}}{8\left(\nu \mu_{m}+\sigma_{t, 2}\right)}\left[\sigma_{s, 1,2} F_{1}(\nu)+\sigma_{s, 2,2} F_{2}(\nu)\right] . \tag{52}
\end{equation*}
$$

Then appear the following homogeneous system of two equations in the two unknowns $F_{1}(\nu)$ and $F_{2}(\nu)$ :

$$
\begin{align*}
& \left.4 F_{1}(\nu)=G_{1}(\nu)\left[\sigma_{s, 1,1} F_{1}(\nu)+\sigma_{s, 2,1} F_{2}(\nu)\right)\right],  \tag{53}\\
& 4 F_{2}(\nu)=G_{2}(\nu)\left[\sigma_{s, 1,2} F_{1}(\nu)+\sigma_{s, 2,2} F_{2}(\nu)\right] \tag{54}
\end{align*}
$$

represented in matricial form

$$
\left[\begin{array}{cc}
G_{1}(\nu) \sigma_{s, 1,1}-8 & G_{1}(\nu) \sigma_{s, 2,1}  \tag{55}\\
G_{2}(\nu) \sigma_{s, 1,2} & G_{2}(\nu) \sigma_{s, 2,2}-8
\end{array}\right]\left[\begin{array}{c}
F_{1}(\nu) \\
F_{2}(\nu)
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

In Eqs.(53), (54) and (55) we have defined the functions

$$
\begin{equation*}
G_{g}(\nu)=\sum_{n=1}^{M} \frac{w_{m}}{\nu \mu_{m}+\sigma_{t, g}}, \nu \neq \frac{-\sigma_{t, g}}{\mu_{m}}, g=1,2 \tag{56}
\end{equation*}
$$

There is non-trivial solution for system linear (55) if the determinant formed by the coefficients of $F_{1}(\nu)$ and $F_{2}(\nu)$ is different of zero. Then

$$
\begin{equation*}
\left(G_{1}(\nu) \sigma_{s, 1,1}-8\right)\left(G_{2}(\nu) \sigma_{s, 2,2}-8\right)-\left(G_{1}(\nu) \sigma_{s, 2,1}\right)\left(G_{2}(\nu) \sigma_{s, 1,2}\right)=0 \tag{57}
\end{equation*}
$$

is the spectral characteristic equation, a polynomial of degree $2 N$ and the roots $\pm \nu_{k}, k=1$ : $2 N$ are the eigenvalues for two-group equations Eq.(2). Due to the symmetry of the Gaussian quadrature set in Eq.(57) it has even powers of $\nu$. As a result, all roots $\pm \nu_{k}, k=1: M$ appear in pairs and, they are all simple, but some of that are very near.

In. Fig. 2 we represent the graffically the characteristic equation, Eq.(57), for $S_{4}$ quadrature, with media parameters: $\sigma_{t, 1}=1, \sigma_{t, 2}=1, \sigma_{s, 1,1}=0.99, \sigma_{s, 2,2}=0.98, \sigma_{s, 1,2}=0.008$ and $\sigma_{s, 2,1}=0.005$.

In order to determine the $2 N$ the eigenvectors associated to eigenvalues obtained of the Eq.(57), we observe that the set the eigenvectors of a linear operator is not unique in the sense that their normalization is arbitrary We need a set of $2 M$ eigenvectors. Therefore, we can chose


Figure 2: A typicaly distribuition of eingenvalues for $S_{4}$ quadrature

$$
\begin{equation*}
F_{1}(\nu)=\sum_{n=1}^{M} w_{n} \alpha_{n, 1}(\nu)=1, \tag{58}
\end{equation*}
$$

and substituting Eq.(58)into the Eq.(53), we solve for $F_{2}(\nu)$, result

$$
\begin{equation*}
F_{2}(\nu)=\frac{4-\sigma_{s, 1,1} G_{1}(\nu)}{G_{1}(\nu) \sigma_{s, 2,1}} \tag{59}
\end{equation*}
$$

Substituting this assumption and Eq.(58)into Eq.(49) and Eq.(50), for $k=1: 2 N$ and $m=1: M$, we obtain the eigenvectors whose components $\alpha_{m, 1}\left(\nu_{k}\right)$ and $\alpha_{m, 2}\left(\nu_{k}\right)$ are

$$
\begin{equation*}
\alpha_{m, 1}\left(\nu_{k}\right)=\frac{1}{8\left(\nu_{k} \mu_{m}+\sigma_{t, 1}\right)}\left[\sigma_{s, 1,1}+\sigma_{s, 2,1} \frac{8-\sigma_{s, 1,1} G_{1}(\nu)}{G_{1}(\nu) \sigma_{s, 2,1}}\right], \tag{60}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{m, 2}\left(\nu_{k}\right)=\frac{1}{8\left(\nu_{k} \mu_{m}+\sigma_{t, 2}\right)}\left[\sigma_{s, 1,2}+\sigma_{s, 2,2} \frac{8-\sigma_{s, 1,1} G_{1}(\nu)}{G_{1}(\nu) \sigma_{s, 2,1}}\right] . \tag{61}
\end{equation*}
$$

Now, to obtain the others $2 M-2 N$ eigenvalues we consider that, for $g=1,2$,

$$
\begin{equation*}
F_{g}(\nu)=\sum_{n=1}^{M} w_{n} \alpha_{n, g}(\nu)=0 \tag{62}
\end{equation*}
$$

and substituting in Eqs.(49) and (50), we obtain

$$
\begin{equation*}
\alpha_{m, 1}(\nu)\left(\nu \mu_{m}+\sigma_{t, 1}\right)=0 \tag{63}
\end{equation*}
$$

and

$$
\begin{equation*}
\alpha_{m, 2}(\nu)\left(\nu \mu_{m}+\sigma_{t, 2}\right)=0 . \tag{64}
\end{equation*}
$$

Then, for $m=1: M$ and $g=1,2$, if we do

$$
\begin{equation*}
\nu=-\frac{\sigma_{t, g}}{} \tag{65}
\end{equation*}
$$

then we can choose $\alpha_{m, g}(\nu) \neq 0$, to be valuated Eqs. (62), (63) e (64). The eigenvalues (65) can have multiplicity $\geq 1$ and the components $\alpha_{m}(s)$, para $m=1: M$, are the corresponding linearly independent eigenvectors.

In Table 1 we summarize the multiplicities of positive eigenvalues. Due to the symmetry of the angular quadrature of the symmetry level that we use these multiplicities repeated for eigenvalue $s$ negative.

Table 1: Number of the Positives Eigenvalues

|  | $\frac{\sigma_{t, g}}{\mu_{1}}$ | $\frac{\sigma_{t, g}}{\mu_{2}}$ | $\frac{\sigma_{t, g}}{\mu_{3}}$ | $\frac{\sigma_{t, g}}{\mu_{4}}$ | $\frac{\sigma_{t, g}}{\mu_{5}}$ | $\frac{\sigma_{t, g}}{\mu_{6}}$ | $\frac{\sigma_{t, g}}{\mu_{7}}$ | $\frac{\sigma_{t, g}}{\mu_{8}}$ | Characteristic <br> Equation <br> Eq.56 $(N)$ | Number of the Positives <br> Eingenvalues <br> $(M=N(N+2))$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 6 | - | - | - | - | - | - | - | 2 | 8 |
| 4 | 6 | 14 | - | - | - | - | - | - | 4 | 24 |
| 6 | 6 | 14 | 22 | - | - | - | - | - | 6 | 48 |
| 8 | 6 | 14 | 22 | 30 | - | - | - | - | 8 | 80 |
| 10 | 6 | 14 | 22 | 30 | 38 | - | - | - | 10 | 120 |
| 12 | 6 | 14 | 22 | 30 | 38 | 46 | - | - | 12 | 168 |
| 14 | 6 | 14 | 22 | 30 | 38 | 46 | 52 | - | 14 | 224 |
| 16 | 6 | 14 | 22 | 30 | 38 | 46 | 52 | 60 | 16 | 288 |

## 4 CONCLUDING REMARKS

An analytical approach was used to derive a close form solution for the one dimensional integrated equations derived from a three dimensional neutron transport problem, that we refer to as the $L T S_{N} 3 D-E x p$ method for two-groups of the energy. In this method, the only approximation involved is in the transverse leakage terms of the transverse-integrated $S_{N}$ equations. The scattering source terms are treated analytically. Based on the physics of radiation shielding problems, where the neutron flux attenuates exponentially with increasing distance from the source, we approximate the transverse leakage terms by exponential functions with prescribed attenuation constants.

Thus far, we have restricted ourselves to $S_{N}$ with two energy problems. This is the reason why the resulting spectrum contain $2 M$ eigenvalues and $2 M$ eigenvectors. In general, though, the $S_{N}$ problem is allowed to have an arbitrary number $G$ of energy groups. In this case we shall perform a spectral analysis following the same steps explained in Section 3, except that instead of two equations for each direction $m$, we shall have $G$ equations for each direction $m$. Therefore, the resulting spectrum will be contain $G \times 2 M$ eigenvalues and $G \times 2 M$ eigenvectors. A set of $G \times 2 M$ eigenvectors linearly independent, corresponding to $G \times 2 M$ eigenvalues, forms a basis for the $G \times 2 M$-dimensional space solution.

## REFERENCES

Barichello L.B. and Vilhena M. T. B., A New Analytical Approach to Solve the Neutron Transport Equation, Kerntechnik 56 (1991), 334-336.
Barichello L.B. and Sierwert C.E., The temperature-jump Problem in Rarefied-gas Dynamics, European Journal of Applied Mathematics 11 (2000), 353-364.

Barros R. C. and Larsen E. W., A spectral Nodal Method for One-group X,Y-geometry Discrete Ordinates Problems, Nuclear Science and Engineering, 34-111 (1992), 34-45.
Barros R. C. and Larsen,E. W., A Numerical Method for One-Group Slab-Geometry Discrete Ordinates Problems, Nuclear Science and Engineering, 19-104 (1990), 199-208.

Case K. and Zweifel E. " Linear Transport Theory", Addison-Wesley Publishing Company, 1967.

Golub G. H. and Loan C.F.V. " Matrix Computation", The Johns Hopkins University Press, Baltimore, 1996.

Hauser E. B., Vilhena M. T. and Barros R. C. , "A Laplace Transform Exponential Method for Monoenergetic Three-dimensional Fixed Source Discrete Ordinates Problems in Cartesian Geometry", IJNEST, 5 (2009), 80-89.
Hauser E.B., Pazos R.P, Vilhena M. T. and Barros R. C., The Error Bounds For The ThreeDimentional Nodal $L T S_{N}$ Method, Proceedings of the l6-th International Conference on Nu clear Engineering -ICONE 2008, Orlando, USA, Vol 1, pp.1-12, 2008.
Hauser E.B., Pazos R.P and Vilhena M. T.,"An Error Bound Estimate of the $L T S_{N}$ Nodal Solution in Cartesian Geometry", Annals of Nuclear Energy, 32 (2005), 1146-1156.

Joyce D. C., SIAM Review , 13, No. 4, pp. 435-490 (1971).
Lewis E. and Miller W. , "Computational Methods of Neutron Transport", John Wiley-Sons, New York, 1984.

Ortega J.M., Rhheinboldt W.C.,"Iterative Solution of Non Linear Equations in Several Variables", Academic Press, New York, 1970.

Panta R. P., Vilhena M. T. B., Convergence in Transport Theory , Applied Numerical Mathematics, (1999),79-92.
Sharipov F.,Bertoldo,G., Numerical Solution of the Linearized Biktzmann Equation for an Arbitrary Intermolecular Potential, Journal of Computational Physics ,228 (2009),3345-3357.
Williams, M.M.R. "Mathematical Methods in Particle Transport Theory", Butterworth, London, 1971.

