
EIGENFREQUENCIES OF GENERALLY RESTRAINED 
TIMOSHENKO BEAMS WITH AN INTERNAL HINGE 

Virginia Quintanaa, Javier L. Raffob, Ricardo O. Grossia 

aINIQUI - ICMASA - Facultad de Ingeniería - Universidad Nacional de Salta, Av. Bolivia 5150, 4400 
Salta, Argentina, grossiro@unsa.edu.ar, http://www.unsa.edu.ar/iniqui/ 

bGrupo de Mecánica Computacional, Universidad Tecnológica Nacional Facultad Regional Delta, 
San Martin 1171, 2804 Campana, Argentina, jraffo@frd.utn.edu.ar, http://www.frd.utn.edu.ar/grupo-

de-mecanica-computacional 

Keywords: Vibrations, Timoshenko beams, elastically restrained, Lagrange multiplier, Ritz. 

Abstract. This paper deals with the free transverse vibration of a Timoshenko beam with ends 
elastically restrained against rotation and translation, and an arbitrarily located internal hinge 
including intermediate elastic constraints. A combination of the Ritz method and the Lagrange 
multiplier method is used to determine free vibrations characteristics of the mentioned beam. Trial 
functions denoting the transverse deflections and the normal rotations of the cross section of the beam 
are expressed in polynomial forms. 
In order to obtain an indication of the accuracy of the developed mathematical model, some cases 
available in the literature have been considered. New results are presented for different end conditions 
and restraint conditions in the intermediate elastic constraints. Also a comparison with a crack model 
is included. 
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1 INTRODUCTION 

Timoshenko proposed a beam theory which adds the effects of shear distortion and the 
rotatory inertia to the Euler-Bernoulli model (Timoshenko, 1921; Timoshenko, 1922). 
Afterwards there has been a considerable interest in developing techniques for the solutions of 
equations according to the Timoshenko theory. The problem of free vibration of Timoshenko 
beams with classical end conditions has been extensively treated and numerous papers have 
been devoted to it. The first papers are described in Quintana and Grossi (2009), but it is not 
possible to give a detailed account because of the great size of information, nevertheless some 
important references will be cited. The problem of elastic end restraints has also received 
considerable attention. Abbas (1984), treated the problem of free vibration of Timoshenko 
beams with elastically supported ends by using a finite element model (FEM) which satisfies 
all the geometric and natural boundary conditions. Farghaly (1994), investigated the natural 
frequencies and the critical buckling load coefficients for a multi-span Timoshenko beam 
elastically supported. Kocaturk and Simsek (2005a,b), analyzed the free vibrations of 
Timoshenko beams having classical and elastically supported ends by using the Lagrange 
equations with the trial functions expressed in the power series form. Zhou (2001), analyzed 
the free vibration of multi-span Timoshenko beams by the Rayleigh-Ritz method using static 
Timoshenko beam functions. Grossi and Aranda (1993), applied the Ritz method in the 
variational formulation of Timoshenko beams with elastically restrained ends. Han et al. 
(1999), presented a full development and analysis of four theories, including the Timoshenko 
model, for the transversely vibrating uniform beam.  

A review of the literature further reveals that there is only a limited amount of information 
for the vibration of Bernoulli-Euler beams with internal hinges. Ewing and Mirsafian (1996), 
analyzed the forced vibrations of two beams joined with a non-linear rotational joint. Wang 
and Wang (2001), studied the fundamental frequency of a beam with an internal hinge and 
subjected to an axial force. Chang et al. (2006) investigated the dynamic response of a beam 
with an internal hinge, subjected to a random moving oscillator. Grossi and Quintana (2008) 
analyzed the free transverse vibration of a non-homogeneous tapered beam subjected to 
general axial forces, with arbitrarily located internal hinge and elastics supports and ends 
elastically restrained against rotation and translation. 

The problem of vibration of Timoshenko beams with internal hinges, out of the context of 
cracks, has not been treated with exception of Lee et al. (2003) who considered a Timoshenko 
beam with an internal hinge by determining the exact vibration frequencies.  

The aim of the present paper is to investigate the natural frequencies and mode shapes of a 
Timoshenko beam with several complicating effects such as intermediate elastic constraints, 
generally restrained ends and an intermediate internal hinge. Several cases are solved by a 
combination of the Ritz method and the Lagrange multiplier method in conjunction with sets 
of simple polynomials as trial functions. In order to obtain an indication of the accuracy of the 
developed mathematical model, some cases available in the literature have been considered 
and comparisons of numerical results are included. The algorithms developed can be applied 
to a wide range of the different elastic restraint conditions. A great number of problems were 
solved and, since this number of cases is prohibitively large, results are presented for only a 
few cases. Since the presence of intermediate elastic restraints and a hinge allow the 
simulation of a crack model, a comparison with results of Khaji et al. (2009) has been 
included. 
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2 THEORY AND FORMULATIONS 

Let us consider a uniform Timoshenko of length l , which has elastically restrained ends, is 
constrained at an intermediate point and has an internal hinge elastically restrained against 
rotation, as shown in Figure 1. 

 
Figure 1: Beam model description 

According to Timoshenko beam theory, two independent variables: transverse deflection 
w  and normal rotational angle φ  due to bending are used to describe the deformation of the 
beam. The elastic strain energy due to the beam and to the elastic restraints at any instant t  is 
given by  
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where E  is the Young’s modulus, G  is the transverse shear modulus, I  is the moment of 
inertia, A  is the area of the cross-section and k  is the shear correction factor. The rotational 
restraints are characterized by the spring constants 

1 2
, ,

c
r r r  and 

12
r  and the translational 

restraints by the spring constants 
1 2
,t t  and .

c
t  

The kinetic energy of the beam at any instant t  is given by 
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where ρ  is the mass per unit volume. 
When the beam executes free vibrations, transverse deflection and normal rotation can be 

written as  

 ( , ) ( )sin( ), ( , ) ( )sin( ),w x t W x t x t x tω φ ω= = Φ  (3) 

where ω  is the radian frequency. 
By introducing the following non-dimensional parameters  
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the Lagrangian functional 
0
L  of the problem can be written as 
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2.1 Combination of the Ritz method and the Lagrange multiplier method. 

Since it is difficult to construct a simple and adequate deflection function which can be 
applied to the entire beam and to show the continuity of displacement and the discontinuities 
of the slope crossing the hinge, the minimization of the functional given by Eq. (5) will be 
achieved using subsidiary conditions. In consequence we can assume that ( )W x  and ( )xΦ  are 
given by 
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Considering the compatibility requirement on the intermediate elastically restrained point, 
the relationships between two adjacent spans can be expressed as 

 
1 2
( ) ( ) 0.
l l

W c W c− =  (7) 

Now the problem can be posed as one of extremizing the given functional in Eq. (5) 
subjected to the following constraint: 

 
1 2
( ) ( ).
l l

H W c W c= −  (8) 

This constraint may be incorporated into the energy functional given by Ec. (5) by using 
the Lagrange multiplier method (Reddy, 1986) as:  

 
0

,
L
L L Hλ= +  (9) 

where 
L
L  is called the Lagrangian functional, and λ ∈ ℝ  is a time independent Lagrangian 

multiplier. 
The transverse deflection and the normal rotation can be represented by a set of 
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characteristic polynomials ( )
ki
p x  and ( )

kj
q x , as:  
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where both 
ki
a  and 

kj
b  are unknown coefficients to be determined and ( )

ki
p x , ( )

kj
q x  are 

the trial functions. It is sufficient that they satisfy the geometric boundary conditions of the 
beam since, as the number of trial functions approaches infinity, the natural boundary 
conditions will be exactly satisfied (Mikhiln, 1964). The first member of the set 

11
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obtained as the simplest polynomial that satisfies at least the geometric boundary condition of 
the first span.  
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where the arbitrary constants 
1i
a  are determined by substituting Eq. (12) into the above-

mentioned boundary conditions. In the case of beam involving free edges or ends elastically 
restrained against rotation and translation simpler starting member of zero order are used.  

The higher members of the set { }1p  are obtained as:  
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The polynomials set { }2p  and { }kq  are also generated using the same procedure. Thus  
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In the present paper, beams having a variety of boundary conditions are considered, and the 
starting functions used are given in the Appendix.  

Substituting Eq. (10) and (11) into Eq. (9), and minimizing with respect to the unknown 
coefficients 
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By using Eq. (13)-(15) the following simultaneous set of linear algebraic equations are 
obtained which can be expressed in the following matrix forms  

 ( ){ } { }2 0K M c   −Ω =        (19) 

where  
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The expressions for the various elements of the stiffness matrix K     and the mass matrix 

M     are the following 
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The eigenvalues 2Ω  are found from the condition that the determinant of the system of 
equations given by Eq. (19) must vanish.  

 

3 CONVERGENCE AND COMPARISON STUDY 

The entire beam was considered with the same material properties and beam section, 
therefore 

1, 2,i i i
Ω = Ω = Ω  for the i  natural frequency, where 

1,i
Ω  is the dimensionless natural 

frequency parameter of the first span and 
2,i

Ω  the one of the second span. The values of the 

frequency parameter Ω  were obtained for different end conditions and intermediate elastic 
restraints. Through all the present analysis, beams were modeled with shear correction factor 
5 6k =  and Poisson’s ratio 0.3.µ =  

The computations in this paper were performed by using Maple (TM). The routine 
computes in exact way the definite integral over the straight line from 

0
x  to 

1
x . The 

eigenvalues are computed by the QR method. The matrix is first balanced and transformed 
into upper Hessenberg form. Then the eigenvalues are computed.  

A convergence study of the first six values of the dimensionless frequency parameter Ω  of 
a simply-simply supported (S-S) and a clamped-clamped beam (C-C) with an intermediate 

support located at 0.4
l
c =  for 12 / 0.1r l =  are presented in Table 1. The convergence of 

the mentioned eigenvalues is studied by gradually increasing the number of the trial functions. 
A comparison of values with those of Zhou (2001) is also included. The table shows that 

11N M= =  in the Ritz with Lagrange multipliers method is enough to reach stable 
convergence in all cases and to give results with the same precision and that the agreement 
with the values of Zhou (2001) is excellent. To compare results with those used in a crack 
model, a comparison with the model used in Khaji et al. (2009) is presented. The cracked 
section of the Timoshenko beam was modeled as local flexibility that was assumed to be a 
rotational spring. This model was first proposed by Ostachowicz and Krawczuk (1991) from a 
theory based on the stress intensity factor developed previously by Haisty and Springer 
(1988). Later, Narkis (1994) compared the results of this model with three different authors 
and a FEA model, Narkis (1994) and Khaji et al. (2009) used this model to solve the inverse 
problem of identify crack locations and crack depths from frequency data first obtained from a 
FEA model. The comparison of this works shown that the crack model proposed had an 
excellent performance. 

The discontinuity in the slope of the beam was modeled as: 

 2 1 2

x cx c

W W

x x x
θ

==

 ∂ ∂ ∂Φ  − = ⋅  ∂ ∂ ∂ 
 (40) 
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where ( )26 ( )f h lθ πη η=  is the non-dimensional crack sectional flexibility and depends 

on the extension of the crack, a
h

η =  is the crack depth ratio where a  is the crack depth and 

h  is the beam depth.  
 

Boundary 
conditions N=M 1

Ω  
2

Ω  
3

Ω  
4

Ω  
5

Ω  
6

Ω  

        

S-S 3 35.9280 78.4428 139.1719 250.1963 679.3662 690.4346 

 4 31.3524 67.3305 129.6826 226.1855 268.0760 429.2906 

 5 31.3505 67.0022 104.4706 194.6074 255.8360 396.4166 

 6 31.3372 66.9616 104.3777 186.7849 205.4627 349.6778 

 7 31.3371 66.9553 103.9240 186.5327 204.6538 300.6535 

 8 31.3371 66.9552 103.9223 185.3377 203.2441 300.4937 

 9 31.3371 66.9552 103.9196 185.3368 203.2227 293.0330 

 10 31.3371 66.9552 103.9196 185.3184 203.1968 293.0235 

 11 31.3371 66.9552 103.9196 185.3184 203.1966 292.7686 

 12 31.3371 66.9552 103.9196 185.3183 203.1965 292.7684 

 13 31.3371 66.9552 103.9196 185.3183 203.1965 292.7653 

 14 31.3371 66.9552 103.9196 185.3183 203.1965 292.7653 

        

 
Zhou 

(2001) 
31.3365 66.9549 103.9197 185.3192 203.2250 292.8411 

        

C-C 3 53.0692 103.8763 174.1909 276.5284 690.3621 721.8255 

 4 44.9647 90.0285 141.7985 236.7698 290.3811 448.5260 

 5 44.9174 89.4652 121.2447 214.0275 251.5873 403.2562 

 6 44.8972 89.3835 120.6392 204.6194 222.1686 361.0645 

 7 44.8970 89.3755 120.3072 203.0319 220.9901 313.1963 

 8 44.8970 89.3751 120.3001 202.1035 220.3835 308.1262 

 9 44.8970 89.3751 120.2983 202.0641 220.3560 304.0140 

 10 44.8970 89.3751 120.2982 202.0523 220.3466 303.7682 

 11 44.8970 89.3751 120.2982 202.0520 220.3463 303.6562 

 12 44.8970 89.3751 120.2982 202.0519 220.3463 303.6523 

 13 44.8970 89.3751 120.2982 202.0519 220.3463 303.6512 

 14 44.8970 89.3751 120.2982 202.0519 220.3463 303.6512 

        

 
Zhou 

(2001) 
44.8967 89.3762 120.3014 202.0662 220.4037 303.7840 

Table 1: Convergence study of the first six values of the frequency parameter Ω  of a two-span Timoshenko beam 

(
c
T → ∞  and 

12
R → ∞ ) located at / 0.4c l =  for 12 / 0.1r l = .  

Assuming a one side open crack: 

2 3 4 5 6( ) 0.6384 1.035 3.7201 5.1773 7.553 7.332 2.4909f η η η η η η η= − + − + − +  (41) 

To perform a comparison between modal frequency results from this work and the ones 
obtained by Khaji et al. (2009), the relationship between the non dimensional hinge rigidity 
and the non-dimensional crack sectional flexibility is: 

 12

1
R

θ
=   (42) 

Table 2 provides a comparison of the first four modal frequencies for a S-S, S-C and C-C 
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beam with η  equal to 0.20, 0.35, 0.50 and 0.70, 0.5c l =  for 0.25r l =  with 7.N M= =  
 
 

   Khaji et al. (2009)  This work, N=M=7 
Boundary 
conditions 

η  12
R  

1
Ω  

2
Ω  

3
Ω  

4
Ω   1

Ω  
2

Ω  
3

Ω  
4

Ω  

S-S 0.20 9.6689 8.2760 29.6610 52.1525 80.6253  8.2733 29.6509 52.1351 80.5985 

 0.35 2.9396 7.1126 29.6610 48.9134 80.6253  7.1102 29.6509 48.8969 80.5985 

 0.50 1.2380 5.7693 29.6610 46.1053 80.6253  5.7674 29.6509 46.0894 80.5985 

 0.70 0.5185 4.2726 29.6610 43.9407 80.6253  4.2711 29.6509 43.9256 80.5985 

            

S-C 0.20 9.6689 12.0286 33.0248 54.3153 81.7510  12.0246 33.0135 54.2970 81.7239 

 0.35 2.9396 11.1045 32.9459 51.0196 81.7050  11.1007 32.9348 51.0024 81.6781 

 0.50 1.2380 10.1282 32.8581 48.2051 81.6598  10.1248 32.8470 48.1887 81.6327 

 0.70 0.5185 9.1955 32.7702 46.0750 81.6194  9.1919 32.7591 46.0593 81.5924 

            

C-C 0.20 9.6689 15.8527 36.0531 56.2394 82.7987  15.8474 36.0409 56.2204 82.7713 

 0.35 2.9396 14.9282 36.0531 52.7601 82.7987  14.9231 36.0409 52.7421 82.7713 

 0.50 1.2380 13.9791 36.0531 49.8068 82.7987  13.9743 36.0409 49.7897 82.7713 

 0.70 0.5185 13.1041 36.0531 47.5784 82.7987  13.0997 36.0409 47.5622 82.7713 

                        

Table 2: Comparison study of the first four values of the frequency parameter Ω  which correspond to the crack 

model proposed by Khaji et al. (2009) and the present work results, varying 
12
R  values as a function of the crack 

depth with 7.N M= =  

4 NUMERICAL EXAMPLES 

In order to investigate the influence of stiffness of the intermediate elastic restraints on the 
free vibration characteristics of Timoshenko beams, numerical results were computed by 
using the combination of the Ritz method with the Lagrange multiplier method. A great 
number of problems were solved and, since the number of cases is extremely large, results are 
presented for only a few cases. All calculations have been performed taking N M= = 7, 
5 / 6k =  and 0.3µ =  unless otherwise specified. Mode shapes shown in the following 

tables corresponds to the bolted frequencies values indicated in each table. 
Table 3 depicts values of the fundamental frequency parameter 

1
Ω  of a Timoshenko beam 

for different values of 
12
R , 

c c
T R= =0, located at /c l =0.1, 0.3 and 0.5 for 

12 r l =0.001, 0.01 and 0.1. The results correspond to S-S, C-C, F-F, C-F, C-S and S-F 

boundary conditions. 
Table 4 depicts the value of the fundamental frequency parameter 

1
Ω  of a Timoshenko 

beam with 
c
R =0 and different values of 

c
T  and 

12
R  located at /c l =0.5 for 12 r l =0.1, 

0.3 and 0.6, for S-S, C-C and F-F boundary conditions. Modal shapes shown correspond to 

12 0.1r l =  and 
12

0R = . 
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12 r l  

  0.001 0.01 0.1 0.001 0.01 0.1 0.001 0.01 0.1 

Boundary 
conditions 12

R  0.1
c

l
=

 
0.3

c

l
=

 
0.5

c

l
=

 
S-S 0 17.8621 17.8545 17.1396 26.3351 26.3169 25.2004 39.4761 39.4510 37.0962 

 1 8.9962 8.9948 8.8644 6.3947 6.3941 6.3317 5.6796 5.6791 5.6308 

 10 9.7760 9.7744 9.6176 9.2746 9.2732 9.1353 9.0078 9.0065 8.8779 

 100 9.8602 9.8585 9.6984 9.8055 9.8039 9.6460 9.7723 9.7707 9.6141 

 1000 9.8686 9.8670 9.7066 9.8631 9.8615 9.7013 9.8597 9.8581 9.6980 

           

C-C 0 18.9073 18.8972 17.9663 20.0982 20.0865 19.0201 14.0640 14.0596 13.6391 

 1 19.6422 19.6312 18.6246 21.0117 20.9987 19.8173 16.8748 16.8678 16.2113 

 10 21.4330 21.4194 20.1814 22.0828 22.0680 20.7290 20.9977 20.9849 19.8188 

 100 22.2488 22.2337 20.1814 22.3405 22.3252 20.9450 22.2111 22.1960 20.8377 

 1000 22.3604 22.3450 20.9616 22.3698 22.3545 20.9695 22.3566 22.3413 20.9586 

           

F-F 0 26.3124 26.2932 24.7237 39.7090 39.6812 37.2193 61.6725 61.6083 56.2079 

 1 21.9475 21.9392 21.1615 14.4029 14.3985 13.9808 11.8182 11.8154 11.5448 

 10 22.3331 22.3250 21.5673 21.0996 21.0922 20.4056 19.9794 19.9729 19.3621 

 100 22.3694 22.3612 21.6045 22.2396 22.2316 21.4827 22.0961 22.0882 21.3498 

 1000 22.3730 22.3649 21.6082 22.3598 22.3517 21.5959 22.3450 22.3370 21.5822 

           

C-F 0 18.8924 18.8853 18.2209 19.1291 19.1186 18.1464 9.8696 9.8665 9.5771 

 1 19.5378 19.5299 18.7885 20.2577 20.2466 19.2208 14.2254 14.2202 13.7321 

 10 21.1604 21.1499 20.1790 21.6476 21.6357 20.5404 20.1497 20.1398 19.2178 

 100 21.9180 21.9061 20.8108 21.9907 21.9786 20.8656 21.8141 21.8023 20.7111 

 1000 22.0224 22.0103 20.8970 22.0300 22.0179 20.9027 22.0120 21.9999 20.8870 

           

C-S 0 12.1297 12.1268 11.8480 15.0959 15.0897 14.5074 9.0711 9.0688 8.8515 

 1 12.8700 12.8666 12.5364 15.2344 15.2283 14.6492 11.4895 11.4862 11.1740 

 10 14.5730 14.5679 14.0854 15.3805 15.3744 14.7979 14.5168 14.5114 14.0093 

 100 15.3080 15.3020 14.7389 15.4139 15.4078 14.8318 15.3145 15.3084 14.7414 

 1000 15.4068 15.4007 14.8261 15.4177 15.4116 14.8356 15.4076 15.4015 14.8264 

           

S-F 0 25.9582 25.9442 24.6665 38.5079 38.4833 36.2888 46.0557 46.0191 42.8134 

 1 13.2815 13.2785 12.9936 8.9482 8.9468 8.8109 8.6977 8.6962 8.5557 

 10 15.1810 15.1771 14.8074 14.1399 14.1366 13.8198 14.0154 14.0121 13.6969 

 100 15.3943 15.3903 15.0088 15.2763 15.2724 14.8973 15.2596 15.2557 14.8810 

 1000 15.4158 15.4118 15.0290 15.4038 15.3998 15.0177 15.4021 15.3981 15.0161 

           

Table 3: Values of the fundamental frequency parameter 
1

Ω  of a Timoshenko beam for different values of 
12
R , 

c c
T R= = 0  located at /c l =0.1, 0.3 and 0.5.  

Table 5 depicts the first three values of the frequency parameter Ω  of a Timoshenko beam 

with 
c
R =0 and different values of 

c
T  and 

12
R  located at / 0.5c l =  with 12 /r l =0.5 for 

S-S, C-C and F-F boundary conditions. The figures shown correspond to the first three mode 
shapes with 

c
T = 1000 and 

12
R = 0. 
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12
r

l  
 

  0.1 0.3 0.6 0.1 0.3 0.6 0.1 0.3 0.6 

Boundary 
condition

s 
12
R  100

c
T =  1000

c
T =  10000

c
T =  

S-S 0 16.1447 14.9548 11.9502 32.2988 25.3839 17.0112 36.5931 27.1249 17.5932 

 100 16.8473 15.5080 12.7744 37.0962 27.3922 17.0147 37.0962 27.3147 17.6462 

 1000 16.8602 15.5162 12.7802 37.0962 27.4332 17.0148 37.0962 27.3147 17.6462 

  
  

 

 

 

C-C 0 23.3060 19.9094 14.8909 44.9941 30.1018 17.5648 52.8442 31.6270 17.7768 

 100 25.9774 20.5242 14.8967 47.4799 31.7852 17.7990 53.7468 31.7852 17.7990 

 1000 26.0304 20.5327 14.8967 47.5536 31.7852 17.7990 53.7468 31.7852 17.7990 

  
 

   

  

    

 

    

           

F-F 0 19.0466 16.7598 12.0666 44.8242 33.0958 17.4364 54.9988 36.9666 18.2488 

 100 8.4242 7.8422 6.5132 12.6584 10.7290 7.8240 13.3122 11.1183 7.9777 

 1000 8.4757 7.8866 6.5425 12.8530 10.8555 7.8803 13.5358 11.2587 8.0378 

   
  

     

  

              

Table 4: Values of the fundamental frequency parameter 
1

Ω  of a uniform Timoshenko beam with 
c
R =0 and 

different values of 
c
T  and 

12
R  located at /c l = 0.5 for 12 r l =0.1, 0.3 and 0.6, for S-S, C-C and F-F 

boundary conditions. The modal shapes correspond to 12 r l =0.1 and 
12
R = 0. 

Table 6 depicts the first three values of the fundamental frequency parameter Ω  of an 

uniform Timoshenko beam with 
12c c

T R R= = = 0 at different locations for 12 /r l =  0.001 

for F-F, S-S, C-C, S-F, and C-F boundary conditions and N M= = 12. The mode shapes 
which correspond to a hinge located at c l = 0.5 are also presented. 
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0.5; 12 0.5
c r

l l
= =  

Boundary 
condition

s 
12
R  100

c
T =  1000

c
T =  10000

c
T =  

  1
Ω  

2
Ω  

3
Ω  

1
Ω  

2
Ω  

3
Ω  

1
Ω  

2
Ω  

3
Ω  

S-S 0 13.0863 20.1495 24.2519 19.3340 20.1495 26.4141 20.0728 20.1495 27.0917 

 100 13.6916 20.1495 27.1746 19.6723 20.1495 27.1746 20.1495 20.8384 27.1746 

 
100

0 13.6975 20.1495 27.1746 19.6753 20.1495 27.1746 20.1495 20.8451 27.1746 

  
  

  

 

           

C-C 0 16.4047 20.9842 25.8990 20.5666 20.9842 33.5814 20.9448 20.9842 35.7162 

 100 16.4239 20.9842 35.4292 20.9842 22.4179 35.9556 20.9842 23.5489 35.9556 

 

100
0 16.4241 20.9842 35.5288 20.9842 22.4393 35.9556 20.9842 23.5816 35.9556 

  
 

    

     

  

 

   

 

F-F 0 13.6452 23.5509 34.4165 21.9081 23.5509 34.5278 23.3820 23.5509 34.5427 

 100 6.9676 17.3298 23.5509 8.6778 22.7043 23.5509 8.8852 23.5509 23.8724 

 

100
0 7.0018 17.3904 23.5509 8.7513 22.7166 23.5509 8.9645 23.5509 23.8797 

  
  

  

 

Table 5. – First three values frequencies parameter of a uniform Timoshenko beam with 
c
R =0 and different 

values of 
c
T  and 

12
R  located at /c l = 0.5 with 12 /r l =0.5 for S-S, C-C and F-F boundary conditions. 

Modal shapes shown correspond to 
c
T = 1000 and 

12
R = 0. 

5 CONCLUSIONS 

The free transverse vibration of a Timoshenko beam with ends elastically restrained against 
rotation and translation, and an arbitrarily located internal hinge including intermediate elastic 
constraints is studied. For this purpose, a simple and accurate approach has been developed 
based on a combination of the Ritz method and the Lagrange multiplier method for the 
determination of natural frequencies. The algorithm is very general and it is characterized by a 
low computational cost and high accuracy. Close agreement with results presented by 
previous investigators is demonstrated for some examples and for a crack model. 

These results obtained may provide useful information for structural designers and 
engineers. The algorithms developed can be easily extended to a beam with an arbitrary 
number of hinges and intermediate points elastically restrained. 
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Boundary 
conditions 

c l  
1

Ω  Mode shape 2
Ω  Mode shape 3

Ω  Mode shape 

F-F 0.5 61.6728 89.4931 199.8594 

 0.4 51.1142 112.5862 162.1347 

 0.3 39.7090 

 

110.8393 

 

194.1497 

 

 0.2 31.8087  88.7651  175.1775  

 0.1 26.3124  72.7993  143.1623  

        

S-S 0.5 39.4784 61.6728 157.9137 

 0.4 33.4385 76.8753 127.9821 

 0.3 26.3352 

 

86.0614 

 

138.7773 

 

 0.2 21.3289  70.4180  147.9077  

 0.1 17.8622  58.2367  122.1138  

        
C-C 0.5 14.0641 61.6728 88.1380 

 0.4 15.6294 51.5618 111.5344 

 0.3 20.0983 

 

43.3521 

 

111.8010 

 

 0.2 22.1521  52.2125  94.8284  

 0.1 18.9074  60.1749  120.7269  

        

S-F 0.9 18.1166  58.9283  123.3481  

 0.8 21.8457  71.7316  150.8768  

 0.7 27.1872  89.8417  178.0350  

 0.6 35.0781  103.3874  139.2128  

 0.5 46.0561 79.6851 171.3698 

 0.4 47.8922 81.9546 155.4564 

 0.3 38.5079 

 

104.0083 

 

147.0098 

 

 0.2 31.1090  87.1791  171.3272  

 0.1 25.9581  71.9805  141.7791  

        

C-F 0.9 4.1174  25.9183  72.8272  

 0.8 4.9107  31.3479  88.7963  

 0.7 5.9945  39.1706  110.8688  

 0.6 7.5413  50.5287  112.5308  

 0.5 9.8696 61.6728 88.8264 

 0.4 13.5648 52.1706 111.5896  

 0.3 19.1292  43.8673  111.7699  

 0.2 21.9266  52.3588  94.7969  

 0.1 18.8923  60.1824  120.7251  

        

Table 6. First three values of the frequencies parameter Ω  of a uniform Timoshenko beam with 

12c c
T R R= = = 0 at different locations, for 12 /r l =  0.001 with different boundary conditions. The 

mode shapes shown correspond to c l = 0.5. 
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NOTATION 

A  cross-sectional area  
/

l
c c l=         geometrical parameter 

E               Young’s modulus 
G          transverse shear modulus  
I            moment of inertia  
l  length of  the beam. 
h  beam depth. 
a  crack depth. 
η  crack depth ratio 
θ  non-dimensional crack sectional flexibility 

/r I A=         radius of gyration of cross section 

1 2
,r r           rotational stiffness at the left and right ends respectively 

12
r               rotational stiffness at the internal hinge 

c
r  rotational stiffness at the point .x c=  

12
, , , 1,2
c i
R R R i =  dimensionless rotational parameters. 

t  time.  

1 2
,t t  translational stiffness at the left and right ends respectively. 

c
t  translational stiffness at the point .x c=  

T  kinetic energy. 
, , 1,2
c i
T T i =    dimensionless translational parameters. 

U           strain energy. 
x                   dimensionless abscissa. 
x                     abscissa. 

2 /l A EIω ρΩ =  dimensionless natural frequency parameter. 

ω  radian frequency. 
ρ    mass density. 
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APPENDIX 

First members of the set of polynomials { }( )( )k

i
p x  and { }( )( )k

j
q x  for all possible 

combinations of classical boundary conditions and with intermediate elastic restraints.  
 
Classical boundary conditions and intermediate 

elastic restraints hinge at 
l

x c= . 
(1)

1
p  (1)

1
q  (2)

1
p  (2)

1
q  

S-S 1  x  1  1x −  

S-F 1  x  1  1  

F-F 1  1  1  1  

C-C x  x  1x −  1x −  

C-S x  x  1  1x −  

C-F x  x  1  1  

Classical boundary conditions with intermediate point 

support at 
l

x c= . 
(1)

1
p  (1)

1
q  (2)

1
p  (2)

1
q  

S-S 1  l
x c−  1  ( )( )1

l
x x c− −  

S-F 1  l
x c−  1  l

x c−  

F-F 1  l
x c−  1  l

x c−  

C-C x  ( )lx x c−  1x −  ( )( )1
l

x x c− −  

C-S x  ( )lx x c−  1  1x −  

C-F x  ( )lx x c−  1  1  
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