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Abstract.  The scattering source iterative (SI) scheme is traditionally applied to 

converge fine-mesh numerical solutions to fixed-source one-speed discrete ordinates 

(SN) neutron transport problems.  The SI scheme is very simple to implement under a 

computational viewpoint.  However, the SI scheme may show very slow convergence 

rate, mainly for diffusive slabs (low absorption) with several mean free paths in extent.  

In this work we describe an acceleration technique based on an improved initial 

guess for the scattering source distribution within the slab.  In other words, we use as 

initial guess for the fine-mesh scattering source, the coarse-mesh solution of the 

neutron diffusion equation with special boundary conditions to account for the 

classical SN prescribed boundary conditions, including vacuum boundary conditions.  

Therefore, we first implement a spectral nodal method that generates coarse-mesh 

diffusion solution that is completely free from spatial truncation errors, then we 

reconstruct this coarse-mesh solution within each spatial cell of the discretization 

grid, to further yield the initial guess for the fine-mesh scattering source to begin the 

SN  transport sweep (forward and backward) across the spatial grid.  We consider a 

number of numerical experiments to illustrate the efficiency of the offered 

acceleration technique. 
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1 INTRODUCTION 

The transport phenomena in which the rarefied neutral particles, such as neutrons 

or photons, interact directly with the dense atoms of the background material, but 

not with each other, are mathematically described by an integro-differential equation, 

known as linearized Boltzmann equation [1].  Deterministic computational modeling 

of particle transport classically leads to the discretization of the linearized Boltzmann 

equation into a system of linear algebraic equations.  Since this system has typically 

large size, iterative schemes are usually chosen, instead of direct solution methods.  

To introduce the mathematical basis, let us consider a steady-state, one-speed, 

isotropically-scattering, fixed-source neutron transport problem in slab geometry 
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subjet to the boundary conditions 
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 (2) 

and 

 
    .01,,   gX

 (3) 

This notation is standard [1], i.e., x = position;  = cos ;  = angle of flight relative to 

positive x -axis;  xT  and  xS  are respectively total and scattering macroscopic 

cross sections;  xQ  is the fixed isotropic source;  f  and  g  are respectively 

prescribed incident angular flux on the left and right boundaries of problem (1)-(3). 

At this point, to simplify notations, we write Eq.(1) in the form 

 
 ,xQSL  

 (4) 

where we have defined the migration-plus-collision operator 
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and the scattering operator 
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The most basic transport iteration scheme is source iteration (SI), which is defined 

as 

 

      ,0,
1


 

xQSL 
 (7) 

where 
 


0

 is initialized by the user [2].  The SI algorithm has the following steps: (i) 
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one introduces an estimate for the scalar flux 
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1

'',  dxx
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in the right-hand side of Eq.(1); (ii) using this estimate, Eq.(1)-(3) are solved for  ; (iii) 

this estimate for   so obtained is introduced into Eq.(8) to obtain the new estimate 

for  .  This iterative scheme is repeated until a preassigned convergence criterion is 

satisfied.  At this point we remark that if the initial guess for the scalar flux 
 

0
0
  

and the  -th estimate of the angular flux is defined as 
 




, then for 1 , we 

conclude that 
   ,x


 is the angular flux due to particles that have scattered at most 

1  times.  Therefore, for slabs composed of optically thick (low leakage) and 

scattering-dominated spatial regions, particles in these spatial regions typically 

undergo many collisions before they are captured or leak out.  For such systems, the 

SI scheme converges slowly and efficient acceleration strategies are of great interest 

for computational modeling [2]. 

It is well know that synthetic acceleration techniques are very efficient.  The 

concept of a synthetic acceleration scheme was introduced by Kopp [3], who used the 

diffusion equation [4] as the low-order operator to accelerate transport iterations.  

Reed [5] showed that diffusion synthetic method is rapidly convergent for fine spatial 

grids, but it diverges for coarser grids.  Alcouffe [6] proposed a remedy for the 

divergence described by Reed, introducing the efficient diffusion synthetic 

acceleration (DSA), which is rapidly convergent for all spatial mesh thicknesses. 

In this paper, we describe an acceleration scheme based on an improved initial 

guess for the scattering source distribution within the slab.  In other words, we use as 

initial guess for the fine-mesh scattering source, the coarse-mesh solution of the 

neutron diffusion equation with special boundary conditions to account for the 

classical prescribed boundary conditions in the discrete ordinates (SN) formulation of 

neutron transport equation [1].  Therefore, we first implement a spectral nodal 

method that generates coarse-mesh diffusion solution that is completely free from 

spatial truncation errors, then we reconstruct this coarse-mesh solution within each 

spatial cell of the discretization grid, to further yield the initial guess for the fine-mesh 

scattering source in the first SN transport sweep ( 0m
 and 0m

, Nm :1 ) across 

the spatial grid. 

Now we give an outline of the remainder of this paper.  In the next section we 

describe the SN formulation of neutron transport equation in slab geometry and a 

classical fine-mesh method for numerically solving the SN equations.  In section 3, we 

present the neutron diffusion equation in slab geometry, the approximate boundary 

conditions to account for the prescribed boundary conditions traditionally used in SN 

problems, the diffusion spectral nodal method and the within-node reconstruction 

scheme.  In section 4 we consider a number of numerical experiments to illustrate the 
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efficiency of the offered coarse-mesh diffusion synthetic acceleration scheme and a 

brief discussion is given in section 5. 

2 THE DISCRETE ORDINATES MODEL 

2.1 The SN equation 

The discrete ordinates (SN) approximation to the transport equation (1) discretizes 

the angular variable   into N  discrete values and, as a result, the integral source 

term in Eq. (1) is approximated by a quadrature formula.  In slab geometry, Gauss-

Legendre angular quadrature sets [1] are traditionally used, but other angular 

quadratures can also be considered for the approximation [7].  Therefore, the steady-

state, one-speed, isotropically-scattering, fixed source SN equations in slab geometry 

appear as 
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with the boundary conditions 

 
  0,0   mmm f

 (10) 

and 

 
  .0,   mmm gX

 (11) 

Here, in accordance with Eqs. (1)-(3), we have defined     mm
xx , ,  mm

ff  , 

 mm
gg   and n  as the quadrature weights, Nn :1 . 

2.2 The fine-mesh linear diamond method 

Let us consider a discretization spatial grid set up on a given slab of thickness X  

as illustrated in Figure 1.  On this spatial grid, each discretization cell  j , Jj :1 , has 

thickness h j , constant cross sections  Tj  and  Sj and constant source Q j
. 

 

Figure 1: Spatial Discretization Grid 
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to Eq.(9).  The result is the standard spatially discretized SN  balance equations 
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Equations (12) yield JN  equations that together with the boundary and the 

continuity conditions lead to a system of NJ2  algebraic equations in NJ3  unknowns; 

therefore we need NJ  auxiliary equations to guarantee the uniqueness of the 

solution.  The linear diamond auxiliary equations [1] are 
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The linear diamond method is equivalent to the classic implicit trapezoidal method 

for initial value problems [8].  In Eqs. (12) and (13) we have defined the cell-average 

angular flux 
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and for the cell-average scalar flux, cf. Eq. (8), we approximate 
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Furthermore, by using approximation (15) in the scattering source and substituting 

the auxiliary equation (13) into the collision removal term of Eq. (12), we obtain the 

result 
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For an initial guess for  j
, usually 0 j

, Jj :1 , Eq. (16) is used to sweep from left 

to right )0( m
 and from right to left )0( m

 to estimate the cell-edge angular 

fluxes.  Then, we use Eqs. (13) and (15) to update the scattering source, before we 

proceed to the sweeps again, until a preassigned convergence criterion is satisfied.  

As we have described in section 1, this iterative scheme is referred to as the SI 

scheme; that can be very slow for scattering dominated slabs with many mean free 
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paths in extent. 

In the next section, we describe an efficient procedure to improve the initial guess 

for the cell-average scalar flux  j
, Jj :1 , in the scattering source term of Eq. (16). 

3 THE COARSE-MESH DIFFUSION SYNTHETIC ACCELERATION 

3.1 The neutron diffusion equation 

To derive neutron diffusion equation in slab geometry, we use definition (8) in Eq. 

(1), then we integrate the resulting transport equation in all directions of flight.  The 

procedure leads to the continuity equation 

 
        ,2 xQxxxJ

dx

d
a  

 (17) 

where we have defined 

  xJ total current  


1

1

'',  dx  (18a) 

  xa absorption macroscopic cross section     .xx ST    (18b) 

Moreover, we consider the Fick’s law approximation 

 
      ,x

dx

d
xDxJ 

 (19a) 

where the diffusion coefficient is defined as 
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 (19b) 

Fick’s law (19a-b), the essence of neutron diffusion approximation, implies that 

particles migrate from regions of high concentration to regions of low concentration.  

Therefore, by substituting Eq. (19a) into Eq. (17), we obtain the steady-state, one 

speed, isotropically-scattering fixed source neutron diffusion equation in slab 

geometry 

 
          .2 xQxxx

dx

d
xD

dx

d
a  

 (20) 

The approximate boundary conditions to account for the prescribed boundary 

conditions given in Eq. (2)-(3) are described in the next section. 

3.2 The S 2  boundary conditions 

Let us consider the expansion of the angular flux in Legendre polynomials in the 

angular variable   
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The P1-approximation [1] considers L=1,    xx  
0

 [Eq. (8)],    xJx 1
 [Eq. (18a)] 

in Eq. (21) and the result is 
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For isotropic incoming angular fluxes at 0x  and Xx  , Eq. (22) approximates Eqs. 

(2) and (3) by 
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Using Gauss-Legendre S 2  angular quadrature set, we have 
3

3
1
  and 

3

3
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 ; 

therefore we obtain 
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for the left-hand side boundary )0( x  and 
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for the right-hand side boundary )( Xx  , where f  and g  are the prescribed 

isotropic incident angular flux at 0x  and Xx  , respectively.  If vacuum boundary 

conditions apply at 0x  and/or Xx  , then we set 0f  and/or 0g  in Eqs. (24a-

b). 

3.3 The diffusion spectral nodal method 

Let us consider a coarse-mesh spatial grid set up on a slab of thickness X , as 

shown in Figure 1.  Now we write the continuity equation (17) and Fick’s law (19a) for 

an arbitrary spatial discretization node  j , to which we apply the operator 
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The results are the discretized equations 
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Here we have defined the node-average quantities 
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and the constant nodal parameters 

  aj macroscopic absorption cross section, ;:1 Jj   

 D j diffusion coefficient, ;:1 Jj   

 Q j
interior isotropic fixed source, .:1 Jj   

Now we seek for general analytic solution for  jx  of the form 
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By substituting Eqs. (28) and (29) into Eqs. (17) and (19a), we obtain 
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Here we obtain particular solutions given by 0J
P
j  and  ajj

P

j Q , Jj :1 , and for 

non-trivial solutions we must have 

 
. ajjD
 (31) 

Moreover, by choosing   1a , we obtain    ajjDb  .  Therefore, the within node 

general solutions (28) and (29) appear as 
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where we have defined the diffusion length 
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The diffusion spectral nodal method is a convergent numerical method whose 

solution satisfies the boundary conditions (24a-b), is continuous across the node 

edges and preserves the general solutions given by Eqs. (32a-c); therefore this 

numerical method is absolutely free from spatial truncation errors in the sense that 

the numerical solution coincides with the analytical solution of the diffusion problem 

on the  discretization grid points, regardless of the node widths set up on the 

domain, but apart from computational finite arithmetic considerations.  Therefore, we 

consider the auxiliary equations 
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Using definition (27) and Eqs. (32a-c) in Eqs. (33) and (34), we obtain 
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Now we substitute Eq. (33) into Eq. (25) and Eq. (34) into Eq. (26).  We solve the 

resulting equations for J j
2
1  and J j

2
1 , substitute j  in the latter expression for 1j  

and apply current continuity condition at x j
2
1 .  The result is the three point equation 

 

 .1:2

224

444

1

11111

11

1

111

11

1

2
3

2
1

2
1








































































Jj

Q
h

Q
hh

h

D

hh

h

D

h

Dh

h

D

j

jj

j

jj

j

jajj

jj

j

j

jajjjajj

jj

j

jj

j

j

jajj

jj

j


















 (36) 

Furthermore, we set 1j  in the expression that we obtained for J j
2
1  and use the 

boundary condition at 0x  (24a), that is 
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Mecánica Computacional Vol XXIX, págs. 2549-2561 (2010) 2557

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



The result is the difference equation 
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Similarly, we set Jj   in the expression that we obtained for J j
2
1  and use the 

boundary condition at Xx  (24b), i.e.,  
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The result is 
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Equations (38), (36) for  1:2  Jj  and (40) form a symmetric tridiagonal system of 

1J  algebraic equations in 1J  unknowns 
2

1 , 
2

3 , 
2

5 , …, 
2

1J
, which are the 

neutron scalar fluxes.  We remark that these numerical values, as generated by the 

present spectral nodal method, are completely free from spatial truncation errors. 

3.4 The nodal reconstruction scheme 

Since the spectral nodal method generates numerical solutions for neutron 

diffusion problems in slab geometry that are free from spatial truncation errors, we 

can use the node-edge scalar fluxes and solve for the constants   , 2:1 , in the 

expression for the general solution 
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By determining the constants   , 2:1 , we can reconstruct the within-node 

solution for each discretization node  j , Jj :1 .  Moreover, we can determine the 

fine-mesh average scalar fluxes  
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 (42) 

that we use as initial guess in Eq. (16) for the source iteration scheme.  Therefore, the 

present coarse-mesh DSA strategy uses improved initial guess for the isotropic 

scattering source as generated by the diffusion equation with S 2  boundary 

conditions as described in section 3.2. 
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4 NUMERICAL RESULTS 

Let us consider a homogeneous slab of thickness 100 cm, with macroscopic total 

cross section  T =1.0 cm
1  and macroscopic scattering cross section  S =0.995 cm

1 .  

Unit incident neutron fluxes shine at x = 0 and x = 100 cm, i.e., f = g = 1 in Eqs. (10) 

and (11) with Gauss-Legendre S16 angular quadrature set.  To solve this problem, we 

used the linear diamond method on a fine spatial grid composed of 2000 nodes and 

a convergence criterion requiring that the discrete maximum norm of the relative 

deviation between two consecutive estimates of the node-edge scalar flux does not 

exceed 10-6.  The number of iterations to convergence required by the non-

accelerated SI scheme is 2158.  Using the present coarse-mesh DSA scheme, the 

number of iterations reduced to 1349.  That is, the number of iterations to 

convergence has been reduced of 37.5%.  Our second numerical experiment consists 

of shortening the slab thickness of this model problem as Xn = 100 – 10n, n = 0 : 5.  

The results are displayed in Table 1. 

 

Slab 

thickness 

(cm) 

Non-accelerated SI 

scheme 

Coarse-mesh DSA 

scheme 

Relative 

efficiency 

100 2158a  (8.74seconds)b 1349a  (5.57seconds)b 
37.5%c  

(36.3%)d 

90 2056a  (8.37seconds)b 1265a  (5.15seconds)b 
38.5%c  

(38.5%)d 

80 1949a (8.10seconds)b 1179a  (4.65seconds)b 
39.5%c  

(42.6%)d 

70 1837a  (7.14seconds)b 1091a  (4.54seconds)b 
40.6%c  

(36.4%)d 

60 1713a  (7.10seconds)b 1000a  (4.00seconds)b 
41.6%c  

(43.7%)d 

50 1571a  (6.58seconds)b 902a  (3.80seconds)b 
42.6%c  

(42.2%)d 

a. number of iterations to convergence; b. CPU time to convergence; c. reduction of the number of 

iterations;    d. reduction of CPU time 

Table 1: Gauss-Legendre S16 homogeneous model problem. 

In accordance with Table 1, as the slab shortens from 100 cm to 50 cm, the present 
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coarse-mesh DSA scheme becomes more and more efficient since the numbers of 

iterations to convergence to the same numerical results are reduced from 37.5% (100 

cm) to 42.6% (50 cm).  This good feature leads to shorter and shorter CPU execution 

time for each  run, as it is also displayed in Table 1.  The gain in CPU time for 

convergence of these numerical experiments turned out to be greater than 35% for 

all the cases we considered. 

5 DISCUSSION 

Based on the numerical results presented in the previous section, we list a number 

of general conclusions: 

 the coarse-mesh DSA strategy is very efficient, as it accelerates the SI scheme 

by reducing the number of iterations to convergence in more than 35% for the 

numerical experiments considered in the previous section; 

 the coarse-mesh DSA strategy, as described in this paper, shortened the CPU 

execution time in approximately 35% also.  Although the running time is very 

short, even for the non accelerated schemes (less than 10 seconds), it is good 

to see that the present coarse-mesh DSA converged the solution to the same 

results 35% faster.  We believe that the present strategy will show its potential 

significant efficiency in multidimensional SN calculations; 

 for acceleration efficiency, it is important to use accurate boundary conditions 

in the diffusion equation to account for the prescribed incident flux SN 

boundary conditions. 

As future work, we intend to apply the present coarse-mesh DSA strategy to 

accelerate linearly anisotropic scattering and multigroup problems to account for the 

neutron energy change in scattering events. 
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