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Abstract. Today, reduction of sound emission plays a vital role while designing objéeny kind.
Desirable aspects might include decreased radiation in certain directisostofin object. This work
shows an approach to iteratively compute the shape of an obstacle whiistofest to prescribed design
variables using the framework provided by the topological derivatigethe boundary element method
(BEM).

At the beginning of the process a design space is defined in which in iesttips the shape will be
developed. A regular array of points is set over the entire design spaeeobjective function is given
by a set of prescribed pressure values for the scatter pattern otesacand this design space.

The object, which acts as a scatterer, is considered acoustically rigidh@ibe of the object builds up
cumulatively, adding in each iterative step a rigid inclusion at the position thabgological derivative
identifies as the most effective to achieve the prescribed design valwegrdcedure is repeated until a
given stopping criteria is satisfied. The proposed method requires theutatiop of a forward problem
and an adjoint problem for each step. The first is solved using a sthB&vl for 2D acoustics, while
the latter is solved backwards using the prescribed pressure valusssEntion of the rigid inclusions
in each step is done by removing points from the design space. The BEM gemleetry is updated
automatically using a weighted Delaunay triangularization algorithm capabéextthg ‘holes’ at those
positions where the points have been eliminated.

The capabilities of the proposed strategy are demonstrated by solving gamples.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar


http://www.intema.gov.ar
http://www.infam.bau.tu-bs.de

2582 A. SISAMON, S. BECK, A. CISILINO, S. LANGER

1 INTRODUCTION

Apart from functionality, the aspects of comfort have beeoimcreasingly important for
users of almost any kind of product. As a result, today deprgeesses take into account the
acoustic properties of an object, i. e. its acoustic ragiatiEspecially for the case of objects
acting as sound barrier it is desirable to minimize the taahian certain directions.

The classical problem in acoustic design consists in fintliegoptimum geometric config-
uration of an object (say a sound barrier) to satisfy a givesigh objective for its radiation
performance. A usual approach to tackle this problem is byma@f shape optimization tools
which consist in finding the optimal geometry within a clad@mains having the same topol-
ogy as the initial design, i.e., no holes are introduced éndptimization domainKeijoo et al.
(2004); Divo et al. (2003). However, the most general approach is topological apétion
tools, which allow not only changing the shape of the objextits topology via the creation
of internal holes. Topological optimization tools are dalpao deliver optimal designs with a
priori poor information on the optimal shape of the body.

Among the available topology optimization tools (see foample Bendsoe and Sigmund
(2002) the topological derivative is used in this work. The tamptal derivative was firstly
introduced byCeé et al(1974) by combining a fixed point method with the natural extengibn
the classical shape gradient. The basic idea behind théotgipal derivative is the evaluation
of cost function sensitivity to the creation of a hole. Insthvay, wherever this sensitivity
is low enough (or high enough depending on the nature of tbbl@m) the material can be
progressively eliminated. More recentpvotny et al (2003 introduced a novel procedure for
the computation of the topological derivative for potehéikasticity problems. That approach
was implemented within the boundary element method (BEMhé&w&ork for two-dimensional
potential problems b¢isilino (2006 and for two and three dimensional elasticity problems by
Carretero Neches and Cisilifd008 andBertsch et al(2010), respectively.

In acousticsFeijoo (2004 proposed a method for imaging ‘hidden’ objects inversédyin-
verse scattering analysis using the topological derieaproach. In that case the cost function
is the difference between a prescribed scattering pattetihee one measured when illuminat-
ing the hidden object by a planar wave travelling in a givaeation. Starting from an empty
optimization domain, the topological derivative indicatee positions where to place rigid in-
clusions to produce a scattered field which will convergdeogrescribed one.

Due to the inherent characteristics of its formulation,B&M is a particularly effective tool
to cover acoustic problems, e. Wrobel and Aliabad{2002. Within the BEM context, this
work presents a method which extends the topological damé/@roposed byFeijéo (2004
to iteratively optimize the geometrical configuration oéexistent objects in order to fulfill an
arbitrary objective on its scatter pattern. The focus of Whork is strictly two-dimensional.

The following section will introduce the forward and the émse problem, followed by an
explanation of the topological derivative approach. Theniterative process introduced is this
work is described. A number of examples will be given to wetife method and to show some
applications. An outlook is provided in the concluding reksa

2 THE FORWARD AND THE INVERSE SCATTERING PROBLEMS

Following Feij6o (20049, the setting of the problem is depicted in Figurewhere(? is
a homogeneous medium with scattés with boundaryl’y. The boundaryl’, is where the
measurements of the scattering pattern are obtained asdusmad to be a circle of radiug,
that encloses all the scatterers.
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Figure 1: The inverse scattering problem accordingeg6o (2004

The so-calledorward problemdescribes the interaction between the medium, scattamndrs a
the incident plane sound pressure wayg(x) = e**4 with propagation directiod and wave
numbers = w/c (the relation of the angular frequeneyto the speed of soung governed by
the Helmholtz equation as follows

V2p(x) + k?p(x) =0 in Q=R \ (1)
Vp(x)-n=0 on I 2
lim N (% — iﬁ;ps> =0, (3)

wherep is the total wavefield given by the addition of the incidend anattered pressure fields
P = DPine + Ds,» @andi is the imaginary unit. Equatior) is the sound-hard boundary condition
which means that scatterers are modeled as rigid objectsatigg @) is the Sommerfeld con-
dition which is valid for the scattered part of the wavefiehdl amplies that only outgoing waves
are allowed at infinity. It is assumed that there is no attéonan the medium, s&(x) = 0.

At I', measurements gfare obtained for different directiork of the incident wave, which
will be denoted a%,,(d;) (in the following developmentd; will be dropped to simplify the
notation). The objective of thimverse problems to determine the shape of the scattefeyss
such thatp|r, = p,,. This last condition is enforced via a least-squares-typetion of the
form:

find (2 such that

N

2 = arg min(€Q) (4)
where

J©@) =5 [ Ip=pafdr ©
I
wherep is the solution of Eq.X)—(3). Thus, the inverse problem is now written in the form of a
constrained optimization problem withas the design variable and the forward problem in Eq.
(1)—(3) as a constraint on the admissible scalar field
The strategy to solve the above problem starts from a donhaincontains no scatterers.
Then, the functional in Eq.5] is changed to account for the modification of the domain by
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Figure 2: Strategy for the solution of the inverse problem

introducing a small circular hole3.(x), centered ak and of radiuss. The new domain is
denoted byf). = O\ B.(x) (see Figure).

Denoting byf(e) the negative value of the ‘size’ of the hal, the new expression of the
functional in Eq. 4) can be stated as follows:

J(e) = J(Q) + f(e) Dr(x) + O (f(¢)) , (6)

whereDr(x) is the topological derivative which measures the rate ohghaof the functional
value with respect to the size of the scatteBe(x). The termO (f(¢)) is the remainder and
satisfies

L O((E)
=0 1)

The scalar fieldDr(x) can be constructed by moving the poinfn R?. Then the recon-
struction technique can be motivated as follows: if it isessary to choose where many small
scatterers are to be placed in order to minimize the valug@j (and as a consequence recreate
the shape of the scatterer by obtaining the scatteringrpattat is close t@,,), they should be
placed wheré) attains the highest values.

= 0. )

3 THE TOPOLOGICAL DERIVATIVE

The topological derivativeDr(x) measures the sensitivity of a shape functional when an
infinitesimal ‘hole’ is subtracted from the domain. This efided through the following limit:

Dy (x) = lli% w (8)

where f(¢) is a monotonically decreasing negative function such lihat ., f(¢) = 0. The
selection off (¢), which corresponds to the size of the ‘hole’ but not necdgsarits measure
in R?, is a non-trivial. Thef(¢) depends on the boundary condition specified on the surface
d B, of the scatterer and it must satisfy< |Dr(x)| < oo.

The direct application and implementation of the concedn @) is not straightforward,
as it is not possible to establish a homeomorphism betwesraths with different topologies
(domains with and without the hole). A method for solving fineblem using this approach for
elasticity can be found iarreau et al(2001).
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Many authors, and in particul&eij6oo (2004 for the case of acoustic problems, proposed an
alternative definition of thé that overcomes the above difficulties. They propose asaiimg
the creation of a hole to the perturbation of a pre-existiolg livhose radius tends to zero (see
Figure 3). Therefore, both topologies of the optimization domaia aow similar and it is
possible to establish a homeomorphism between them. Agptd this new definition, the
expression for thé is

J(Qg—|—5€) — J<Q€)
Dr(x) = ;;0 fle+0e) — f(e)

where J(Q2.) and J(2..s.) are the cost functions evaluated for the reference and rpedu
domain¢ is the initial radius of the hole¢ is a small perturbation of the hole radius ahts a
regularization function. The functiofiis problem dependent arfdc) — 0 whene — 0.

It could be argued that the new definition of the in Eq. (9) merely provides the sensitivity
of the problem when the size of the hole is perturbed and netwitis effectively created (as
it is the case in the original definition of the topologicalidative). However, it is understood
that to expand a hole of radius whene — 0, is nothing more than creating it (a complete
mathematical proof that establishes the relation betwedh @efinitions of theDr is given
in Novotny et al.(2003). Moreover, the relationship between the two definitionastitutes
the formal relation between thB and the shape sensitivity analysis. The advantage of the
novel definition for the topological derivative given by E®) is that the whole mathematical
framework developed for the shape sensitivity analysismambe used to compute thie;.

(9)

€+ de

n

a—&—ée
X X Wi

(@) J(Q (0) J(Qeqse)

Figure 3: Definition of the topological derivative using teape sensitivity analysis approach

Among the available shape sensitivity analysis resulesdifierentiation of the shape deriva-
tive for acoustic problems presented bgijoo et al.(2001, 2004 is of particular interest here.
Given a shape functional(f2), the shape derivativ®.J(2) - V in the direction given by the
vector fieldV () is defined as follows:

DIO) -V = LT (6.(2) L, (10

where¢. is the mappings.(x) = = + ¢V (x) between the reference and perturbed domains.
The computation of the shape derivative in EgO)(for the functional/(2) in Eg. () for the
case in which the directioN (x) is that of the normal vectati(z) (see Figure3) results in (a
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detailed derivation of this result is Feijoo et al.(2004):

DJ(Q)-V=%R { / (VA-Vp — &*Ap) v,dTl| (11)
wherep is the solution of the forward problem in Eql1)£(3) and X is the solution of the
following adjoint problem (the overbar symbol indicatirigetconjugate complex):

VAN (%) + K2A(X) = (p — pm)(X)p, In Q (12)
VA-n=0 on [ (13)
TILI?O NG (2—2 + im\) =0. (14)

In Eq. (12), Jr, is the Dirac delta-function defined on the sampling surfacdt should be
noted that the adjoint field corresponds to the backpropagation (note the plus sign.if12}
and compare with Eq.3]) of the mismatch between the solution given by the forwaotieh
and the measured signaturd-at

The topological derivative can be computed now by combitiiegresults in Eq.9) and Eq.
(11). Having in mind that the boundary condition 0. is the one of a rigid object (see Eq.
(2)), it results

R [ / (VA - Vp. — K*Ap.) dOB: |, (15)
0B¢

wherep. and )\, are solutions of the forward and adjoint problems posedeanctinfiguration

Q. = Q\ B.(x). An asymptotic analysis of these solutions and their gradiato B. reveals that

these terms are @(1) ass — 0 (seeFeij60(2004). Therefore, to satisf) < |Dr(x)| < oo

it is required thatf’(¢) = —2me, which implies thatf (¢) = —we?. The final expression for the
topological derivative is then

Dr(x) = R [2VA(x) - Vp(x) — £°A(x)p(x)] , (16)

wherep and )\ are solutions of the forward and adjoint problenf®ijéo (2004 applied this
formulation to an empty domain which contains no scattederfis case the forward problem
consists of a plane wave propagating undisturbed througtaimain( while the adjoint prob-
lem is solved analytically. A BEM implementation for this Kiof analysis was presented in a
previous work by the author€(silino et al.(2009).

In this work, the scope of the topological derivative is exted to optimization domains
containing an initial scattering objef},. To this end, it is necessary to acquire the necessary
solutions for the forward and adjoint problems necessaryhi® computation o) according
to Egq. (L6). These solutions are computed using the BEM. The detailgiges in the next
section.

4 THE BOUNDARY ELEMENT IMPLEMENTATION FOR ACOUSTICS

In this work, the direct BEM formulation in the frequency ddm applied. The problem is
governed by the Helmholtz-Equation (Ed.7)) describing the (acoustic) pressure distribution
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in a nonviscous compressible fluid. For sound propagati@ninnbounded domain Sommer-
feld’s radiation condition (Eq.18)) must be fulfilled additionally. This condition specifid¢mt
waves in an unbounded domain only travel into infinity. TRis i

V2p(x) + #7p(x) = b(x) (17)

lim /7 (@ — i/{p) =0 (18)
r—00 on
wherep is the acoustic pressure (the harmonic extentishbeing omitted)) defines a source
distribution; the sound flukp/on is the partial derivative of pressure in normal directiod an
the distance from the radiating surface.

To apply the BEM for a certain problem two prerequisites havee fulfilled: the domain is
homogeneous and the fundamental solution is known.

The fundamental solution describes the reactions in anwmdexd domain caused by a point
source with the intensity of 1 at poigt The fundamental solution needs to fulfill the inhomo-
geneous differential equation

VI (x,€) + K77 (x,€) = —d(x — §) (19)

with 6(x — &) being the Dirac delta function.

The fundamental solutiop* and its derivativedp*/on = ¢* (denoting the sound flux) are
given in 2D by

i

pr(x, &) = 4Hél)(/<;r) with 7 :=|x — ¢ | (20)

K or
and ¢'(x.§) = H{"(sr) 5 -

The boundary integral equation (BIE) is derived by applyimginethod of weighted residua
to Eq. (L7), using the fundamental solution as test function, apply@reen’s second identity
and the filter function of the Dirac delta function. Then, nmgythe source poin{ to the
boundary leads to the BIE:

(21)

() + [

T

p(x)g" (x, €))dT, = / 4(x)p" (%, €)dTs + b(€). (22)

r

The termb(¢) is the incident plain wave,. = A - ¢¢d at the pointé, with A being the
amplitude andl defining the propagation vector.

As an exact solution of the BIE is generally not available thartglary is discretized into a
finite number of linear boundary elements, as depicted in4{geft). The values for acoustic
pressurep and flux ¢ are approximated using shape functions in the fornp 6t Np and
g = Nq, respectively. The vectdX holds the shape functions whigeandq contain the values
of pressure and flux at the nodes. Setting up the BIE (B9)) for each node (collocation
method) leads to a system of equations

Gq—Hp=b (23)

where the matrice§& and H contain the results of the integrals for shape functions taed
fundamental solutiong® andg* along the element domains. It is worth noting here that since
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the present application deals with sound-hard scatteys th@ sound flux is always null along
the complete model boundary. Thus, the system in E8).reduces to

~Hp=b, (24)

which is used to compute the sound pressuom the model boundary. Further details about
the boundary element formulation and implementation caiobed in any classic BEM book,
e.g.Wrobel and Aliabad{2002.

4.1 Computation of the forward fields

The computation of thé; requires of the solution of the forward problem posted in Eq.
(1)—(3) over the integration domain. To this end, and as it will bevah in next section, the
present implementation makes use of a regular array ofnakgroints following the pattern
depicted in Fig4 (left).

Solving the forward problem in the BEM context gives in thetfstep the pressurgson
the surface of the scatterer. In a second step the valug&pfare computed for all internal
points within the design domain using the internal couradrpf the BIE introduced in Eq.
(22). Recalling that the scatterer is considered as sound-tiasds

§6) = [ b’ ()0 + A< for € € (25)

Similarly, the gradien¥p(x) can be computed at the internal points using the space deriva
tives of Eq. £5) with respect to the internal points

op(&) dq*(x,€) Aetned

Both p(x) and Vp(x) are essential inputs to compute the topological derivelilyéx), see
Eq. (16).

4.2 Computation of the adjoint fields

The adjoint problem is given through EdqL2)—(14). It is solved backwards using ERS)
without the influence of the incident wave:

@—MMOZA—wawﬁﬂWWSGQ (27)

A system of equations is established in which the pressuresa on the boundary of
the scatterer are the unknowns. The points on the virtuéell,, for which the mismatch
(p — pm) has been computed (see sect®)nare regarded as internal points. In this way, Eq.
(27) can be used to express the values at these points. Themkhewn boundary values
can be determined by setting up a system of equations usregfohementioned formula for the
evaluation of internal points. The equation system is offtine

hin hia -+ hi, A (p - pm)l
Sl I e (28)
hnvi hya -+ hyp An (p - pm)n
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Figure 4: Remeshing of the BEM model: (left) initial BEM madd@niddle) elimination of internal points, (right)
BEM model after remeshing

where the components;; are made up of the integrals of the fundamental solution=
Jp*/0n; \; are the values of all nodes forming the boundary of the scatterer gnd p,, ); de-
fine the mismatch in pressure values of Mi@oints along the virtual surfade. Using standard
procedures (sedampel et al(2008) the system of equations is constructed with= 3n, i. e.
the number of points along the virtual surface is three tithesnumber of nodes discretizing
the scatterer’s boundary. A single value decompositiorBagorithm is applied to solve the
system of equations of EQ28).

Having acquired the solution on the boundary of the scatterer, the values\@f) and
V(x) for all internal points are determined using the same praceds described for the
forward problem. To solve fok(x) Eq. (27) is applied, while the according formula f8A(x)

is given by )
ONE) _ / A2 ik tor e e (29)
. ‘

al'i axz
5 THE ITERATIVE PROCESS

Feijoo (2004 employs in his work the method of the topological derivatanly once to
determine the most probable shape of an unknown scattebijegto In this work an iterative
approach is proposed to find the optimal shape of a scattdrehviulfills best to a set of
prescribed values at certain points (e. g. along a circlesading the design space). To start
the iterative process an initial scatterer is placed ineodésign domain which will grow with
each iterative step until the shape considered optimalashed. To this end, the procedure
presented irCisilino (200§ andCarretero Neches and Cisilif@008 is used.

Having checked the stopping criterion (typically a limitwah for the differencep — p,,,
hence testing — p,, < h) and finding that it is not fulfilled{ has been computed for a given
configuration, see Fig} (left)), the iterative process consists of the followingss:

1. Computing the pressure fightx) and its gradient¥/p(x) for all internal points and points
along the virtual surfacg,

2. Determining the mismatch between the solution of the éodaproblemp and the pre-
scribed valueg,, at the virtual surfac&': (p — py,)

3. Solving the adjoint problem (Eq12)—(14)) to obtain the pressure field see Fig4 (left)
4. Computing the pressure fie\dx) and its gradien¥V \(x) for all internal points

5. Computing the topological derivative,(x) using Eg. 16)
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6. Eliminating those internal points with the maximum vaud D, (in general a small
percentage of points), see Fig(middle)

7. Remeshing the BEM model, see Fyright)

8. Solving the forward problem (Eql)—(3)) for incident plane waves for the new configu-
ration using the BEM

9. Checking the stopping criterion, if necessary, repedtmg stepl

The final geometry is obtained once the checking criteridulfgled.

To overcome the difficulties when evaluatihg-(x) for points on the boundary/, of the
scatterer a workaround is proposed. Instead of determithiegopological derivative for a
point directly on the scatterer’s boundary, the topololgiegivative is computed for a point that
Is within the design domain at a small distance from the bamdode. The chosen distance
is much smaller than the regular spacing between pointseinléisign space. The topological
derivative for this auxiliary point is then mapped onto tleeresponding node on the scatterer’s
boundary. It is worth noticing that not defining the topotajiderivativeD, on the scatterer’s
boundaryl’, would lead to the elimination of all points of the boundaryemch iterative step.
This would cause falsified growth of the scatterer leadingriang results.

5.1 Model discretization and remeshing

The model discretization and remeshing strategies areskenes for the performance of the
implemented algorithm. The initial BEM model is discretiaeging two-node linear elements
and a regular array of internal points following the pattdepicted in Figurel. The removal
of internal and boundary points in every increment is foko\by a model remeshing. With
this purpose the prograMeshSuitebased on an-shapes algorithm, is employe@4lvo et al.
(2003). Alpha shapes can be viewed as Delaunay triangularizatica point set weighted
by the parametew. Alpha shapes formalize the intuitive notion of shape, amdvarying
parametery, it ranges from crude to fine shapes. The most crude shape i®tivex hull itself,
which is obtained for very large values a@f As a decreases, the shape shrinks and develops
cavities that may join to form holes. In this work the paraenet is selected as the average
distance between boundary nodes. This is the reason whmahigoints are distributed on the
model domain using a regular array. Upon the input of the dioates of the boundary nodes
and internal points after each optimization step (see Bigmiddle)), MeshSuiteoutputs the
connectivity of the new model boundary (see F@g(right)). Thus, those points not used as
boundary nodes are assimilated to internal points in thedisgvetization.

Depending on the spatial distribution of the points, mattinected boundary points which
take part in the connectivity of two (or even more) boundagdeuld arise. This problem is
remedied by simply removing the conflicting points from thedal. Multi-connected points
are identified after checking that every valid boundary noelengs to the connectivity of two
boundary elements only.

6 EXAMPLES

Results for two examples are presented in this section. lerdodassess the performance of
the iterative method, the first example is a validation edemhile the second one conisists in
an application problem.
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Figure 5: Problem set-up for the validation example

6.1 Reconstruction of a circular scatterer

This first example consists in the reconstruction of a cacskatterer of radiu® = 2m
starting from a square initial geometry of sifle= 2m, see Fig.5. The initial geometry is dis-
cretized using 160 elements. The optimization domain isuasgof size&sm x 6m discretized
using 13639 internal points which are placed on a squarevgtida stepl = 0.05m. The size
of the grid is also the length of the elements in the BEM diszatibn. The element length was
selected to be approximately four times smaller than theeviength.

The objective valuesy,,, along the virtual surfacg, is the scattered field for the circular
object when it is illuminated by 100 planar sound waves (thglexof incidence equally dis-
tributed over2r) with a wavenumber. = 32 m~! and an amplitudel = 1 Pa. The objective
values are specified & = 800 points evenly distributed along,. This large number of points
guarantees the fulfillment of the condition = 3n when solving the adjoint problem (see Eq.
(28)) during the complete optimization procedure.

The topological derivative is computed by adding up the tsmhs obtained for all the inci-
dent waves. Scatterers are placed (or in other words, itpamts are removed) at the positions
of the internal points with the highest values for the togatal derivative. For this example the
internal-point removal rate is chosen equal to 2.5% of theectt number of internal points in
the model per step, so that the number of internal pointsiditad in each optimization step
diminishes as the algorithm progresses. This strategyshkpalgorithm to converge towards
the optimum solution.

Figures6(a)and6(b) illustrate contour plots for the pressure solutigprend\ for the direct
(Eq. @)—(3)) and adjoint problems (Eq.12)—(14)) for the initial geometry illuminated by
a wave travelling inz direction. The topological derivative field after compatiBq. (16) is
plotted in Fig.7(a)for the same wave and in Fig@(b) for the summation over all the 100 waves.
It can be seen that maximum values for the are situated around the initial boundary. It is
from those zones that the internal points are removed totapda geometry of the scatterer for
the second step. The resulting geometries for the subsesjiggs are plotted in Fi@.

Figure8 shows the objective and current pressure values along ttuahsurfacd’, for se-
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Figure 7: Topological derivative fielde
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Figure 9: Development of the scatterer’'s geometry for setbiteration steps
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Figure 10: Problem description for the second example (gegssure of'y)

lected iteration steps. The depicted pressures are the atiomof the valuep of the scattered
fields atl’, for all 100 incident waves. It can be seen from RB@and9 that the pressure results
converge towards their objective values as the shape otHiteser approaches that of a circle.

6.2 Creating a barrier for a zero pressure zone

This example consists of the optimization of the geometra barrier in order to get zero
pressure (considering both the incident and the scattexleld¥ibehind it when it is illuminated
by a single plane wave travelling in thedirection, see Fig10. The initial geometry of the
barrier is a rectangle with dimensiofslm z 0.04m and with its barycenter in the position
x =0,y = 0. The zero pressure objective is specified along a line-at0.05m, ranging from
y = —0.07m toy = 0.07m (being this virtual surfacg).

The wavenumber of the incident wavexds= 32 m~! and its amplitude isA = 1 Pa.
The optimization domain is a square of size = 1m discretized using 13639 internal points
placed on a square grid with a steg: 0.01m. The initial geometry of the barrier is discretized
using 28 elements. Eight hundred points are equidistamdigen along the surfade,. The
internal-point removal rate is chosen equal to 0.5 % of threecit number of internal points per
step.

Figure 11 shows the evolution of the pressure results alonglth&vith the optimization
process. For each case the resulting pressure values détedpiogether with the objective
values (zero pressure). The geometry for the last step capgigiven in Figl2. The results
in Figure11 show the effectiveness of the optimization procedure tagexehthe zero pressure
objective alond’.

7 CONCLUSION

The work presented here proposes an iterative optimizatietnod using the topological
derivative framework and the BEM. The given approach is clptdb determine the shape
of a scattering object which fulfills to prescribed pressumies on a virtual surface which
surrounds the design domain. Considering the given exaniipées be concluded that the
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Figure 11: Pressures alohg for different iteration steps
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Figure 12: Geometry of the scatterer acquired after Step 7
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proposed iterative method is an effective approach to fiadtitimal shape of a scatterer.

The discretization and remeshing procedures employedharédle well configurations of
arbitrary shape. However, geometric irregularities onsttegtterer’'s boundary may appear due
to the spatial distribution of the internal points in the igasdomain. These can have a seri-
ous effect on the results. To avoid these effects smoothingld be performed to ensure the
performance of the proposed method.

Further studies are intended to examine the effectiverfetbe anethod when the objective
values result from concave scatterers. It is assumed ththbse cases special care has to be
taken of the smoothing algorithm in order not to straightahtbe concave features. Another
topic of interest is the determination of the optimal shapsound barriers when the design
space is limited or predefined, which is most often the casprictical applications.
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