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Abstract. The present work presents initially a study on the strain energy expressions for several 

constitutive models for incompressible elastomers published in the literature. Departing from a critical 

analysis of the key terms in the strain energy expressions of the models which show the best overall 

performance for incompressible rubbers, a new family of hyperelastic models is proposed. The 

proposed strain energy function keeps both, the terms responsible for capturing the stiffening under 

high strains, and the terms which represent the characteristic oscilation in the stress vs. strain curve 

under small strains. Results are presented for several strain regimes, and compared with other well 

known models. 
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1 INTRODUCTION 

The principal point in modeling of a hyperelastic material is the correct selection of a 

constitutive relation. Most rubber-like materials presents the characteristic stress vs. strain 

curve, containing a softening behavior under small deformations, but rapidly stiffening as the 

range of deformation is increase. Nonetheless, many of the classical hyperelastic models fail 

to reproduce that behavior for all deformation regimes (Humphrey & Yin 1987, Humphrey 

2003). This is one of the reasons for the proliferation of models proposed during the last two 

decades. Many of these models perform well in restricted ranges of deformation, or under a 

particular deformation mode, but very few can claim to be accurate up to strain magnitudes of 

600-700%. And even when they are accurate for a given deformation mode, many fail in 

providing accurate predictions for other modes. 

The present work studied in detail some relations available in the literature. In particular, 

their strain energy expressions were analyzed in order to investigate the contribution and role 

of each specific term. From this study a family of hyperelastic models for the analysis of 

elastomers and soft tissues is proposed. 

 

2 CLASSICAL AND RECENT HYPERELASTIC MODELS  

In most cases, strain energy functions can be written as a polynomial of the strain 

invariants 1 2 3( , , )W W I I I= , or directly in terms of the principal stretches 1 2 3( , , )W W λ λ λ= , where 

the compressibility is governed by the bulk modulus ( )K :       

 ( )1 2 3

Compressible partIncompressible part

, , , ( , )W f I I I g K= +… …
������������

 (1) 

In this work, the strain energy expressions are particularized for incompressible materials 

only ( 3 1I = ), so that strain energy function takes the form 1 2( , )W W I I= . Table 1 presents the 

expressions of several well known models, as well as some newer contributions to the field, 

all particularized to the incompressible case. Table 1 also shows the calibration constants 

necessary for each model, obtained by fitting the equations with experimental data. These 

models form the base of the present study. They were implemented and calibrated against 

experimental data from uniaxial, shear, and biaxial testing for three material samples (Hoss, 

2009). 

 

 

3. GOODNESS OF FIT AND PREDICTION PERFORMANCE 

 

The models in Tab.1 were assessed for following material data: Treloar’s data (Jones & 

Treloar, 1975) and NR55 (Marczak et al., 2006) for natural rubber, and MED4950 (Meier et 

al., 2003) silicone. Due to the number of models analyzed and in order to make the analysis of 

the results (fitting and prediction) more objective, a grade system was used to perform a gross 

classification. Graphical results of all fits and predictions used here can be found in Hoss 

(2009). The grade system used to rank the hyperelastic models are based on the following 

rules: 

 

• Grade A: Excellent overall performance, capturing faithfully the behavior of the engineering 

stress vs. strain ( t e× ) curve for all three deformation modes (uniaxial, shear, and biaxial). 
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• Grade B: Good performance for the deformation mode used in the calibration. Not able to 

provide very good results for all deformation modes (predictions), or cannot fit well the 

experimental data for all ranges of deformation.  

• Grade C: Good performance for the deformation mode used in the calibration, but poor 

results for the predictions. 

• Grade D: Poor performance for all three deformation modes. 

• Grade E: Faulty fits or erroneous predictions. 

 

Since the experimental data were available for more than one deformation mode, uniaxial 

(T), pure shear (P), or biaxial (B), all models were calibrated for one test, but also verified 

regarding the quality of the theoretical predictions for the other tests. 

 

 

3.1 Case Study:  Natural Rubber – Larger deformations (Treloar’s data) 

 

The deformation (e) ranges used for each test in this case were:  0 700%e≤ ≤  for uniaxial 

tensile,  0 400%e≤ ≤  for pure shear, and 0 350%e≤ ≤  for biaxial tensile, respectively.  

The grades assigned for each model are presented in Tab. 2, where the various hyperelastic 

models were grouped according to the type of strain energy function and kinship. The 

polynomial models (groups 1 and 2) provided erroneous predictions, showing an excessively 

rigid behavior. The models KI and HYI provided reasonable t e×  curves while the other 

models in groups 3 and 4 delivered erroneous fits and predictions. The predictions of the 

models from groups 5 and 6 were disappointing, considering their potential after what is 

mentioned in the literature (Ogden, 1972; Bechir et al., 2005). Group 7 provided excellent 

results when fitted for uniaxial tensile test, with exception of the YI2 model. The models YKI 

and AI from group 8 had convergence problems. The group 9, base of the family limiting 

chain extensibility had good performance, with exception of the THI model. The group 10, 

containing some promising models recently proposed to handle severe stiffening at very high 

strains, performed very well, except for the models G3I and CHGSI.      
 

 

3.2 Case Study:  Natural Rubber – Smaller deformations (NR55) 

 

In order to assess the behavior of the hyperelastic models in deformation ranges distinct of 

the one studied in section 3.1, all models were re-analyzed against another sample of natural 

rubber (NR55 - Marczak, et al., 2006). The ranges of deformations for each test were:  

0 100%e≤ ≤  for uniaxial tensile,  0 130%e≤ ≤  for pure shear, and 0 70%e≤ ≤  for biaxial tensile, 

respectively.  
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Model Expression 

Mooney-Rivlin 

(Rivlin & Saunders, 

1951) 

MRIn 
3

1 2

1

( 3) ( 3)i j

ij

i j

W C I I
+ =

= − −∑  

Neo-Hookeano 

(Treloar., 1944) 
NHIn 1( 3)

2
W I

µ
= −  

Gent-Thomas 

(Gent & Thomas, 1958) 
GTIn 1 1 2 2

( 3) 3 ln( )W C I C I= − +  

Hart-Smith, Improved 

(Hart-Smith, 1966) 
HSAI 

3 1( 3)

1
2 23 ln( )

nC I
C e

W C I
n

−

= +  

Hart-Smith 

(Rozenwald, 1996) 
HIS 

2
3 1( 3)

1
2 23 ln( )

2

C I
C e

W C I
−

= +  

Fung 

(Fung ,1967) 
FI 1( 3)( 1)

2

b IW e
b

µ −= −  

Veronda-Westmann 

(Veronda & Westmann, 

1970) 

VWI [ ]1( 3)
1 2 21 3

I
W C e C I

α − = − − −
 

 

Ogden 

(Ogden, 1972) 
OIn 1 2 3

1

( 3)i i i

N
i

ii

W
α α αµ

λ λ λ
α

=

= + + −∑  

Peng-Landel 

(Peng & Landel, 1972) 
PLI 

3
2 3 4

1

1

1 1 1
( 1 ln( ) ln( ) ln( ) ln( ) )

6 18 216
i i i i i

i

W C λ λ λ λ λ
=

= − − − + −∑  

Knowles 

(Knowles, 1977) 
KI 

1( 3)
((1 ) 1)

2

nb I
W

b n

µ −
= + −  

Kilian 

(Kilian, 1981) 
KLI 

1 13 3
ln(1 )L

L L

I I
W J

J J
µ

 − −
= − − + 

  
 

Van der Waals 

(Kilian, 1981) 
VDWI 

3
2 2

1

2 1 3
( 3)(ln(1 ) ) ( ) ,

3 2 2
mW a Iµ λ η η

 
= − − − + − − 

 
 

1 22

3
(1 )

3

l
l

m

I
I I Iη β β

λ

−
= = − +

−
 

Humphrey-Yin 

(Humphrey & Yin, 1987) 
HYI 2 1( 3)

1( 1)
C I

W C e
−= −  

Edwards-Vilgis 

(Edwards & Vigils, 

1986) 

EVI 
1 1

1

( 2)( 3)( 3) 3
ln(1 )

2 ( 3)

L L

L L L

J J I I
W

J J I J

µ  + − − −
= + − 

− + 
 

Takamizawa-Hayashi 

(Takamizawa & Hayashi, 

1987) 

THI 

2

1 2
ln 1

L

I
W c

J

  −
 = − −  
   

 

Yeoh 

(Yeoh, 1990) 
YIn 0 1

1

( 3)

N
i

i

i

W C I

=

= −∑  

 

Table 1. Common strain energy functions (W)  for hyperelastic models (I1 and I2 are the first and the second strain 

invariants, respectively). 
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Model Expression 

Yeoh-Modified 

(Yeoh, 1993) 
YMI 1( 3)2 3

10 1 20 1 30 1( 3) ( 3) ( 3) (1 )
I

W C I C I C I e
βα

β
− −= − + − + − + −  

Arruda-Boyce 

(Arruda & Boyce, 1993) 
ABI5 

12 2
1

( 3 )

N
i ii

i
Li

C
W Iµ

λ −
=

= −∑  

 1

1

2
C = , 2

1

20
C = , 3

11

1050
C = , 4

19

7050
C = , 5

519

673750
C =  

Yamashita-Kawabata 

(Yamashita & Kawabata 

1993) 

YKI ( ) ( )
13

10 1 13 3
1

NC
W C I I

N

+
= − + −

+
 

Davis-De-Thomas 

(Davis et al., 1994) 
DDTI 

(1 )2 22
1 1( 3 ) ( 3)

2(1 )
2

nA
W I C k I

n

−
= − + + −

−
 

Gent 

(Gent, 1996) 
GI 

1 3
( 3) ln 1

2 3
L

L

I
W I

I

µ  −
= − − − 

− 
 

Gregory 

(Gregory et al., 1997) 
GYI 

(1 ) (1 )2 22 2
1 1( 3 ) ( 3 )

(2 ) (2 )

n mA B
W I C I C

n m

− +
= − + + − +

− +
 

Yeoh-Fleming 

(Yeoh & Fleming, 1997) 
YFI ( )1( 3) 1

10

3
1 3 ln 1

3

B I
L

L

IA
W e C I

B I

− −  − = − − − −   − 
 

Martins 

(Martins et al., 1998) 
MI 

2
42 1

( 1)( 3)

1 3( 1) ( 1)fCC I
W C e C e

λ −−= − + −  

3 Parameters Gent 

(Gent, 1999) 
G3I 

1
2

3
( 3) ln 1 (1 )( 3)

2 3
L

L

I
W I I

I

µ
α α

  −
= − − − + − −  

−   
 

Pucci-Saccomandi 

(Pucci & Saccomandi, 

2002) 

PSI 
1

2 2

( 3)1 1
ln(1 ) ln( )

2 3
L

L

I
W J C I

J
µ

−
= − − +  

Amin 

(Amin, et al., 2002) 
AI ( ) ( ) ( )

1 13 4
10 1 1 13 3 3

1 1

N MC C
W C I I I

N M

+ +
= − + − + −

+ +
 

Hartmann-Neff 

(Hartmann & Neff, 

2003) 

HNIn 
3

3 3 2
1 0 1 0 2

1 1

( 3 ) ( 3) ( 3 3)

N M
i j

i j

i j

W I C I C Iα
= =

= − + − + −∑ ∑  

Horgan-Saccomandi 

(Horgan & Saccomandi, 

2004) 

HGSI 

22 2
31 2

3

(1 ( ))(1 ( ))(1 ( ))

ln
12 (1 ( ))

L L L
L

L

J J J
W J

J

λλ λ
µ

 
− − − 

= −  
− 

  

 

Bechir 

(Bechir et al., 2006) 
BIn ( )2 2 2

1 2 3

1 1

3

r

r n n n
n

n r

W C λ λ λ
∞ ∞

= =

= + + −∑∑  

Polynomial PI3 1 21
( 3) ( 3)

N i j

i j ij

W C I I
+ =

= − −∑  

 

Table 1. Hyperelastic models (cont’d). 
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The results are presented in Tab. 3. It is worth to mention that the literature usually claims 

that the best calibrations are obtained when the models are fitted with biaxial data. The results 

of Tab.3 are confirming what was found also in the results of Tab.2, that the best results were 

obtained when the models were fitted with uniaxial data, contradicting what is generally found 

in the literature. It was also found that all polynomial models of the groups 1 and 2 presents 

excessively rigid predictions for deformation modes other than the one used in the calibration. 

  

The members of the groups 4 and 9 delivered similar behaviors, not providing good results 

for all tests or all deformation ranges analyzed.  The best results were obtained by the YI3, 

YI5 models in group 7. The remaining models from the other groups did not presented good 

performance. Surprisingly, the PSI model did not performed well for these smaller 

deformation ranges, unlike what was found to the fitting make using the Treloar’s data doesn’t 

have good performance.   

 

 

3.3 Case Study:  Silicone Rubber (MED4950) 

 

For this material, the deformation ranges for each test were (Meier et al., 2003):  

0 600%e≤ ≤  for uniaxial tensile, and 0 300%e≤ ≤  for biaxial tensile, respectively. Data for 

shear test were not available.  

As a general rule, the groups 1 and 2, in spite of fitting well the curve t e×  for all 

calibration tests, exhibited excessively rigid predictions for tests different of the one used in 

the calibration. Except for the KI and HYI models, the members of the groups 3 to 6 did not 

presented good performance. This particular case study indicated the potential of the power 

law models. All models containing these terms in their strain energy expression were able to 

follow the stress-stiffening effect in high strain ranges.  

The models YI2, YI3, YI5, YKI and GYI from the groups 7 and 8 showed excellent results, 

while the YFI model was the only model in group 10 to present good performance. 

 
 

4. THE PROPOSED MODELS 

 

The family of models HMI was a development of the authors aiming to generalize a strain 

energy expression that could be applicable to a wide range of elastomers and organic tissues. 

A secondary, but not less important objective was to include all necessary terms in the strain 

energy expression in such a way that the characteristic shapes of the t e×  curves could be 

captured faithfully in both, small and large deformation range. In essence, it is a heuristic 

model generated under the observation of performance of the models discussed in the 

previous sections. The basic idea was keep the terms in the expression of W that could 

reproduce the softening behavior at moderate strains and stiffening characteristic of large 

strains as well. These terms were identified in the various hyperelastic models studied by 

observing the common functions present in the models clearly performing well in fitting and 

predicting the desired behaviors. Two models are proposed. The fist one, called HMLSI, was 

developed specially to capture the stiffness oscillation during the first stages of the stress vs. 

strain curve, typically 0 100%e≤ ≤ : 
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 Calibration   Calibration 

Group Model T P B  Group Model T P B 

MRI2 E B B  PLI E E E 

MRI3 D B C  MI D B C 

MRI5 C D C  KLI E D B 
GROUP1 

MRI9 C C C  

GROUP6 

VDWI C E D 

HNI1 C C C  YI2 B D B 

HNI2 C C C  YI3 A A A 

HNI3 C E E  YI5 A B A 
GROUP2 

PI3 C C C  

GROUP7 

YMI A D A 

NHI E D D  YKI A D B 

GTI E D D  AI A D B 

HSAI B E E  DDTI D E E 
GROUP3 

HSI E E E  

GROUP8 

GYI B D D 

FI D D D  THI E E E 

VWI D D E  EVI B D B 

KI B D B  ABI5 B D B 
GROUP4 

HYI B D B  

GROUP9 

GI B D B 

OI2 B B B  YFI A A B 

OI3 D C C  G3I C E C 

BI2 B D E  PSI A A B 
GROUP5 

BI3 D D E  

GROUP10 

HGSI B D C 

Table 2. Natural Rubber (Treloar´s data). Data for fitting:T  ( )0 700%e≤ ≤ , P  ( )0 400%e≤ ≤ , B  

( )0 350%e≤ ≤ . 

 

 Calibration   Calibration 

Group Model T P B  Group Model T P B 

MRI2 D D D  PLI D E E 

MRI3 C E C  MI B B E 

MRI5 C E C  KLI D D D 
GROUP1 

MRI9 C C C  

GROUP6 

VDWI E E E 

HNI1 C C C  YI2 B D B 

HNI2 C C C  YI3 A A A 

HNI3 C C C  YI5 A A A 
GROUP2 

PI3 C C C  

GROUP7 

YMI A E E 

NHI B D D  YKI B A B 

GTI B E C  AI A B A 

HSAI E E E  DDTI E D D 
GROUP3 

HSI C D C  

GROUP8 

GYI A A B 

FI D D E  THI E E E 

VWI D D C  EVI B D D 

KI B D D  ABI5 B D D 
GROUP4 

HYI B D D  

GROUP9 

GI B D D 

OI2 D B C  YFI A D A 

OI3 C D D  G3I C C D 

BI2 C C E  PSI C C C 
GROUP5 

BI3 C C E  

GROUP10 

HGSI B D C 

Table 3. Natural Rubber (NR55).  Data for fitting:T  ( )0 100%e≤ ≤ , P  ( )0 130%e≤ ≤ , B  ( )0 70%e≤ ≤ . 
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 Calibration   Calibration 

Group Model T B  Group Model T B 

MRI2 E C  PLI E E 

MRI3 C C  MI C C 

MRI5 C C  KLI C C 
GROUP1 

MRI9 C C  

GROUP6 

VDWI C E 

HNI1 C C  YI2 A B 

HNI2 C C  YI3 A B 

HNI3 C D  YI5 A D 
GROUP2 

PI3 C C  

GROUP7 

YMI E B 

NHI D D  YKI A B 

GTI E D  AI D D 

HSAI C E  DDTI E E 
GROUP3 

HSI E D  

GROUP8 

GYI A B 

FI D D  THI E E 

VWI C E  EVI B B 

KI A B  ABI5 B B 
GROUP4 

HYI B B  

GROUP9 

GI B B 

OI2 B C  YFI A B 

OI3 C C  G3I C C 

BI2 C E  PSI E B 
GROUP5 

BI3 C E  

GROUP10 

HGSI B C 

Table 4. Silicone Rubber (MED55).  Data for fitting:T  ( )0 600%e≤ ≤ , B  ( )0 300%e≤ ≤ . 

 

 

• HMLSI  (HM Low Strain Incompressible).  

The HMLSI model has a hybrid formulation, since it consists in the addition of an 

exponential term to the basic power-law model of Knowles (1977), responsible for improving 

the quality of fits and predictions at small strains (Yeoh, 1993). Its strain energy expression is 

based on the first strain invariant, only, and is fairly general since it allows particularization to 

simpler models: 

 

 1( 3) 1( 3)
(1 ) ((1 ) 1)

2

I nb I
W e

b n

βα µ

β
− − −

= − + + −    (2) 

where α , β , µ , b , n  and 2C   are the material constants. For the case 0α = the KI model is 

obtained, while taking the limit n → ∞  in Eq, (2) results in the FI model. 

The second variation of the proposed model is an evolution of Eq.(2), where terms 

responsible for capturing the stiffening at high strains were added. It is aimed to perform well 

for all ranges of deformation: 

 

• HMHSI (HM High Strain Incompressible) 

The main difference of this model to the HMLSI model is in consideration of the second strain 

invariant in the strain energy expression. This is the term found responsible for providing a 

better sensitivity to the rapid stiffening at moderate and large stretches. The exponential term 

of Eq.(2) was not dropped, though, in order to keep the good prediction capabilities of the 
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HMLSI model under small strains. The final expression for W therefore considers both strain 

invariants: 

 

 1( 3) 1
2 2

( 3) 1
(1 ) ((1 ) 1) ln( )

2 3

I nb I
W e C I

b n

βα µ

β
− − −

= − + + − +    (3) 

 

where  α , β , µ , b , n  and 2C  represent the constitutive constants. The KI model is obtained 

by 2 0Cα = = in Eq. (3), while the limit n → ∞  along with 2 0Cα = =  reduces Eq. (3) to the FI 

model.  

The dominant base function in Eq.(3) is still the same of the KI model, so that it can be 

considered a power-law model. This is not a coincidence, since the KI model not only shows 

good results as discussed in section 3, but also because it is one of the precursors in trying to 

capture the stiffening at large strains. The terms added to the original function are responsible 

for adjusting the power-law term to better reproduce the aforementioned stiffness changes. 

The exponential term confers better fit in small strains as in Eq.(2), and it was chosen from 

the analysis of the fitting and prediction capabilities of the YFI model, which has a similar 

formulation. The logarithmic term was employed due to the excellent results obtained by the 

PSI model in large strain regime. 

 

 

5. ASSESSMENT OF THE PROPOSED MODEL  

 

In this section the proposed model is tested with the same material samples and 

deformation ranges analyzed in the section 3. This assessment is based on a non-linear 

correlation coefficient (r2) between the experimental and theoretical curves proposed by Hoss 

(2009), suitable for non-linear curve fitting. The results obtained with the proposed model are 

compared against the YMI, YFI and PSI models because these are the ones with closest 

resemblance to the HM models, and therefore provide an interesting ground to check for the 

differences between them. 

 

5.1. Case Study:  Natural Rubber – Large Deformations (Treloar’s data) 

 

The YMI, YFI, PSI and HMHSI models were fitted for the uniaxial tensile test in 

0 700%e≤ ≤ . Figure 1 clearly shows that the HMHSI model adjust well all ranges of 

deformation, producing predictions very similar to the PSI model (which is considered a 

reference in capturing the stiffening effect).  Figure 1 also shows that the models YMI and 

YFI have a poorer performance for predicting the biaxial behavior. In Fig. 2 one can compare 

the predictions (continuous lines) of the proposed model and the KI model with experimental 

results (dashed lines) for all three deformation modes, uniaxial (black), pure shear (blue), and 

biaxial (red). 
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0.8

1

Tração Uniaxial Cisalhamento Puro Tração Biaxial

r
2

YMI

YFI

PSI

HMHSI

 

Figure 1. Natural Rubber (Treloar´s data). Calibration for  uniaxial stress in the range 0 700%e≤ ≤ . Predictions 

for pure shear and biaxial stress. 

 

 

 

Figure 2. Natural Rubber (Treloar´s data). Calibration for  uniaxial stress in the range 0 700%e≤ ≤ . (a) KI 

model; (b) HMHSI model. 

 

(a) 

(b) 

Uniaxial tensile                               Pure shear                              Biaxial tensile 
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5.2. Case Study:  Natural Rubber – Small Deformations (NR55) 

 

The same tests and selected models of section 4.1 were applied here for NR55 rubber in 

the range 0 100%e≤ ≤ . Figure 3 illustrates the good results obtained with the HMLSI model. It 

is worth to note that the PSI model didn’t provide results with an agreement as good as it did 

the 0 700%e≤ ≤  range.  

The comparison of the HMLSI model with the KI model is shown in Fig.4, where the 

ability of the former in capturing the stiffness changes is evident. 

 

 

0

0.2

0.4

0.6

0.8

1

Tração Uniaxial Cisalhamento Puro Tração Biaxial

r
2

YMI

YFI

PSI

HMLSI

 

Figure 3. Natural Rubber (NR55 data). Calibration for uniaxial stress in the range 0 100%e≤ ≤ . Predictions for 

pure shear and biaxial stress. 

 

5.3. Case Study:  Silicon Rubber (MED4950) 

The MED4950 silicon data (Meier et al., 2003) was used again for calibrating all four 

models with the uniaxial testing in the range 0 600%e≤ ≤ .  Figure 3 compares the results 

obtained for the selected models. Again, the HMHSI model provided a good performance, 

comparable only with the YMI model, but the latter didn’t show similar performance with 

natural rubber (see section 4.1). Figure 6 shows that the biaxial prediction of the HMHSI 

model is superior to the one provided by the KI model. 

 

6. CONCLUSIONS 

 

This work summarizes a detailed comparison of 40 hyperelastic models concerning quality 

of the fit with experimental data and theoretical predictions for deformation modes other than 

the one used in the calibration. From that study, it was possibly to identify, among all models 

studied, which ones presented better overall performance in characterizing elastomeric 

materials under small (100%) and large (700%) deformation ranges for three samples of 

incompressible materials. It was found that those containing power-law terms of the first 

strain invariant in their strain energy function were always among the best ones. Further 

investigation of the strain energy functions of the selected models showed that those 

containing 1Ie  terms could represent more easily the rapid stiffness oscillation under small 

strains, while the ones including 2ln( )I  terms were able to capture the characteristic stiffening 

at higher strains. 

Uniaxial tensile                             Pure shear                              Biaxial tensile 
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Figure 4. Natural Rubber (Treloar´s data). Calibration for  uniaxial stress in the range 0 100%e≤ ≤ . (a) KI 

model; (b) HMLSI model. 
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Figure 5. MED 4950 silicon. Calibration for uniaxial stress in the range 0 600%e≤ ≤ . Predictions for biaxial 

stress. 
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Figure 6. MED4950 silicon. Calibration for uniaxial stress in the range 0 600%e≤ ≤ . (a) KI model; (b) HMLSI 

model. 
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