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Abstract. In the truss-like Discrete Element Method (DEM) masses are considered lumped at nodal 
points and linked by means of unidimensional elements with arbitrary constitutive relations. In previous 
studies of the tensile fracture behavior of concrete cubic samples, it was verified that numerical 
predictions of fracture of non-homogeneous materials using DEM models are feasible and yield results 
that are consistent with the experimental evidence so far available. Applications that demand the use of 
large elements, in which extensive cracking within the elements of the model may be expected, require 
the consideration of the increase with size of the fractured area, in addition to the effective stress-strain 
curve for the element. This is a basic requirement in order to achieve mesh objectivity. Note that the 
degree of damage localization must be known a priori, which is a still unresolved difficulty of the non-
linear fracture analysis of non-homogeneous large structures. Results of the numerical fracture analysis 
of 2D systems employing the DEM are reported in this contribution and compared with predictions 
based on the multi-fractal theory proposed by Carpinteri et al according to which a fractal dimension, 
contained in the interval (1,2), defines the fracture area for a unitary thickness. The assessment of the 
equivalence and ranges of validity of different approaches to account for size and strain rate effects 
appear today as one of the most urgent areas of study in the mechanics of materials. The influences of 
various parameters, such as the mesh size, the strain velocity and the shape of the fracture surface are 
assessed by means of numerical simulation. Methods employed in the homogenization of heterogeneous 
materials, in which damage is expected to occur with different level of stress localization, are also 
examined. Finally, conclusions on the performance of the numerical procedures employed in the 
reported studies are presented. 
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1 INTRODUCTION 
In the truss-like Discrete Element Method (DEM) masses are considered lumped at nodal 

points and linked by means of unidimensional elements with arbitrary constitutive relations. In 
previous studies of the tensile fracture behavior of concrete cubic samples, it was verified that 
numerical predictions of fracture of non-homogeneous materials using DEM models are 
feasible and yield results that are consistent with the experimental evidence so far available. 
Applications that demand the use of large elements, in which extensive cracking within the 
elements of the model may be expected, require the consideration of the increase with size of 
the fractured area, in addition to the effective stress-strain curve for the element. This is a basic 
requirement in order to achieve mesh objectivity. Note that the degree of damage localization 
must be known a priori, which is a still unresolved difficulty of the non-linear fracture analysis 
of non-homogeneous large structures. 

Results of the numerical fracture analysis of 2D systems employing the DEM are reported in 
this contribution and compared with predictions based on the multi-fractal theory proposed by 
Carpinteri et al. (1994) according to which a fractal dimension , contained in the interval 
(1,2), defines the fracture area per unit of thickness. The assessment of the equivalence and 
ranges of validity of different approaches to account for size and strain rate effects appear 
today as one of the most urgent areas of study in the mechanics of materials. The influences of 
various parameters, such as the mesh size, the strain velocity and the shape of the fracture 
surface are assessed by means of numerical simulation. Methods employed in the 
homogenization of heterogeneous materials, in which damage is expected to occur with 
different level of stress localization, are also examined. Finally, conclusions on the performance 
of the numerical procedures employed in the reported studies are presented. 

2 THE TRUSS-LIKE DISCRETE ELEMENT METHOD 
In the truss-like discrete element method (DEM) a continuum is represented by a set of 

lumped masses interconnected by a set of uni-axial elements or bars. In particular, Figure 1a 
and 1b show the discretization for a cubic system, for which the stiffness of the DEM elements 
corresponding to an equivalent orthotropic linear elastic material were obtained by Nayfeh 
and Hefzy (1978). The basic cubic module has 20 elements and 9 nodes. Every node has three 
degrees of freedom, namely the three components of the displacement vector in a global 
reference system. In case of an isotropic elastic material, the cross-sectional area Ai of the 
longitudinal elements (those defining the edges of the module and those parallel to the edges 
connected to the node located at the centre of the module) in the equivalent discrete model is: 

 Ai  =  L2 (1) 

where L is the length of the side of the cubic module under consideration. Similarly, the area Ad 

of the diagonal elements is: 

 Ad = 
3

2
  L2 (2) 

Note that there is a difference in length between longitudinal and diagonal elements, since: 

 L =  2 3 Ld (3) 

For approximately isotropic solids: 

    9 8 / 18 24       (4) 
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  9 4 8     (5) 

where  is Poisson’s ratio. It is important to point out that for  = 0.25, the correspondence 
between the equivalent discrete solid and the isotropic continuum is complete. On the other 
hand, for values of  ≠ 0.25 small discrepancies appear in the shear terms, which may 
nevertheless be neglected. It is interesting to note that while no lattice or truss-like model can 
exactly represent a locally isotropic continuum, it can also be argued that no perfect locally 
isotropic continuum exists in the physical world. In fact, the continuum itself does not exist. 
Isotropy in solids is a bulk property that reflects properties of the random distribution of the 
orientation of the elements. The derivation of the areas of longitudinal and diagonal elements 
given for a cubic array by equations (1) and (2) may be found in Nayfeh and Hefzy (1978) and 
Dalguer et al. (2001).  

The equations of motion are obtained from equilibrium conditions of all forces acting on the 
nodal masses, resulting a system of equations of the form: 

     +  +  - 0t t M x Cx F P   (6) 

in which x , x  and x  denote vectors containing the nodal displacements, velocities and 
accelerations, respectively, while M and C are the mass and damping matrices. The vectors 
 tF  and P (t) contain the internal and external nodal loads.  

 
Figure 1: DEM discretization strategy: (a) basic cubic module, (b) generation of prismatic body. 

Since matrices M and C are diagonal, the equations in expression (5) are not coupled, and 
they can be easily integrated in the time domain using an explicit finite difference scheme. It is 
worth noting that since nodal coordinates are updated at every time step, large displacements 
are accounted for naturally. Stability of the integration scheme is insured by adoting a time 
interval ∆t in the integration process such that: 

 
0.6Lt
C

   (7) 

in which Cρ is the propagation velocity of longitudinal waves, 

y 

x (b) 

z 

(a) 

L 
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 C E   (8) 

The convergence of DEM solutions in linear elasticity and elastic instability problems was 
verified by Hayashi (1982) and Dalguer et al. (2001), among others. 

3. NON-LINEAR CONSTITUTIVE MODEL FOR MATERIAL DAMAGE 
Rocha et al. (1991) adopted the softening law to the quasi fragile materials proposed by 

Hilleborg (1978) extendeding the Discrete Element Model to handle fragile fracture by means 
of the bilinear constitutive relationship (ECR) shown in Figure 2, which allows accounting for 
the irreversible effects of crack nucleation and propagation, therefore, it predicts the reduction 
in the element load carrying capacity with damage. The area under the force vs. strain curve 
(the area of the triangle OAB in Figure 2) represents the energy density necessary to fracture 
the area of influence of the element. Thus, for a given point P on the force vs. strain curve, the 
area of the triangle OPC represents the reversible elastic energy density stored in the element, 
while the area of the triangle OAP is the energy density dissipated by damage. Once the 
damage energy density equals the fracture energy, the element fails and loses its load carrying 
capacity. On the other hand, in the case of compressive loads the material behavior is assumed 
linearly elastic. Thus, failure in compression is induced by indirect traction.  

 
Figure 2: Bilinear constitutive law adopted for DEM uni-axial elements. 

Constitutive parameters and symbols are shown in Figure 2 (see Rocha, 1989, and Rocha et 
al, 1991). The element axial force F depends on the axial strain . The area associated to each 
element is given by equations (1) or (2) for longitudinal and diagonal elements, respectively. 
An equivalent fracture area Ai

* of each element is defined in order to satisfy the condition that 
the energies dissipated by fracture of the continuum and by its discrete representation are 
equivalent. With this purpose, fracture of a cubic sample of dimensions LLL is considered. 
The energy dissipated by fracture of a continuum cube due to a crack parallel to one of its 
faces is: 

 2
f fG G L     (9) 

in which  is the actual fractured area, i.e. L2. On the other hand, the energy dissipated when a 
DEM module of dimensions LLL fractures in two parts consists of the contributions of five 

Damage energy, 
Udmg 

Elastic strain 
energy, Uel 

EAi 

F 

 
p 

P 

O 

A 

C 

B 
r  
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longitudinal elements (four coincident with the module edges and an internal one) and four 
diagonal elements, as shown in Figure 1a. Then, the energy dissipated by the DEM module can 
be written as follows: 

 
2

2
DEM

24 0.25 4
3f A A AG c c c L

              
 (10) 

The first term between brackets accounts for the four edge elements, the second term for 
the internal longitudinal element, while the third term represents the contribution of the four 
diagonal elements. The coefficient cA is a scaling parameter used to establish the equivalence 
between  and DEM. Thus: 

 2 222
3f f AG L G c L   

 
 (11) 

from which it follows that cA = 3/22. Finally, the equivalent transverse fracture area of the 
longitudinal elements is 

 Al* = (3/22) L2 (12) 

while for the diagonal elements is 

 Ad* = (4/22) L2 (13) 

The critical failure strain (p) is defined as the largest strain attained by the element before 
the damage initiation (point A in Figure 2). The relationship between p and the specific 
fracture energy Gf is given in terms of Linear Elastic Fracture Mechanics as: 

  21
f

p f

G
R

E






 (14) 

in which fR  is the so-called failure factor, which may accounts for the presence of an 
intrinsic defect of size a. fR  may be expressed in terms of a as: 

 
1

fR
Y a

  (15) 

in which Y is a dimensionless parameter that depends on both the specimen and crack 
geometry. The element loses its load carrying capacity when the limit strain r is reached 
(Point C in Figure 2). This value must satisfy the condition that, upon failure of the element, 
the dissipated energy density equals the product of the element fracture area Ai

* times the 
specific fracture energy Gf, divided by the element length. Hence: 

  
* 2

0
2

r

f i r p i

i

G A K E A
F d

L




 
   

   (16) 

in which the sub index i is replaced by l or d depending on whether the element under 
consideration is a longitudinal or diagonal. The coefficient Kr is a function of the material 
properties and the element length Li: 
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*

2

2f i
r

p i i

G AK
E A L

   
          (17) 

In order to guarantee the stability of the algorithm, the condition Kr ≥ 1 must be satisfied 
(Riera and Rocha, 1991). In this sense it is interesting to define the critical element length: 

 
*

22 f i
cr

p i

G AL
E A

  
      

 (18) 

Moreover: 

 (Al*/ Al) = (3/22) /  (19) 

 Ad*/ Ad) = ( 3 11 )/ (δ) (20) 

In the special case of an isotropic continuum with  = 0.25, the value of the coefficients 
above are = 1.125 and = 0.4, which leads to (Al*/ Al) ≈ (Ad*/ Ad) ≈ 0.34. Thus, for 
practical purposes, a single value of the critical length can be used for longitudinal and diagonal 
elements. Therefore, the stability condition may be expressed as: 

 1cr
r i cr

i

LK L L
L

     (21) 

Finally, the expression for the limit strain is: 

 r  Kr p. (22) 

Besides, it is worth noting that although the DEM uses a scalar damage law to describe the 
uniaxial behavior of the elements, the global model accounts for anisotropic damage since it 
possess elements orientated in the different spatial directions. 

4. FRACTAL DIMENSION 
The concept of fractal dimension introduced by Manderblot (1982) and adopted in the 

multi-fractal theory proposed by Carpinteri et al. (1994), is used herein for the assessment of 
fracture of quasi fragile materials. In Carpinteri’s view, the fractal dimension , contained in 
the interval (2,3), defines the fracture area. Several approaches have been proposed to 
determine the fractal dimension  (Carpinteri et al., 1999) in experimental studies. In the 
present analysis, the fracture surfaces are obtained by numerical simulation, employing the 
failure criteria previously described  

In the so-called patchwork method, identified in this paper as Method 1, the fracture surface 
is approximated by plane triangles. The patchwork fractal dimension patch, originally defined 
by Clarke (1986), is then obtained from the rate of divergence of the apparent area A (the total 
area of the triangles) as the size of the surface elements decreases. In other words, the 
patchwork method aims at evaluating the same limit value, i.e. the fractal dimension, by 
approximating it from a different path. Thus, as the covering grid size decreases, then the 
apparent area A increases (while the nominal area remains constant). By increasing resolution, 
more and more details are counted, which confirms the scale dependent nature of the 
Euclidean description: 
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 

0

log
2 lim

logpatch r

A r
r




   (23) 

In which A is the apparent area and r a characteristic length of discretization. In the 2D 
plate, employed in the examples in Section 5, equation (23) should be replaced by: 

 
 

0

log
1 lim

logpatch r

r
r




 


 (24) 

In which ℓ is a normalized length and r the size of the discretization segments. An 
alternative approach applicable to a 2D domain is proposed herein and identified as Method 2; 
Let ℓ0 denote the reference length, which is divided in n intervals of size r. In such case the 
actual length of the fracture may be written as: 

 ℓ = n∆ r (25) 

In which  is a new estimate of the fractal dimension. It is clear that: 

 
0

n r
n r

 






,    1

0

n



,       01 log ogn l      (26) 

From which the following expression follows: 

 
 0log

1
log n

  
 

 (27) 

A third procedure to assess the fractal dimension, designated in this paper as Method 3, 
involves the fracture energy dissipated in the process. According to basic principles of LEFM 
and maintaining the notation of the previous approach, the minimum energy Umin needed to 
split the plate under consideration in two parts would be given by equation (28), while the 
energy spent by fracture is defined by equation (29):  

 Umin = Gf n r (28) 

 Unum = Gf ne r (29) 

Combining equations (28) and (29) leads to the following expression for the fractal 
dimension e: 

 
 minog

1
log

numl U U
e

n
    (30) 

Expressions (27) and (30) constitute sound fractal dimension estimates if the length of 
discretization r is equal or less than the characteristic dimension of the random field that 
defines the material properties. Note that in this paper the specific fracture energy random field 
is defined by a Weibull distribution.This approach to measure energy was employed earlier by 
Miguel et al. (2010) in the determination of fractal dimension of concrete cubic samples.  

Finally, the fractal dimension of the fracture surfaces may also be calculated by a three-
dimensional spectral method, specifically designed for self-affine sets (Turcotte, 1992; 
Carpinteri et al., 1999). It is based on the two-dimensional Fourier Transform Hst of the 
fracture relief. The method provides the fractal dimension as a function of the mean spectral 
power, but it will not be resorted to in the present paper. A still unresolved issue in the 
determination of fractal dimensions is related to multiple fractures, which are likely to occur, 
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for example, under high train rates.  

5 EXAMPLES  
Simulated rock plate samples under plane stress, fixed at their lower boundary and 

subjected to tension along their upper face were analyzed up to failure by numerical integration 
in the time domain. The sizes of the samples range from 1.0 to 15.0m (see Figure 3). The 
smallest DEM array that leads to satisfactory results consists of 10×10×1 cubic modules, with 
1026 DOF, used for the 1.0m plate, while the 15.0m plate model consists of 150×150×1 cubic 
modules, with 204306 DOF, constituting the largest array used in this study. In all cases 
boundary displacement in the vertical direction were applied on the plate in order to simulate a 
Plane Strain test in the examples. Table 1 shows the basic dimensions of the four samples 
analyzed, while relevant material properties are given in Table 2. 

      
Figure 3: View of fracture configuration of 1, 4, 8 and 15m simulated plates  

Plates L 
Plate 1.0        (10×10) 1.0m 
Plate 4.0        (40×40) 4.0m 
Plate 8.0        (80×80) 8.0m 
Plate 15.0   (150×150) 15.0m 

Table 1: Rock plates dimensions (Lo = 0.10m). 

Properties Value 
E  (Young’s modulus) 7.5E10N/m2 
  (specific mass) 2700kg/m3 

  (Poisson coefficient) 0.25 
E(Gf)  (Expected value of specific fracture energy) 1300N/m 

CV(Gf)  (coeficient of variation of Gf ) 40% 
p  (critical strain) 1.054E-4 

Table 2: Material properties of rock (granite). 
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In loading case A, the nodes on the upper face of the specimens were subjected to 
controlled uniform displacements that smoothly increase from zero to a limit value, inducing a 
nominally uniform tension in the specimen. In loading case B prescribed forces were applied on 
the upper face, which increase with time at a constant rate until a perceptible jump in the total 
kinetic energy of the plate is detected, indicating the onset of nucleation. At that point the 
loading rate is set equal to zero, an integration proceeds under constant loading with a high 
damping to curb spurious vibrations. Six simulations were carried out for each loading case 
and for each plate size. For illustration purposes, the resulting stress-strain curves for all 
simulations for the 4.0 m plate are shown in Figure 4, for loading case A. Note that the specific 
fracture energy Gf is also modelled as a random field with the properties indicated in Table 2, 
so each simulation leads to a different strength and a different stress-strain curve. The 
probability distribution of Gf was assumed Weibull. The mean curve for all simulations is also 
shown in Figure 4. The mean curves for all tested sizes are shown in Figure 5, and also the 
scale effect in terms of global strain and stress results are shown in Figure 6. 

0.0 5.0x10-5 1.0x10-4 1.5x10-4 2.0x10-4 2.5x10-4 3.0x10-4
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N
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m
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s 
 
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Strain   
Figure 4: Mean vertical stress at lower support vs mean strain for the 4m rock plate. The results of six 

simulations and the average curve (in blue) are shown (case A – prescribed displacements). 

0.0 5.0x10-5 1.0x10-4 1.5x10-4 2.0x10-4 2.5x10-4

0.0

4.0x106

8.0x106

1.2x107

 L=1m
 L=4m
 L=8m
 L=15m

N
or

m
al

 S
tr

es
s 
 

[N
/m

2 ]

Strain   
Figure 5: Mean vertical stress at lower support vs mean strain for the all plate sizes (case A – prescribed 

displacements).  
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Figure 6: Variation of mean ultimate stress and strain with plate size (Logarithmic scale). The one standard 

deviation range of the simulations is also shown. (case A – prescribed displacements).  

Typical cracked granite plates for loading Case A and Case B are shown in Figure 7. Colors 
cyan, orange and red represent undamaged, damaged and totally broken (failed) elements, 
respectively. 

 
 

    

 

    

 
Figure 7: Rupture configuration of plates of various sizes subjected to applied displacements (above) (case A) 

and applied stresses (below) (case B). The simulated plate random properties are the same in both cases. 

6 DETERMINATION OF FRACTAL DIMENSION FOR SIMULATED SAMPLES 
The samples of the plates described in Section 5 were subjected to assessment employing 

methods 1 to 3 discussed in Section 4, in order to determine the fractal dimension of the 
fractured area.  

L = 1.0m L = 4.0m L = 8.0m L = 15.0m 
F 

L = 1.0m L = 4.0m L = 8.0m L = 15.0m 

u 
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In connection with the patchwork approach (Method 1), Figure 8, in which x denotes the 
length of the discretization segments, shows the estimated values of patch for one of the 
simulations of the 4m plate. An estimate of patch is given by the limit as x decreases (Carpinteri 
et al., 1999). It is important to note that when a fracture presents a bifurcation, the length in 
equation (24) was computed as the sum of the lengths of all fractures. 
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0.700
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(l)

Log(x)  

 

 
Figure 8: Log-log diagram of ℓ vs x for one simulation of a 4m plate. All the dimensions are in meters 

The fractured length ℓ, used in Methods 1 and 2, was measured in two different ways. First 
the centroids of broken diagonals elements were identified and linked to other groups of points 
whenever the distance to the nearest point in the group was less than the module length L. 
Only diagonals bars were considered to simplify the identification process without significantly 
affecting the resulting surface or length, designated L1. Figure 9 shows (a) failed bars in a 1 m 
plate under stress with two cracks, (b) the position of the centroid of broken diagonal bars and 
(c) the grouping of these points in two different fractures. This grouping is performed by the 
program on the basis of the distances between points. Individual fractures with total length 
shorter than 10% of the plate length are neglected. To determine the actual location of the 
fracture surface (for fractures propagating in the x-direction), when more than one point 
present the same x-coordinate, the z-coordinate of the fracture is determined by the average of 
the z-coordinates of failed elements. Note that the fracture intersections with the plate faces do 
not necessarily coincide and thus have slightly different lengths. The length ℓ of the crack was 
determined as the average of the two lengths. The comparison between the DEM fracture 
configuration and the fissure surfaces obtained with the proposed methodology is shown in 
Figure 10. 
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Figure 9: a) failure configuration of a 1 m plate with two cracks analyzed with DEM, b) identification of the 

centroid of broken diagonals bars and c) grouping of these points in different fractures. 

                             
Figure 10: Comparison between the DEM rupture configuration and the fracture surfaces determined with post 

process analysis. 

The process implemented to determine fracture lengths breaks down when branching 
occurs, in which case identification of the fracture surface must be done by visual inspection. 
Figure 11 shows, as an example, six simulations for the 1m plate and the failure surfaces 
generated in post- processing. The fifth simulation presents a bifurcation. 

The second method to assess the fracture length, leading to measure L2, consisted of adding 
coefficients Ai

* of the all broken elements and dividing by the plate side length. While L1 tends 
to measure only macro cracks, L2 includes also small cracks and isolated damage. Thus, the 
condition L2 ≥ L1 is always satisfied. Substituting these lengths in eq. (24) and (27) the fractal 
coefficients according to Method 1 and 2 may be obtained.  

Method 3 takes into account macro cracks, smaller and isolated cracks, as well as micro 
cracks. This is because damaged elements also contribute to the dissipated energy. Figure 12 
shows (Unum/Umin), i.e. the damage work normalized by the minimum energy needed to split the 
plate in two parts for Simulation 1 for the 1m plate (Load Case B). Note that 
Umin=1m0.1m1300N/m (length  thickness  fracture energy). After the plate is completely 
broken, the damage work ceases growing. For simulation 1, Unum/Umin =1.377, which leads to 
e = 1.139. 
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Figure 11: Final configurations obtained with the DEM for six simulations of 1m plate and resulting rupture 

surfaces (Load Case B). 
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Figure 12: Evolution of Unum/Umin with time for simulation 1 of 1m plate (Load case B). 
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Table 3 and Table 4 present all fractal dimension calculated as described above for load case 
case A and case B) considering all the size plate studied and the three approaches employed to 
estimated the fractal dimension that is patch (eq. 24),  ( eq. 27) e e (eq. 30). Also the results 
are shown in graphical form in the Figure 13 to Figure 15. 

 

 
Table 3: Case A: Prescribed boundary displacements.  

The values marked with (*) in Table 3 were discarded  to compute the statistical values in 
terms of fractal dimension because in these cases the total fracture of the plate was not 
achieved in the simulations. 
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Figure 13: Fractal dimension  vs plate size L for prescribed displacements (Case A) showing range of 
simulated values  
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Table 4: Case B: Prescribed force. 

0 2 4 6 8 10 12 14 16
1.0

1.1

1.2

1.3

1.4

1.5

 L1 Patch
 L1 
 Energy, e



L [m]
0 2 4 6 8 10 12 14 16

1.0

1.1

1.2

1.3

1.4

1.5

 L1 Patch
 L1 
 Energy, e
 L2 Patch
 L2 



L [m]  

Figure 14: Fractal dimension  vs plate size L for prescribed boundary forces (Case B) showing range of 
simulated values. 

The numerical results presented herein require further evaluation. Some observations may 
however be advanced at the present stage. The apparent dependence of the fractal dimension 
on the plate size, which tends to dissapear for larger sizes, may be due to the coarse modelling 
adopted for the smaller plates.  
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Figure 15: Fractal exponents according to Method 3 for Cases A and B vs plate size. 

7 CONCLUSIONS 
The numerical analysis of plates subjected to tensile fracture employing the truss-like 

discrete element method (DEM) is initially described in the paper. Various approaches to 
determine the fractal dimension of the fractured area are examined next. In this context, the 
authors resort to the notion of fractal dimension proposed by Carpinteri within the Fracture 
Mechanics Theory of quasi fragile materials. It is tentatively concluded that the three methods 
employed to compute de fractal dimension led to credible results but their applicability end 
efficiency demand additional experimentation. Moreover, a perceptible trend for damage 
concentration in a single fissure for applied loads in relation to applied displacements was 
detected in the simulations. 
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