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Abstract. A major difficulty for the resolution of an inverse thermal problem is its high computational 
cost. Therefore, thermal tomography has found a limited application to industrial processes where fast 
execution is required, e.g., mapping imperfections in the process of manufacturing castings. In an 
attempt to improve the computational performance of the resolution of an inverse thermal problem 
developed, the computational power of multi-core CPUs was used by programming tool parallel 
architectures shared memory POSIX Threads (Pthreads). Tests were performed on processors with 
different microarchitectures (Intel® Core 2 Duo, Intel® Core 2 Quad and Intel® Core i7) and different 
amounts of threads. The parallel implementation of our algorithm exploiting the processing power of 
multi-core CPUs with the aid of optimization flags arrived to get a performance of up to four times 
faster than the serial version of the code on the same CPU representing a significant gain for 
simulations involving the resolution of inverse thermal problems.  
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1 INTRODUCTION 

Industrial process tomography is a technique used to determine the internal properties of an 
object through nonintrusive external measurements. The main application of thermal 
tomography is to map imperfections (fouling, cracks, voids, etc.) in solid materials. Another 
important application is in the measurement of thermophysical properties in processes 
involving fluids. It is the case of flowmeters of thermal principle, in which the velocity of the 
flow is determined by the measurement of the convection coefficient. The principle of thermal 
tomography operation is usually based on the application of a heat flux at the external 
boundary of the process or object and on the measurement of the response temperatures at that 
same boundary.  

The construction of an image from signals with the aid of tomography techniques generally 
involves solving an inverse problem. A thermal problem is described by a differential 
equation that governs the temperature inside the domain, and by adequate boundary 
conditions, which simulate the excitation and measurement process. In the inverse problem 
studied in this paper, we assume that no access is granted to the surface where the convection 
coefficient distribution is to be determined. This lack of information, whose minimization 
corresponds to the sought solution (Borcea, 2003, Özisik and Orlande, 2000) is defined. 

Among the main advantages of thermal tomography are its low cost and robustness, which 
make it extremely interesting for industrial applications. However, the problem of thermal 
tomography is highly expensive, in terms of computational cost, requiring considerable CPU 
time, particularly to calculate and regularize the Hessian matrix of Newton’s optimization 
method used to solve the problem. The Hessian matrix is singular due to the intrinsic ill-
conditioned nature of the inverse problem (Brandi et al., 2009), being extremely sensitive to 
the presence of rounding errors. 

Table 1 shows the number of times the Preconditioned Bi-Conjugate Gradient (PBCG) 
method is called and percentage of time spent on the calculation and assembly of the Hessian 
matrix in an iteration of Newton’s method. 

 

Newton’s method 
Calculation and assembling 

of Hessian matrix 
Percentage of time (s) 

3869 3813 98% 

Table 1: Number of times the PBCG method is called and percentage of times spent on the calculation and 
assembly of the Hessian matrix. 

The computational power of modern shared memory multiprocessor architectures 
(Symmetric Multiprocessing - SMP) was used to reduce the computational cost of the 
calculation and assembling of matrix Hessian of the inverse thermal problem.  

In our problem the PBCG method solver is called several times independently in the 
assembly of the Hessian matrix of the problem, characterizing a case of Single Instruction, 
Multiple Data (SIMD) and allowing its parallelization. A tool for parallel programming in 
shared memory architectures POSIX Thread (Pthreads) was used to manage the threads in 
multi-cores processors. In another study we use the processing power of GPUs to accelerate 
the process of calculating and assembling the Hessian matrix (Ansoni et al., 2010). 
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2 POSIX THREADS 

The POSIX Threads library is an IEEE POSIX (Potable Operating System, Interface for 
UNIX) for thread, which defines a standard API to create and manipulate threads in C/C++ 
languages. The libraries implemented are also called Pthread, they are widespread in the Unix 
universe and other operating systems, like Linux and Solaris, but there are implementations 
for Windows (Barney, 2010, Butenhof, 1997). This library provides us with effective ways to 
expand into new process running concurrent processes, which can run more efficiently on 
computer systems with multiple processors and/or processors with multiple cores.  

In general, for a program to take advantage of Pthreads, it should be organized into 
discrete, independent tasks that can be performed simultaneously. Pthreads are defined as a set 
of C language types and procedure calls, implemented with a header (header/include) 
pthread.h. There are about 100 procedures in Pthreads, all with the prefix “pthread_”. The 
operations with threads include creation, termination synchronization, scheduling and 
signaling. All threads have access to the same global shared memory, and the programmer is 
responsible for synchronizing access (protection) globally shared data. 

As multiple threads can concurrently access the same variables, there may be cases in 
which multiple threads access and modify the same data at the same time causing “race 
conditions1” as seen in Figure 1.  

 
Figure 1: Race Condition (Barney, 2010). 

The original Pthreads API was defined in the ANSI/IEEE POSIX 1003.1 – 1995 standard. 
The POSIX standard has continued to evolve and undergo revisions, including the Pthreads 
specifications. The subroutines which comprise the Pthreads can be informally grouped into 
four major groups (Barney, 2010): 

• Thread management: Routines that work directly on threads – creating, detaching, 
joining, etc. (e.g.: pthread_create). 

                                                 

1 Occurs when two threads modify a variable at the same time, there is a race condition, 
except that in this race, the last thread that modifies the values is having its stored value. 
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• Mutexes: Routines that deal with synchronization, called mutex, which is an 
abbreviation for mutual exclusion (e.g.: pthread_mutex_lock).  

• Condition variables: Routines that address communications between threads that 
share a mutex (e.g.: pthread_cond_init). 

• Synchronization: Routines that manage read/write locks and barriers (e.g.: 
pthread_join). 

In the example we can understand the execution of multiple threads: the program starts 
with the main thread, which creates other threads (pthread_creat) and expects them to end 
their work (pthread_join). Each thread performs work at the same time. After pthread_join 
execution, the main thread ends the execution of the serial program. 

Figure 2 we shows the possible execution flow of the example. 
 

 

Figure 2: Possible flow of execution. 

Some of the main advantages of using Pthreads are: 
• Uses of the full potential of the new multi-core processors, which is becoming 

increasingly common today; 
• Portability of written applications using Pthreads library for any operating system 

that supports the POSIX standard; 
• The cost of exchange contexts between threads is lower than with processes, due to 

the fact the threads are lighter; 
• System overhead reduction; 

Disadvantages: 
• Program complexity increases due to the use of various resources for management 

and synchronization between threads; 
• Occurrence of race conditions and deadlocks. 

Currently, every application requires a parallel version, as the trend is the use of multi-core 
processors. The POSIX thread is an option that allows maximizing use of these processors. 
Due to these advantages, Pthreads was used to improve the computational time of the 
resolution of the inverse thermal problem.  

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2972

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



3 STATEMENT OF THE PROBLEM 

Let θ  and T  be thermal potentials and k  the thermal conductivity of the medium. The 
ambient temperature is T∞  and, thus, T Tθ ∞= − . Denoting the domain of the problem byΩ , 

the heat conduction equation is written as 

 .( ) 0 in .k θ∇ − ∇ = Ω
�� ��

 (1) 

The interaction between Ω  and the exterior occurs through the boundary ∂Ω  and is 
defined by relationships between thermal excitation and response. Consider the following 
mixed boundary condition, i.e., the coupling between conduction and heat convection 

  in ,k h q
n

θ
θ

∂
− = + ∂Ω

∂
 (2) 

where n  is the normal vector, h  is the convection coefficient and q  is the heat flux imposed 

at the boundary. If all the parameters of equations (1) – (2) were known, a mathematically 
well-posed problem would be constituted, which could be solved by conventional numerical 
techniques. However, this is not the case in thermal tomography: one or more parameters are 
unknown in parts of the boundary. The strategy for the solution consists in palliating this 
information deficiency through the measurement of redundant boundary conditions at the 
accessible parts of the boundary. 

The finite element method was chosen to discretize the problem equations from the 
following residual equation based on a convenient weight function ( )v  (Becker et al., 1981) 

 
2

.  [ ]  0.k v dxdy h q v dsθ θ
Ω ∂Ω

∇ ∇ + + =∫ ∫
�� ��

 (3) 

Our approach to solve the inverse problem associated with the reconstruction of the 
convection coefficient from boundary data is based on an error functional assessing the 
difference between measured and model temperatures. 

Assuming a prospective distribution of h  ( ),numh  the set of equations (1)-(2) is used to 

simulate the problem, returning numT . In this work, instead of taking the experimental 

measurements, they are simulated through the same set of equations (1)-(2), however solved 
for a reference convection coefficient actualh , and having actualT  as the result. 

Thus, two different models were considered: one corresponding to the experimental 
assembly itself (actual or analogical model) and the other corresponding to the numerical 
implementation of equations (1)-(2) on a digital computer (mathematical-numerical model) 
(ROLNIK and Seleghim, 2006). The error functional can be written as follows 

 ( ) ,num actual nume h T T= −  (4) 

where temperatures actualT  and numT  refer only to the accessible region of the boundary where 

measurements can be accomplished. In Eq. (4), the Euclidian norm is usually adopted, that is, 

 2( ) ( ) .num actual nume h T T= −∑  (5) 
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The correct convection coefficient distribution can be found by an optimization method 
that produces successive corrections kd  to prospective solutions kh  minimizing the error 

function given by Eq. (5). In mathematical terms, this can be expressed as (Colaço et al., 
2006, Nocedal and Wright, 1999) 

 1 ,k k k kh h dλ+ = +  (6) 

where kλ , is the search step size, kd  is the direction of descent and k  is the number of 

iterations. The graphs of kh  or its statistical moments over the iterations correspond to the 

here called convergence trajectories and reveal extremely important aspects about the ill-
conditioned nature of the problem. 

The majority of the deterministic optimization methods can be described by Eq. (6), and 
they differ from each other by the form of calculating the descent direction. For instance, in 
the Steepest Descent method (Nocedal and Wright, 1999), which is a gradient-based method, 

kd  are corrections along the gradient of the error function which corresponds to downward 

movements along the steepest descent. Therefore, the direction of the descent is given by 

 ( ),k kd e h= −∇
��

 (7) 

where e∇
��

 corresponds to the gradient vector associated with the error surface and calculated 
at the k th− iteration. 

The main characteristic of this method is the capacity to converge for the solution even if 
the initial guess is distant from the global minimum. An important disadvantage is the 
easiness which convergence trajectory is trapped by local minima. 

A optimization technique is the Newton method (Nocedal and Wright, 1999), which in 
addition to using first-order derivative of the error functional, such as the Steepest Descent 
and the Conjugate Gradient methods, also uses information of the second derivative in order 
to achieve a faster convergence rate. Therefore, in this method the corrections are given by 

 1( ) ( ),k k kd H h e h−= − ∇
��

 (8) 

where H  is the Hessian matrix containing the second-order derivatives of the error functional 
in relation to the local values of the convection coefficient 

 
2

, .
i j

i j

e
H

h h

∂
=

∂ ∂
 (9) 

Although the convergence rate of the Newton method is quadratic, the calculation of the 
Hessian matrix is computationally expensive. As a result, other methods have been developed 
that approximate the Hessian matrix with simpler and faster computing forms. In this work, 
the finite difference method was adopted to calculate the Hessian matrix, with derivatives 
approximated by standard second-order central differences. 

In brief, the sequence that hypothetically leads to the solution (global minimum) is the 
following: 

 1
1 . . ( ) ( ),

k k k k k k
h h h h H h e hλ λ −

+ = − ∆ = − ∇
����

 (10) 
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where h∆  are corrections in vector h . 
This method is very powerful and straightforward if the Hessian matrix associated with the 

optimization problem is well behaved. Since the problem we are dealing with is inverse and, 
therefore, intrinsically ill-conditioned, H  is expected to be problematic in some sense. More 
precisely, corrections kh∆  in Eq.(10), which are obtained by solving the Hessian-gradient 

problem, may lead to an erratic convergence trajectory. 
Although the Newton’s method obtains a quadratic convergence rate, it may fail to 

converge depending on whether the initial guess is outside of the convergence attraction 
region (region near the maximum/minimum) or due to the ill-conditioning of the Hessian 
matrix. 

Considering that the error functional is not regularized by the application of some specific 
techniques, as the Tikhonov method for instance, some equivalent procedure must be applied 
to the Hessian matrix. The Singular Value Decomposition was adopted in this work to obtain 
a pseudo-inverse of the Hessian matrix with a better conditioning number: the eigenvectors 
corresponding to singular or near singular eigenvalues of H  are truncated (TSVD) (Brandi et 
al., 2009). In rough, this corresponds to throwing away sets of equations that are nearly linear-
dependent or corrupted by round off errors and, thus, solving Eq. (10) in an average sense. 
These problematic equations attract the solution to the null space associated with H  and, 
consequently, result in increasingly larger corrections 

k
d  towards infinity. 

The strategy for solving the inverse problem can be seen in Figure 3. The optimization 
cycle starts with the arbitration of a prospective distribution coefficient of convection.  

This completes the boundary conditions and, consequently, the equations of heat 
conduction can be solved, producing a prospective distribution of temperatures in the problem 
domain. Then, the temperatures of the accessible parts of the boundary are compared with 
their respective values measured experimentally, generating an error functional that quantifies 
this difference. An optimization algorithm based on this functional error can produce 
corrections to be applied to the initial distribution of the convection coefficient, and the 
process is iterated from this point.  
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� � �

error  

Figure 3: Solution algorithm. 

4 PARALLEL APPROACH 

The parallelization of the code using the API Pthread derived directly from a sequential 
code for solving the inverse thermal problem implemented in C language. The Pthread allows 
the creation of threads and for each thread created can be assigned a function, along with their 
arguments. 

The implementation of Pthreads focuses on parallelizing the calculation and assembly of 
the Hessian matrix of the inverse thermal problem, which is the major bottleneck in the 
processing of the problem. To assemble the Hessian matrix it is necessary to solve several 
sparse linear systems that arise from the central difference method used to discretize the 
second derivatives. 

Figure 4 shows the model code which was parallelized using the procedures of the Pthread. 
The program starts from a master thread that executes the serial program. Arriving in the 
function of calculating and assembling the Hessian matrix threads are created so that each one 
created is responsible for calculating and assembling a line of Hessian matrix. The threads run 
the finite element method (FEM) in parallel to generate the sparse linear systems which are 
settled soon afterwards by the Preconditioned Bi-Conjugate Gradient (PBCG) (Press et al., 
1992), which returns a fitness value used in the calculation and assembling of the Hessian 
matrix. 

At the end of the calculation and assembly of the Hessian matrix, the code execution 
proceeds in serial mode through the master thread. As the parallel programming model 
adopted uses shared memory, it is necessary to be careful so that race conditions do not occur 
in the variables used. 
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Figure 4: Implementation of the code using Pthread. 

5 NUMERICAL SIMULATIONS AND RESULTS 

Codes (serial and parallel version) were run on computers with different types of multi-
cores CPUs and with different amounts of threads. The specifications of processor and 
operating systems used are described in Table 2. The compiler used for the codes developed 
(serial and parallel) in C programming language was compiled with gcc 4.3 with the aid of the 
optimization flag –O2.  

Optimization flags were used to achieve the maximum possible performance to reduce the 
computational cost of the inverse thermal problem. CFLAGS are flags of compiler C, usually 
options for GCC (GNU Compiler Collection) and it can be used to customize and optimize 
applications when it is built from source. They are commonly utilized to specify the 
architecture of your computer as well as the type of CPU used and any other special option 
that want to enable or disable. This information is important for the GCC which the flag tells 
exactly how to customize the assembly instructions that it creates through the source code of 
the application.  
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All times shown are the averages of 10 consecutive executions of each algorithm with 10 
iterations of Newton’s method. The total execution time of the program was calculated using 
the time function of Linux.  

To analyze the convergence of the parallel algorithm were performed 1000 iterations of the 
Newton’s method and compared with the serial version of the code. All tests used variables 
with double precision.  

 CPU 1 CPU 2 CPU 3 

Processor Intel Core 2 Duo 

(E4400) 

Intel Core 2 Quad 

(Q8200) 

Intel Core i7 975 

Extreme Edition 

Number of 
cores 

2 4 4 

Clock Speed 
(GHz) 

2 2.5 3.33 

RAM memory 1 GB DDR2 4 GB DDR2 12 GB DDR3 

Linux kernel 
version 

Ubuntu 9.10 Karmic 

Koala 32 bits 

Debian Lenny 64 

bits 

Ubuntu 9.10 Karmic 

Koala 64 bits 

Table 2: Characteristic of the CPUs used. 

5.1 Test Case 

Consider a two-dimensional domain, that is, a square of unitary sides with 1k =  in the 
whole domain and the other boundary condition parameters according to Figure 5. The 
governing Eq.(1), in Cartesian coordinates, was discretized by the finite element method. The 
domain was discretized in a computational mesh of 31 31×  points, generating 961 nodes 
equally spaced and 1800 linear triangular elements. Both temperature variation and thermal 
conductivity were assumed linear inside the elements. 
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Figure 5: Configuration of the problem simulated numerically. 

The reference problem, which mimics the actual experimental test, was defined by setting a 
reference convection coefficient distribution 

actual
h  on the inferior side of the domain ( 0)y = . 

More specifically, by fixing 
actual

h , reference temperatures are obtained on the accessible 

boundary of the domain ( 1)y = , which would be measured in response to the application of 

the reference heat flux. As the error (4) decreases during the optimization process, the 
obtained temperatures of the numerical model converge to the reference problem temperatures 
and, supposedly, 

num
h  converges to

actual
h . In this work, a triangular convection coefficient was 

adopted as 
2 2( /15),  15

.
2 2( /15),  15actual

x x
h

x x

− ≤
= 

− + >
 

5.2 Performance and Convergence 

As previously mentioned, since the inverse problem is intrinsically ill-conditioned, the 
corresponding optimization problem is pathological. This can be shown by simulating the 
convergence trajectory on the error surfaces, whose two-dimensional versions were analyzed 
in (ROLNIK and Seleghim, 2006). More specifically, starting from perturbations of 

actual
h  in 

Eq. (4), the sequence given by Newton’s recurrence formula Eq.(10) should converge 
monotonically if the error surface were concave. As shown in (Brandi, 2010) optimization 
surfaces are pathological, that is, they contain structures such as narrow valleys, multiple local 
minima, plateaus, etc., and, consequently, the corresponding convergence trajectories are 
expected to be erratic. 

Three convergence trajectories will be constructed starting from progressively more 
perturbed versions of 

actual
h  given by the formula ,

inicial actual
h h δ= +  whereδ , corresponds to a 

uniform random perturbation vector centered around zero, and a standard deviation previously 
set. This ensures that the initial guess in Eq.(10) be taken progressively more distantly from 
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the correct solution 
actual

h , where is a triangular function and the perturbations are set 

according to the following formula: 

 

[ ]

[ ]

[ ]

2.0, 2.0 ,  case 1;
2 2( /15),  15

1.0, 1.0 ,  case 2;
2 2( /15),  15

0.5, 0.5 ,  case 3.

x x
h

x x

δ

δ

δ

 ∈ − +
− ≤ 

= + ∈ − +  
− + >  

∈ − +

 (11) 

The convergence trajectory analysis showed to be satisfactory if compared with the serial 
version, as seen in Figures 6 – 8. 

 

 

Figure 6: Initial guesses and real solution of the convection coefficient – Case 1. 
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Figure 7: Initial guesses and real solution of the convection coefficient – Case 2. 

 

Figure 8: Initial guesses and real solution of the convection coefficient – Case3. 

Figure 9 shows the speedups obtained with the parallelized code using the processing 
power of multi-core processors through Pthreads API. It is possible to observe that the 
speedups achieved are very close to the amount of physical processor cores, or with the use of 
the CPU 2 which has four cores showed a speedup close to four. 
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Figure 9: Speedup (Serial and Pthread). 

Figure 10 shows the processing time required to perform 10 iterations of Newton's method 
to solve the problem. We can observe a performance gain using the optimization flag in the 
serial and parallelized program.  

 

 

Figure 10: Processing time. 
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6 CONCLUSIONS 

Engineering problems have become increasingly complex and computationally expensive, 
requiring the search for new tools that make feasible its resolution in a time habile. With the 
growing trend of multi-core processors has opened up a new perspective in this relentless 
pursuit to solve increasingly complex problems, however, it is necessary to seek planning 
strategies to take advantage of these processors so that problems that demand high 
computational cost can be solved. 

This paper has presented an application of the multi-core processors through parallel 
programming tool for shared memory Pthread combined with optimization flags in order to 
accelerate the processing time for the resolution of an inverse thermal problem. 

The results showed that the implementations of parallel algorithms on shared memory 
architectures, combined with optimization flags are a very useful tool to solve problems that 
require high computational time. With the aid of the optimization flags, it was possible to 
obtain a speedup of the parallelized code about four times faster than the serial version on the 
same processor. Thus, the optimized code has become a very interesting application, helping 
to increase the range of tests and the complexity of the problem at a low cost. 
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