
ACCELERATING THE RESOLUTION OF AN INVERSE THERMAL

PROBLEM VIA POSIX THREAD API AND OPTIMIZATION FLAGS

Jonas L. Ansoni
 a
, Analice C. Brandi

a
, Paulo Seleghim Jr.

a

a
Thermal and Fluids Engineering Laboratory, EESC, University of São Paulo, Av. Trabalhador São-

carlense 400, 13566-970, São Paulo, Brazil, jonasansoni@sc.usp.br,analice@sc.usp.br,

seleghim@sc.usp.br, http://netef.blogspot.com

Keywords: Parallel processing, POSIX Thread, Optimization flags, Inverse thermal problem.

Abstract. A major difficulty for the resolution of an inverse thermal problem is its high computational
cost. Therefore, thermal tomography has found a limited application to industrial processes where fast
execution is required, e.g., mapping imperfections in the process of manufacturing castings. In an
attempt to improve the computational performance of the resolution of an inverse thermal problem
developed, the computational power of multi-core CPUs was used by programming tool parallel
architectures shared memory POSIX Threads (Pthreads). Tests were performed on processors with
different microarchitectures (Intel® Core 2 Duo, Intel® Core 2 Quad and Intel® Core i7) and different
amounts of threads. The parallel implementation of our algorithm exploiting the processing power of
multi-core CPUs with the aid of optimization flags arrived to get a performance of up to four times
faster than the serial version of the code on the same CPU representing a significant gain for
simulations involving the resolution of inverse thermal problems.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (artículo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)

Buenos Aires, Argentina, 15-18 Noviembre 2010

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

1 INTRODUCTION

Industrial process tomography is a technique used to determine the internal properties of an
object through nonintrusive external measurements. The main application of thermal
tomography is to map imperfections (fouling, cracks, voids, etc.) in solid materials. Another
important application is in the measurement of thermophysical properties in processes
involving fluids. It is the case of flowmeters of thermal principle, in which the velocity of the
flow is determined by the measurement of the convection coefficient. The principle of thermal
tomography operation is usually based on the application of a heat flux at the external
boundary of the process or object and on the measurement of the response temperatures at that
same boundary.

The construction of an image from signals with the aid of tomography techniques generally
involves solving an inverse problem. A thermal problem is described by a differential
equation that governs the temperature inside the domain, and by adequate boundary
conditions, which simulate the excitation and measurement process. In the inverse problem
studied in this paper, we assume that no access is granted to the surface where the convection
coefficient distribution is to be determined. This lack of information, whose minimization
corresponds to the sought solution (Borcea, 2003, Özisik and Orlande, 2000) is defined.

Among the main advantages of thermal tomography are its low cost and robustness, which
make it extremely interesting for industrial applications. However, the problem of thermal
tomography is highly expensive, in terms of computational cost, requiring considerable CPU
time, particularly to calculate and regularize the Hessian matrix of Newton’s optimization
method used to solve the problem. The Hessian matrix is singular due to the intrinsic ill-
conditioned nature of the inverse problem (Brandi et al., 2009), being extremely sensitive to
the presence of rounding errors.

Table 1 shows the number of times the Preconditioned Bi-Conjugate Gradient (PBCG)
method is called and percentage of time spent on the calculation and assembly of the Hessian
matrix in an iteration of Newton’s method.

Newton’s method
Calculation and assembling

of Hessian matrix
Percentage of time (s)

3869 3813 98%

Table 1: Number of times the PBCG method is called and percentage of times spent on the calculation and
assembly of the Hessian matrix.

The computational power of modern shared memory multiprocessor architectures
(Symmetric Multiprocessing - SMP) was used to reduce the computational cost of the
calculation and assembling of matrix Hessian of the inverse thermal problem.

In our problem the PBCG method solver is called several times independently in the
assembly of the Hessian matrix of the problem, characterizing a case of Single Instruction,
Multiple Data (SIMD) and allowing its parallelization. A tool for parallel programming in
shared memory architectures POSIX Thread (Pthreads) was used to manage the threads in
multi-cores processors. In another study we use the processing power of GPUs to accelerate
the process of calculating and assembling the Hessian matrix (Ansoni et al., 2010).

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2970

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

2 POSIX THREADS

The POSIX Threads library is an IEEE POSIX (Potable Operating System, Interface for
UNIX) for thread, which defines a standard API to create and manipulate threads in C/C++
languages. The libraries implemented are also called Pthread, they are widespread in the Unix
universe and other operating systems, like Linux and Solaris, but there are implementations
for Windows (Barney, 2010, Butenhof, 1997). This library provides us with effective ways to
expand into new process running concurrent processes, which can run more efficiently on
computer systems with multiple processors and/or processors with multiple cores.

In general, for a program to take advantage of Pthreads, it should be organized into
discrete, independent tasks that can be performed simultaneously. Pthreads are defined as a set
of C language types and procedure calls, implemented with a header (header/include)
pthread.h. There are about 100 procedures in Pthreads, all with the prefix “pthread_”. The
operations with threads include creation, termination synchronization, scheduling and
signaling. All threads have access to the same global shared memory, and the programmer is
responsible for synchronizing access (protection) globally shared data.

As multiple threads can concurrently access the same variables, there may be cases in
which multiple threads access and modify the same data at the same time causing “race
conditions1” as seen in Figure 1.

Figure 1: Race Condition (Barney, 2010).

The original Pthreads API was defined in the ANSI/IEEE POSIX 1003.1 – 1995 standard.
The POSIX standard has continued to evolve and undergo revisions, including the Pthreads
specifications. The subroutines which comprise the Pthreads can be informally grouped into
four major groups (Barney, 2010):

• Thread management: Routines that work directly on threads – creating, detaching,
joining, etc. (e.g.: pthread_create).

1 Occurs when two threads modify a variable at the same time, there is a race condition,
except that in this race, the last thread that modifies the values is having its stored value.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2971

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

• Mutexes: Routines that deal with synchronization, called mutex, which is an
abbreviation for mutual exclusion (e.g.: pthread_mutex_lock).

• Condition variables: Routines that address communications between threads that
share a mutex (e.g.: pthread_cond_init).

• Synchronization: Routines that manage read/write locks and barriers (e.g.:
pthread_join).

In the example we can understand the execution of multiple threads: the program starts
with the main thread, which creates other threads (pthread_creat) and expects them to end
their work (pthread_join). Each thread performs work at the same time. After pthread_join
execution, the main thread ends the execution of the serial program.

Figure 2 we shows the possible execution flow of the example.

Figure 2: Possible flow of execution.

Some of the main advantages of using Pthreads are:
• Uses of the full potential of the new multi-core processors, which is becoming

increasingly common today;
• Portability of written applications using Pthreads library for any operating system

that supports the POSIX standard;
• The cost of exchange contexts between threads is lower than with processes, due to

the fact the threads are lighter;
• System overhead reduction;

Disadvantages:
• Program complexity increases due to the use of various resources for management

and synchronization between threads;
• Occurrence of race conditions and deadlocks.

Currently, every application requires a parallel version, as the trend is the use of multi-core
processors. The POSIX thread is an option that allows maximizing use of these processors.
Due to these advantages, Pthreads was used to improve the computational time of the
resolution of the inverse thermal problem.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2972

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

3 STATEMENT OF THE PROBLEM

Let θ and T be thermal potentials and k the thermal conductivity of the medium. The
ambient temperature is T∞ and, thus, T Tθ ∞= − . Denoting the domain of the problem byΩ ,

the heat conduction equation is written as

 .() 0 in .k θ∇ − ∇ = Ω
�� ��

 (1)

The interaction between Ω and the exterior occurs through the boundary ∂Ω and is
defined by relationships between thermal excitation and response. Consider the following
mixed boundary condition, i.e., the coupling between conduction and heat convection

 in ,k h q
n

θ
θ

∂
− = + ∂Ω

∂
 (2)

where n is the normal vector, h is the convection coefficient and q is the heat flux imposed

at the boundary. If all the parameters of equations (1) – (2) were known, a mathematically
well-posed problem would be constituted, which could be solved by conventional numerical
techniques. However, this is not the case in thermal tomography: one or more parameters are
unknown in parts of the boundary. The strategy for the solution consists in palliating this
information deficiency through the measurement of redundant boundary conditions at the
accessible parts of the boundary.

The finite element method was chosen to discretize the problem equations from the
following residual equation based on a convenient weight function ()v (Becker et al., 1981)

2

. [] 0.k v dxdy h q v dsθ θ
Ω ∂Ω

∇ ∇ + + =∫ ∫
�� ��

 (3)

Our approach to solve the inverse problem associated with the reconstruction of the
convection coefficient from boundary data is based on an error functional assessing the
difference between measured and model temperatures.

Assuming a prospective distribution of h (),numh the set of equations (1)-(2) is used to

simulate the problem, returning numT . In this work, instead of taking the experimental

measurements, they are simulated through the same set of equations (1)-(2), however solved
for a reference convection coefficient actualh , and having actualT as the result.

Thus, two different models were considered: one corresponding to the experimental
assembly itself (actual or analogical model) and the other corresponding to the numerical
implementation of equations (1)-(2) on a digital computer (mathematical-numerical model)
(ROLNIK and Seleghim, 2006). The error functional can be written as follows

 () ,num actual nume h T T= − (4)

where temperatures actualT and numT refer only to the accessible region of the boundary where

measurements can be accomplished. In Eq. (4), the Euclidian norm is usually adopted, that is,

 2() () .num actual nume h T T= −∑ (5)

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2973

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

The correct convection coefficient distribution can be found by an optimization method
that produces successive corrections kd to prospective solutions kh minimizing the error

function given by Eq. (5). In mathematical terms, this can be expressed as (Colaço et al.,
2006, Nocedal and Wright, 1999)

 1 ,k k k kh h dλ+ = + (6)

where kλ , is the search step size, kd is the direction of descent and k is the number of

iterations. The graphs of kh or its statistical moments over the iterations correspond to the

here called convergence trajectories and reveal extremely important aspects about the ill-
conditioned nature of the problem.

The majority of the deterministic optimization methods can be described by Eq. (6), and
they differ from each other by the form of calculating the descent direction. For instance, in
the Steepest Descent method (Nocedal and Wright, 1999), which is a gradient-based method,

kd are corrections along the gradient of the error function which corresponds to downward

movements along the steepest descent. Therefore, the direction of the descent is given by

 (),k kd e h= −∇
��

 (7)

where e∇
��

 corresponds to the gradient vector associated with the error surface and calculated
at the k th− iteration.

The main characteristic of this method is the capacity to converge for the solution even if
the initial guess is distant from the global minimum. An important disadvantage is the
easiness which convergence trajectory is trapped by local minima.

A optimization technique is the Newton method (Nocedal and Wright, 1999), which in
addition to using first-order derivative of the error functional, such as the Steepest Descent
and the Conjugate Gradient methods, also uses information of the second derivative in order
to achieve a faster convergence rate. Therefore, in this method the corrections are given by

 1() (),k k kd H h e h−= − ∇
��

 (8)

where H is the Hessian matrix containing the second-order derivatives of the error functional
in relation to the local values of the convection coefficient

2

, .
i j

i j

e
H

h h

∂
=

∂ ∂
 (9)

Although the convergence rate of the Newton method is quadratic, the calculation of the
Hessian matrix is computationally expensive. As a result, other methods have been developed
that approximate the Hessian matrix with simpler and faster computing forms. In this work,
the finite difference method was adopted to calculate the Hessian matrix, with derivatives
approximated by standard second-order central differences.

In brief, the sequence that hypothetically leads to the solution (global minimum) is the
following:

 1
1 . . () (),

k k k k k k
h h h h H h e hλ λ −

+ = − ∆ = − ∇
����

 (10)

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2974

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

where h∆ are corrections in vector h .
This method is very powerful and straightforward if the Hessian matrix associated with the

optimization problem is well behaved. Since the problem we are dealing with is inverse and,
therefore, intrinsically ill-conditioned, H is expected to be problematic in some sense. More
precisely, corrections kh∆ in Eq.(10), which are obtained by solving the Hessian-gradient

problem, may lead to an erratic convergence trajectory.
Although the Newton’s method obtains a quadratic convergence rate, it may fail to

converge depending on whether the initial guess is outside of the convergence attraction
region (region near the maximum/minimum) or due to the ill-conditioning of the Hessian
matrix.

Considering that the error functional is not regularized by the application of some specific
techniques, as the Tikhonov method for instance, some equivalent procedure must be applied
to the Hessian matrix. The Singular Value Decomposition was adopted in this work to obtain
a pseudo-inverse of the Hessian matrix with a better conditioning number: the eigenvectors
corresponding to singular or near singular eigenvalues of H are truncated (TSVD) (Brandi et
al., 2009). In rough, this corresponds to throwing away sets of equations that are nearly linear-
dependent or corrupted by round off errors and, thus, solving Eq. (10) in an average sense.
These problematic equations attract the solution to the null space associated with H and,
consequently, result in increasingly larger corrections

k
d towards infinity.

The strategy for solving the inverse problem can be seen in Figure 3. The optimization
cycle starts with the arbitration of a prospective distribution coefficient of convection.

This completes the boundary conditions and, consequently, the equations of heat
conduction can be solved, producing a prospective distribution of temperatures in the problem
domain. Then, the temperatures of the accessible parts of the boundary are compared with
their respective values measured experimentally, generating an error functional that quantifies
this difference. An optimization algorithm based on this functional error can produce
corrections to be applied to the initial distribution of the convection coefficient, and the
process is iterated from this point.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2975

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

prosph (x)
�

Heat conduction eq.
+

Boundary condition

prospT (x)
�

prosp 2T in ∂Ω

med 2T in ∂Ω

Numerical
model

measurement

med prospe T T= −

OPTIMIZATION

ALGORITHM

prosp prosph (x) h(x) h (x)← ∆ +
� � �

error

Figure 3: Solution algorithm.

4 PARALLEL APPROACH

The parallelization of the code using the API Pthread derived directly from a sequential
code for solving the inverse thermal problem implemented in C language. The Pthread allows
the creation of threads and for each thread created can be assigned a function, along with their
arguments.

The implementation of Pthreads focuses on parallelizing the calculation and assembly of
the Hessian matrix of the inverse thermal problem, which is the major bottleneck in the
processing of the problem. To assemble the Hessian matrix it is necessary to solve several
sparse linear systems that arise from the central difference method used to discretize the
second derivatives.

Figure 4 shows the model code which was parallelized using the procedures of the Pthread.
The program starts from a master thread that executes the serial program. Arriving in the
function of calculating and assembling the Hessian matrix threads are created so that each one
created is responsible for calculating and assembling a line of Hessian matrix. The threads run
the finite element method (FEM) in parallel to generate the sparse linear systems which are
settled soon afterwards by the Preconditioned Bi-Conjugate Gradient (PBCG) (Press et al.,
1992), which returns a fitness value used in the calculation and assembling of the Hessian
matrix.

At the end of the calculation and assembly of the Hessian matrix, the code execution
proceeds in serial mode through the master thread. As the parallel programming model
adopted uses shared memory, it is necessary to be careful so that race conditions do not occur
in the variables used.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2976

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 4: Implementation of the code using Pthread.

5 NUMERICAL SIMULATIONS AND RESULTS

Codes (serial and parallel version) were run on computers with different types of multi-
cores CPUs and with different amounts of threads. The specifications of processor and
operating systems used are described in Table 2. The compiler used for the codes developed
(serial and parallel) in C programming language was compiled with gcc 4.3 with the aid of the
optimization flag –O2.

Optimization flags were used to achieve the maximum possible performance to reduce the
computational cost of the inverse thermal problem. CFLAGS are flags of compiler C, usually
options for GCC (GNU Compiler Collection) and it can be used to customize and optimize
applications when it is built from source. They are commonly utilized to specify the
architecture of your computer as well as the type of CPU used and any other special option
that want to enable or disable. This information is important for the GCC which the flag tells
exactly how to customize the assembly instructions that it creates through the source code of
the application.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2977

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

All times shown are the averages of 10 consecutive executions of each algorithm with 10
iterations of Newton’s method. The total execution time of the program was calculated using
the time function of Linux.

To analyze the convergence of the parallel algorithm were performed 1000 iterations of the
Newton’s method and compared with the serial version of the code. All tests used variables
with double precision.

 CPU 1 CPU 2 CPU 3

Processor Intel Core 2 Duo

(E4400)

Intel Core 2 Quad

(Q8200)

Intel Core i7 975

Extreme Edition

Number of
cores

2 4 4

Clock Speed
(GHz)

2 2.5 3.33

RAM memory 1 GB DDR2 4 GB DDR2 12 GB DDR3

Linux kernel
version

Ubuntu 9.10 Karmic

Koala 32 bits

Debian Lenny 64

bits

Ubuntu 9.10 Karmic

Koala 64 bits

Table 2: Characteristic of the CPUs used.

5.1 Test Case

Consider a two-dimensional domain, that is, a square of unitary sides with 1k = in the
whole domain and the other boundary condition parameters according to Figure 5. The
governing Eq.(1), in Cartesian coordinates, was discretized by the finite element method. The
domain was discretized in a computational mesh of 31 31× points, generating 961 nodes
equally spaced and 1800 linear triangular elements. Both temperature variation and thermal
conductivity were assumed linear inside the elements.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2978

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 5: Configuration of the problem simulated numerically.

The reference problem, which mimics the actual experimental test, was defined by setting a
reference convection coefficient distribution

actual
h on the inferior side of the domain (0)y = .

More specifically, by fixing
actual

h , reference temperatures are obtained on the accessible

boundary of the domain (1)y = , which would be measured in response to the application of

the reference heat flux. As the error (4) decreases during the optimization process, the
obtained temperatures of the numerical model converge to the reference problem temperatures
and, supposedly,

num
h converges to

actual
h . In this work, a triangular convection coefficient was

adopted as
2 2(/15), 15

.
2 2(/15), 15actual

x x
h

x x

− ≤
=

− + >

5.2 Performance and Convergence

As previously mentioned, since the inverse problem is intrinsically ill-conditioned, the
corresponding optimization problem is pathological. This can be shown by simulating the
convergence trajectory on the error surfaces, whose two-dimensional versions were analyzed
in (ROLNIK and Seleghim, 2006). More specifically, starting from perturbations of

actual
h in

Eq. (4), the sequence given by Newton’s recurrence formula Eq.(10) should converge
monotonically if the error surface were concave. As shown in (Brandi, 2010) optimization
surfaces are pathological, that is, they contain structures such as narrow valleys, multiple local
minima, plateaus, etc., and, consequently, the corresponding convergence trajectories are
expected to be erratic.

Three convergence trajectories will be constructed starting from progressively more
perturbed versions of

actual
h given by the formula ,

inicial actual
h h δ= + whereδ , corresponds to a

uniform random perturbation vector centered around zero, and a standard deviation previously
set. This ensures that the initial guess in Eq.(10) be taken progressively more distantly from

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2979

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

the correct solution
actual

h , where is a triangular function and the perturbations are set

according to the following formula:

[]

[]

[]

2.0, 2.0 , case 1;
2 2(/15), 15

1.0, 1.0 , case 2;
2 2(/15), 15

0.5, 0.5 , case 3.

x x
h

x x

δ

δ

δ

 ∈ − +
− ≤

= + ∈ − +
− + >

∈ − +

 (11)

The convergence trajectory analysis showed to be satisfactory if compared with the serial
version, as seen in Figures 6 – 8.

Figure 6: Initial guesses and real solution of the convection coefficient – Case 1.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2980

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

Figure 7: Initial guesses and real solution of the convection coefficient – Case 2.

Figure 8: Initial guesses and real solution of the convection coefficient – Case3.

Figure 9 shows the speedups obtained with the parallelized code using the processing
power of multi-core processors through Pthreads API. It is possible to observe that the
speedups achieved are very close to the amount of physical processor cores, or with the use of
the CPU 2 which has four cores showed a speedup close to four.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2981

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

0

0,5

1

1,5

2

2,5

3

3,5

4

4,5

CASE 1 CASE 2 CASE 3

CPU 1 - SERIAL + flag x

PTHREAD CPU1 + flag

CPU 2 - SERIAL + flag x

PTHREAD CPU 2 + flag

CPU 3 - SERIAL + flag x

PTHREAD CPU 3 + flag

Figure 9: Speedup (Serial and Pthread).

Figure 10 shows the processing time required to perform 10 iterations of Newton's method
to solve the problem. We can observe a performance gain using the optimization flag in the
serial and parallelized program.

Figure 10: Processing time.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2982

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

6 CONCLUSIONS

Engineering problems have become increasingly complex and computationally expensive,
requiring the search for new tools that make feasible its resolution in a time habile. With the
growing trend of multi-core processors has opened up a new perspective in this relentless
pursuit to solve increasingly complex problems, however, it is necessary to seek planning
strategies to take advantage of these processors so that problems that demand high
computational cost can be solved.

This paper has presented an application of the multi-core processors through parallel
programming tool for shared memory Pthread combined with optimization flags in order to
accelerate the processing time for the resolution of an inverse thermal problem.

The results showed that the implementations of parallel algorithms on shared memory
architectures, combined with optimization flags are a very useful tool to solve problems that
require high computational time. With the aid of the optimization flags, it was possible to
obtain a speedup of the parallelized code about four times faster than the serial version on the
same processor. Thus, the optimized code has become a very interesting application, helping
to increase the range of tests and the complexity of the problem at a low cost.

REFERENCES

ANSONI, J. L., BRANDI, A. C., MARCO, A. D., CAROSIO, G. L. C. & SELEGHIM JR, P.
Year. Sparse matrix solver on the GPU: Conjugate gradient method applied to solve an
inverse thermal tomography problem. In: Inverse Problems, Design and Optimization
Symposium, 2010 João Pessoa, PB, Brazil. IPDO 2010.

BARNEY, B. 2010. POSIX Thread programming [Online]. Available:
https://computing.llnl.gov/tutorials/pthreads/ [Accessed 06/03 2009].

BECKER, E. B., CAREY, G. F. & ODEN, J. T. 1981. Finite Elements: An Introduction,

Englewood Cliffs, Prentice-Hall.
BORCEA, L. 2003. Electrical Impedance Tomography. Inverse Problems, 18, R99-R136.
BRANDI, A. C. 2010. Desenvolvimento de uma Técnica não Intrusiva de Medicção do

Coeficiente de Convecção - Solução do Problema Térmico Inverso. Doutorado, Escola de
Engenharia de São Carlos, Universidade de São Paulo.

BRANDI, A. C., ANSONI, J. L. & SELEGHIM JR, P. Year. Reconstruction of the convection
coefficient from non-intrusive measurements: Regularization of the inverse problem by the
truncated singular value decomposition method. In: 20th International Congress of
Mechanical Engineering, November 15-20 2009 Gramado, RS, Brazil. ABCM, 1-8.

BUTENHOF, D. R. 1997. Programming with POSIX Threads, Boston, Addison-Wesley
Longman Publishing.

COLAÇO, M. J., ORLANDE, H. R. B. & DULIKRAVICH, G. S. 2006. Inverse and
optimization problems in heat transfer. Journal of the Brazilian Soc. Mechanical Sciences

and Engineering, 28, 1-24.
NOCEDAL, J. & WRIGHT, S. J. 1999. Numerical optimization, New York, Springer.
ÖZISIK, M. N. & ORLANDE, H. R. B. 2000. Inverse Heat Transfer: Fundamentals and

Applications, Taylor & Francis.

Mecánica Computacional Vol XXIX, págs. 2969-2984 (2010) 2983

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

PRESS, W. H., TEUKOLSKY, S. A., VETTERLING, W. T. & FLANNERY, B. P. 1992.
Numerical Recipes in C: The Art of Science Computing, New York, Cambridge University
Press.

ROLNIK, V. P. & SELEGHIM, P. J. 2006. A Specialized Genetic Algorithm for the Eletrical
Impedance Tomography of Two-Phase Flows. Journal of the Brazilian Soc. Mechanical

Sciences and Engineering, 28, 378-389.

J. ANSONI, A. BRANDI, P. SELEGHIM JR.2984

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar

