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Abstract. The TOP500 project ranks the 500th. most powerful computer systems in the world. This 
rank is based on High-Performance LINPACK (HPL), a portable implementation of the LINPACK 
benchmark for distributed-memory computers. According to the TOP500’s list published in June, 
2010, most of the systems are Linux based clusters. However, the number of Windows based systems 
tends to grow in the next lists. In this paper the performance of a Linux and a Windows HPC Server 
cluster using the same hardware and scientific applications is evaluated. To assess performance, the 
HPL and NAS Parallel Benchmarks (NPB), as well as a real-world multi-physics application, named 
EdgeCFD, are used. This application is developed at NACAD-COPPE/UFRJ and it is an implicit 
edge-based coupled fluid flow and transport solver for large-scale problems optimized for modern 
clusters. EdgeCFD adopts peer-to-peer non-blocking communication pattern among processes. Tests 
were conducted for three MPI distributions MVAPICH2 (based on MPICH2 with Infiniband support), 
OpenMPI (High Performance Message Passing Library) and MS-MPI (Microsoft MPI based on 
MPICH2) on all benchmarks and applications of this study. All performance measurements show that 
Windows HPC Server is a viable option. 
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1 INTRODUCTION 
In recent years, modern parallel supercomputers are allowing engineers, scientists and 

industries to solve a wide range of complex, real world problems at scales that were 
considered impossible few years ago. National laboratories and universities want even more 
powerful machines to solve difficult large-scale problems with greater fidelity. On the 
industry, as in aerospace and automotive engineering companies, better performing systems 
allow to grow from running component-level jobs (such as analyzing the stress on an engine 
block) to conducting more complex, multi-parameter studies. It is known that the performance 
of these systems depends on several factors including processors, memory system and local 
and global networks (Saini et al; 2009a,b). However, we have observed that operational 
system influence on these systems has a limited discussion.   

Since 1993 and twice a year, a group of scientists in Europe and the United States release a 
list of the world's 500 most powerful computing systems. The TOP500 (TOP500, 2010) list is 
the most prestigious ranking of its kind, with vendors and users leveraging favorable rankings 
to promote their work. Over the years, the TOP500 list has served as a tool for documenting 
and analyzing technological and architectural changes in the HPC arena, including the 
tremendous growth in performance and the increase in the number of computer clusters. The 
number of clusters in the TOP500 list has increased dramatically over the 15 years since the 
list has been compiled. In the most recent list, released in June 2010, Linux is by far the most 
frequently used operational system in high performance computing. Considering the numbers: 
405 machines (or 91%) run some Linux distribution, 22 run UNIX (4.5%) and five run 
Windows (1%). .  

Although Linux has a long history in HPC, there is a concern about the future. Microsoft 
continues to make advancements with its Windows HPC server. In addition, Windows is by 
far the most popular operational system for personal computers, which potentially makes it a 
comfortable platform to new HPC users. In light of this, we present an evaluation of the Linux 
and Windows HPC server environments using MPI-based benchmarks such as High-
Performance LINPACK (Dongarra et al, 2003), NAS Parallel Benchmark (Bailey et al, 1994 
and Bailey et al, 1994), and a real world application, EdgeCFD (Elias and Coutinho, 2007; 
Elias et al, 2009). For a general overview of computer benchmarking, please see Hockney 
(1995). 

The High-Performance LINPACK (HPL) solves a dense linear system in double precision 
on distributed-memory computers (Dongarra et al, 2003). Although, there is much debate 
about how relevant the HPL benchmark is to the industry, it remains an excellent “burn in” 
test for very complex HPC systems. HPL is a good tool for validating a system: it works as a 
check besides stressing the system more than typical applications would. Keeping this in 
mind, the HPL benchmark is used in this work to validate the system. The NAS Parallel 
Benchmarks (NPB) (Bailey et al, 1994) suite, developed by NASA, is based on applications 
as the Conjugate Gradient Method, Fast Fourier Transform and others. Finally, a real-world 
multi-physics application, named EdgeCFD (Elias and Coutinho, 2007; Elias et al, 2009) is 
also used in the performance tests. This application is developed at the High Performance 
Computing Center at COPPE/Federal University of Rio de Janeiro (NACAD-COPPE/UFRJ). 

In the present work, both operational systems were installed in the same hardware and 
performance studies between Linux and Windows HPC server are summarized by: 

• Overall performance evaluation using the benchmarks applications; 
• Performance evaluation of different MPI implementations; 
• Performance analysis of MPI process placement in multi-core processors. 

The remainder of this paper is organized as follows: Section 2 details the computing 

A. AVELEDA, R. ELIAS, J. CAMATA, A. COUTINHO2986

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



system architectures; Section 3 describes the HPL and the NPB benchmarks suite, while 
Section 4 describes the real-world application; Section 5 presents and analyzes results from 
running these benchmarks and the application; finally Section 6 contains a summary and 
conclusions of the study and future work. 

2 COMPUTING SYSTEM 
This section briefly describes the Dell PowerEdge system and software used in this work. 

2.1 Hardware 
The Dell PowerEdge PE2950III system is composed by: two heap nodes and 16 computing 

nodes. Each heap node has two 3.0 GHz Intel Quad core Xeon E5450 and 12MB shared cache 
L2 processors.  Each computing node is composed by a blade M600 with two Intel 3.0 GHz 
quad-core Xeon EX5450 with 12 MB L2 shared cache; 6MB per core pair. The 1333 MHz 
Front Side Bus (FSB), which transports data among memory and the four cores, is a quad-
pumped bus running off a 333 MHz system clock making 10.66 GBytes per second data 
transfer rates possible. The blades are interconnected by a Double Data Rate (DDR) 
InfiniBand (IB) network with a peak bidirectional bandwidth of 20GB/s. Each node has 16GB 
of memory RAM; 2GB per core. Finally, a PowerVault MD3000 and MD1000 form the 
storage system. The machine specifications are summarized in Table 1. 

 

Head node 
Dell PowerEdge PE2950III with two processors 
Intel Quad core Xeon EX5450, 3.0GHz, 2x6MB 
Cache 1333MHz FSB. 

Computing node Blade PE M600 with two processors Intel Xeon 
E5450, 2x6MB, 3.0GHz, 1333FSB 

Storage PowerVault MD3000 and MD1000 
Private network Gigabits Ethernet (1 Gb/s) 
Application network Infiniband DDR (20 Gb/s) 

Table 1: Cluster Hardware  

In the present paper we use the same computing node hardware on the Linux and the 
Windows HPC based Cluster. Thus, performance differences between the Linux and 
Windows HPC environments should not be attributed to the hardware.  In addition, each head 
node on the cluster is assigned by each operational system; one for the Linux based cluster 
and the other for the Windows HPC based cluster. Considering all computing nodes, the 
cluster has 128 cores. 

2.2 Software 
The Linux Cluster uses RedHat Enterprise Linux distribution (version 5.4). The system’s 

IB network uses Open Fabrics Enterprise Distribution (OFED) software. All applications 
were compiled by Intel compilers (version 11.1).  Control over batch jobs and schedule them 
over the computer nodes are provided by Torque. The software used on the Linux Cluster is 
summarized in Table 2.   
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Operational System RedHat Enterprise Linux 5.4 (RHEL 5.4) 
Infiniband OFED (OpenFabrics Enterprise Distribution) 

MPI Libraries MVAPICH2 – v. 1.4.1 
OpenMPI – v. 1.4.1 

Compilers Intel Compiler – v. 11.1 

Others 
Torque – v.2.4.8 
MOAB- v. 5.4.1 
Ganglia – v 3.1.2 

Table 2: Software used for the Linux Cluster 

For the Windows HPC Cluster, it is used Windows HPC server 2008 SP2 with HPC pack 
SP1 (MS-HPC, 2010). The Windows HPC Pack provides a complete, integrated set of 
middleware and tools for running high performance computing clusters.  For instance, it 
includes the job scheduling system, system management and network and message passing 
interface (MPI) (MS-HPC, 2010). The Job Scheduler supports a Service-Oriented 
Architecture (SOA) mode that provides access to interactive applications through the 
Windows Communication Foundation (WCF). In addition, core Job Scheduler functionality is 
exposed using the Open Grid Forum’s HPC Basic Profile Web service. The IB network 
software is Mellanox WinOF VPI. Again, the compilers are provided by Intel vendors 
integrated into Microsoft Visual Studio 2008.   Table 3 reports a short description of system. 

 

Operational System Windows HPC Server 2008 SP2 + 
HPC Pack SP1 

Infiniband Mellanox WinOF VPI v. 2.1.1 
MPI Libraries MS-MPI 

Compilers Intel Compiler – v. 11.1 
Visual Studio 2008 

Table 3: Software used for the Windows HPC Server 2008 

The benchmarks and the real-world application use the Message Passing Interface (MPI) 
library. The MPI interface is meant to provide essential virtual topology, synchronization, and 
communication functionality between a set of processes (which have been mapped to 
nodes/servers/computer instances) in a language-independent way. In this work three MPI 
libraries are available: 

• MVAPICH2 (2010): an open source MPI-2 implementation based on MPICH2 (2010) 
supporting Infiniband interface. 

• OpenMPI (2010): an open source MPI-2 implementation that is developed and 
maintained by a consortium of academic, research, and industry partners.  

• MS-MPI (2010): Microsoft MPI is a proprietary distribution by Microsoft. This 
distribution is also based on MPICH2. 

The MVAPICH2 and the OpenMPI are used on the Linux based cluster while the MS-MPI 
is used on the Windows HPC Server based cluster only. 

3 BENCHMARKS AND SCIENTIFIC APPLICATION 

Our evaluation approach recognizes that the application performance is the ultimate 
measure of system capability; however, understanding an application’s interaction with a 
computing system requires a detailed understanding of the performance for each part of the 
system. Keeping this in mind, the High-Performance LINPACK (HPL) (Dongarra et al, 2003) 
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benchmark that measures processor, memory, and network performance of the architecture at 
the subsystem level, is used to validate the system. Then, insights gained from the HPL 
benchmark are employed to guide and interpret performance analysis of the NPBs in a full-
scale application. 

 
3.1 High Performance Linpack 

High Performance Linpack (HPL) (Dongarra et al, 2003) is a portable implementation of 
the Linpack Benchmark (Dongarra et al, 1979). It can be seen as a software package that 
generates and solves a dense linear system of equation of order n: 

 
; ;   (1) 

 
by performing LU factorizations. In addition, the package checks and times the solution 
process on distributed-memory computers. The package uses 64-bit floating-point arithmetic 
and portable routines for linear algebra operations and message passing.  The Figure 1 
illustrates the two-dimensional block-cyclic data distribution used by HPL. The matrix is 
partitioned in NB x NB submatrices (i.e. blocks). Blocks are distributed to (MPI) processes 
where each process performs factorization on P × Q blocks assigned to it. 
 

 
Figure 1: HPL two-dimensional block-cyclic data distribution 

The performance of HPL is improved by tuning the following parameters: 
• Broadcast parameter: LU factorizations are performed iteratively. At the end of 

each iteration, resulted data (i.e. matrix columns) are broadcasted to every 
processor. There are many possible broadcast algorithms implemented on HPL. 

• Block Size NB: used for the data distribution as well as for the computational 
granularity. 

• N, P e Q: To ensure that each process is allocated the same amount of data, the 
value of N should be divisible by P, Q and NB. The value of P and Q depends of 
the network interconnection. Assuming a topology, it is recommended that P and Q 
should be approximately equal, with Q slightly larger than P and P taken as a power 
of 2. 

Finding the best computational performance and efficiency involves finding the better 
parameters for our system. In some cases, this is a trial-and-error process. The Microsoft HPC 
2008 Tool Pack, installed in our system, has a tool called Lizart that helps determine the 
computational performance and efficiency that can be achieved by the Windows HPC Server 
2008 cluster. It calculates and reports a performance peak value for the HPC cluster in billions 
of floating-point operations per second (GFLOPS), and a percentage value for the efficiency 
that is achieved at peak performance. Lizard calculates the performance and efficiency of the 
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HPC cluster by automatically running the LINPACK Benchmark several times and tuning the 
parameters that governs the LINPACK Benchmark solution between runs. Figure 2 shows the 
HPL algorithm performance evolution. To further optimize performance, all non-essential 
services are turned-off to run HPL. Eventually, Lizard is able to provide optimal performance 
measurements of the HPC cluster, which is available as a report at the end of the tuning 
process.  

 

 
Figure 2: Evolution of HPL algorithm performance. 

This tool was used to compare the performance of Gigabit Ethernet and Infiniband 
interconnects. MS-MPI implementation was used for message exchanges.   For each network, 
three different cases with 4, 8 and 16 compute nodes are used, totalizing 32, 64 and 128 cores 
respectively. The results are shown in Table 4 and the performance plot is shown in Figure 3. 
We clearly see that InfiniBand yields the best performance. 

 
Cores 32 64 128 

Theoretical Peak Performance  384.0 768.0 1536.0 
Ethernet Network 277.6 528.8 1092.0 
Infiniband Network 316.0 641.1 1289.0 
Ethernet (%) Efficiency 72.29 68.85 71.09 
Infiniband (%) Efficiency 82.29 83.48 83.92 

Table 4: HPL results (GFlop/s) 
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Figure 3: Performance for different interconnects. 

3.2 NAS Parallel Benchmarks 
 
The NAS Parallel Benchmark (Bailey et al, 1994 and Bailey et al, 1994) (NPB) suite is 

composed of well-known codes for testing the capabilities of parallel computers and 
parallelization tools. The benchmarks were derived from Computational Fluid Dynamics 
(CFD) codes and are widely recognized as a standard indicator of parallel computer 
performance. The original NPB suite contains eight benchmarks, five kernels (CG - 
Conjugate Gradient, EP - Embarrassingly Parallel, MG - Multigrid, FT - Fast Fourier 
Transform and IS - Integer Sort) and three compact applications (BT - Block Tridiagonal, LU 
- Lower-Upper symmetric Gauss Seidel and SP - Scalar Pentadiagonal). The MPI version of 
the NPB suite (NPB3.3.1 distribution) is used in this study. Each application has five 
problems sizes, dubbed Classes A, B, C, D and E, being Class E the biggest. The Intel 
Compiler is used on the Linux based cluster and on the Windows HPC based cluster because 
some codes were written in Fortran Language and Microsoft does not have support for this 
language. Thus, the only difference in all tests is the operational system. The compiler options 
used on both platforms are presented in Table 5. 

 
Platform Compiler Option 

Linux –O3 –axSSE2 
Windows HPC Server 2008 /O3 /QaxSSE2 

Table 5: Intel compiler options. 

3.3 Scientific Application: EdgeCFD 

EdgeCFD is a finite element system for complex fluid-structure interactions designed for 
offshore hydrodynamics. Green-water decks and wave impact on floating devices are a few 
examples of problems that can be solved with EdgeCFD. The fluid component of the software 
consists of an incompressible finite element edge-based flow solver able to treat free-surface 
flow problems by a VOF approach (Elias and Coutinho, 2007; Elias et al, 2009)  EdgeCFD is 
based on the Streamline-Upwind Petrov-Galerkin/Pressure-Stabilized Petrov-Galerkin with 
the Least Squares Incompressibility Constraint (SUPG/PSPG/LSIC) finite element 
formulation. Turbulence in EdgeCFD has been treated by a Smagorinsky model. More 
recently, the Residual-Based Variational Multiscale method to turbulence has been 
incorporated into EdgeCFD with success (Lins et al, 2009; Lins et al, 2010). The fluid-
structure problem is treated by the Arbitrary Lagrangian Eulerian (ALE) formulation in which 
parts of the computational mesh move attached to material particles in a Lagrangian 
description, while other parts of the mesh remain fixed in space, in an Eulerian description. In 
between these parts, there is a transition region, connecting them, where the mesh nodes move 
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arbitrarily, so to say, irrespective of material particles motion.  
In EdgeCFD special attention is given to the description of the hydrodynamics of an 

immersed body. The mesh updating scheme is based on the node repositioning in the 
neighborhood of a moving body in three-dimensions and is accomplished by the solution of a 
scalar diffusion problem in each spatial coordinate. Problem statement for mesh updating 
process includes a variable and adaptive local diffusion coefficient, dependent on a relative 
geometric quality index, computed for each element throughout the mesh. Boundary 
conditions involve the motion of the immersed body´s surface, i.e., the fluid-structure 
interface, taken as the Lagrangian portion of the domain in the overall problem. Time 
integration in EdgeCFD is performed with a predictor-multicorrector algorithm with adaptive 
timestepping by a Proportional-Integral-Derivative (PID) controller (Valli et al, 2009). Within 
the flow solution loop, the multi-correction steps correspond to the Inexact-Newton method. 
In this method the tolerance of the linear solver is adapted according to the history of the 
solution residua. As a linear solver, EdgeCFD employs the Preconditioned Generalized 
Minimal Residual Method (GMRES) for both flow and VOF equations. Mesh movement 
equations are solved by preconditioned conjugate gradients. Most of the computational effort 
spent in the solution phase is devoted to matrix-vector products. In order to compute such 
operations more efficiently, EdgeCFD uses an edge-based data structure. This data structure, 
when applied to problems as those described in this work, is able to reduce indirect memory 
access, memory requirements to hold the coefficients of the stiffness matrices and the number 
of floating point operations when compared to other traditional data structures such as 
element-by-element (EBE) or compressed sparse row (CSR). EdgeCFD computational kernel 
is a full parallel Fortran90 finite element code. The computations are performed in parallel 
using a distributed memory paradigm through the message passing interface library (MPI). 
Collective and point-to-point communication between subdomains are currently supported. 
The parallel partitions are generated by Metis/Parmetis library, while the information 
regarding the edges of the computational grid is obtained from the EdgePack library. 
EdgePack also reorders nodes, edges and elements to improve data locality, exploiting 
efficiently the memory hierarchy of current processors. EdgeCFD’s Graphical User Interface 
is integrated within ParaView, which supports several mesh formats, including ICEM-CFD, 
CFX and EnSight. The parallel nature of data generated by EdgeCFD allows full use of 
advanced parallel visualization capabilities in ParaView.  

The three dimensional Rayleigh–Benard convection problem is used to investigate code 
performance in situations ranging from small to large scale simulations in different 
architectures and system configurations. The problem consists in a fluid, initially at rest, 
contained in a 3D rectangular domain with aspect ratio 4:1:1 (Lenght:Depth:Height) and 
subjected to an unity temperature gradient (Kessler, 1985). For a 4:1:1 container aspect ratio, 
with no-slip boundary conditions at walls, the flow is three dimensional and must gives rise to 
four convection cells as shown in Figure 4. The fluid properties are set to result in Rayleigh 
and Prandt numbers of 30,000 and 0.71 respectively. For the performance test we use a mesh 
formed by 178,605 tetrahedra elements and 39,688 nodes (MSH1). The solution is evolved 
towards steady-state using EdgeCFD's block sequential implicit time-marching scheme. In 
this scheme the Navier-Stokes block is solved by the Inexact-Newton method and the 
temperature block by simple multi-correction iterations. The inner iterative driver for both 
Navier-Stokes and temperature transport is an edge-based preconditioned GMRES method. A 
nodal block-diagonal preconditioner is used for the Navier-Stokes equations while a simple 
diagonal preconditioning is employed for the temperature equation. GMRES tolerance for the 
temperature is fixed at 10−3 while the maximum tolerances for the inexact Newton method is 
set to 0.1. For both, flow and transport, the number of Krylov vectors is fixed in 25. We 
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consider that steady state is achieved when the relative velocity increment differs by less than 
10−5.  

 
Figure 4: Model multi-physics problem: Problem description and solution at steady state 

4 RESULTS 
In this section, performance results of selected NPBs benchmarks and the multi-physics 

application code are presented. To mimic a fully operational environment, all tests are done in 
production mode, i.e., all services are running.  

 
4.1 NAS Parallel Benchmarks 

The results shown below present the performance ratio for six benchmarks (IS, EP, CG, FT, 
MG and LU) of the NPB-MPI. Figure 5 shows the performance in million operations per 
second (Mflop/s) on 128 cores for these benchmarks using the NPB problem size Class C.  
We compare the results with three MPI implementation: MVAPICH2 and OpenMPI on Linux 
and, MS-MPI on Windows HPC server. MVAPICH2 has the best performance in three of 
these applications (IS, EP and LU). MS-MPI was better in FT and MG while the OpenMPI 
has better performance in CG. However, the performance differences were not significant in 
the most of cases. 
 

 
Figure 5: NPB-MPI Class C benchmarks on 128 cores 

In order to better understand the performance issues on Linux and Windows HPC server, 
new tests were performed using different arranges of core counts. Figure 6 displays the 
performance for IS, CG, MG and LU NPB benchmark on 8, 16, 32, 64 and 128 cores. In 
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addition, two problem sizes classes C and D are used. Not all results are obtained because in 
some cases problem size is bigger than the resources available on the compute nodes, for 
instance, IS class D do not run on 8 and 16 cores.  The results show that the biggest difference 
between the three MPI distributions is in the IS (Integer Sort) application. This performance 
difference is not important in the present context, because the kernel of standard science or 
engineering application is 64-bit floating-point arithmetic. The MVAPICH2 on the Linux 
cluster system is the MPI distribution that presents a linear behavior in almost all cases. 

 
(a) IS - Class C 

 
(b) IS – Class D 

 
(c) CG - Class C 

 
(d) CG – Class D 

 
(e) MG-Class C 

 
(f) MG – Class D 

 
(g) LU – Class C 

 
(h) – Class D 

Figure 6: NPB-MPI Classes C and D on several cores counts 

4.2 Multi-physics Application 
This section discusses EdgeCFD's performance on the multi-core nodes considering the 
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two operational systems. We evaluate different combinations of cores per nodes, that is, the 
effect of  process placement in MPI communication. This issue has been studied recently on 
Linux systems it was observed that process placement has a strong influence on performance 
(Elias et al, 2010, Diamond et al, 2010). Figure 7 shows the elapsed wall time spent to solve 
the Rayleigh-Benard problem in parallel (message passing with point-to-point scheme as 
shown in Sahini et al (2009)), using 8 cores for several arrangement of cores per compute 
nodes. The code was compiled with Intel ifort version 11.1 and optimized by flag –O3. Note 
that, diminishing the number of cores per node, performance increases substantially. We can 
see that both systems present similar behavior, indicating that Microsoft HPC Server does not 
negatively affect this highly optimized application nor solved the MPI process placement 
problem identified earlier. 
 

 
Figure 7: EdgeCFD Performance 

 

5 CONCLUSIONS 

In this work we present a performance evaluation of a 128 cores cluster running Windows 
HPC Server 2008. Tuning HPL using Microsoft Lizart tool we achieved 1.29 TFlop/s with 
efficiency of 83.9% when using the Infiniband network. Next we run the NPB benchmarks 
examining the effects of three MPI distributions on both the Linux and the Windows systems. 
We observe that except for the IS application on Class C, the three MPI distributions are 
equivalent and platform independent. None of them are better than other distributions in all 
tests. The difference between them in some cases is 10%, but in general this difference 
oscillates around 5%. The MS-MPI and MVAPICH2 that are based on MPICH2 presented 
similar behavior. The following step of the present study is to evaluate MPI process 
placement on both operational systems using a multi-physics model application. We have 
found that performance is equivalent on both operational systems and diminishing the number 
of cores per node improves wall time on both cases. Therefore, our experiments suggest that it 
is feasible to use Windows HPC server tools on clusters for scientific applications. 
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