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Abstract. To deal with multimedia objects, specially audio signals,veed to get an object represen-
tation that is stable and persistent to different naturgkralgation of the objects. This representation is
called fingerprint signal, particulary we focused on Audinderprint (AFP).

An AFP should be an invariant of the audio signal, an intdrediaracteristic found in it even if it has
suffered severe degradations as long as it is still recabtez If AFP represents the perceptual audio
features, it can be used to measure the similarity betwedio aignals. In order to design an AFP, a
dense representation is more robust than a sparse one. A mgmesentation also imply more compute
cycles and hence a slower processing speed.

The computational power associated with dedicated teolgies for specific purposes, constant de-
velopment and low cost, have provided a valid alternativpdrallel supercomputers. One the most
popular dedicated technologies are the GPU (Graphics 8simgeUnit). To speedup the computing of a
very dense audio fingerprint on GPU is our challenge.

In this work, we propose to obtain an audio fingerprint thifotige application of high perfomance
computing techniques using a parallel architecture as GRld.parallel system will be part of a compre-
hensive system, which will allow to determinate the audigdimprints of several audio signals generated
simultaneously. Finally, some experimental results aocsvsdl.
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1 INTRODUCTION

Audio identification consists in the ability to pair audigsals of the same perceptual na-
ture. The process of audio identification has to obtain tlsersal characteristics of digital
audio streams. In other words, it must get the Audio-Fingetp (AFPs). Two audio signals
are perceptually similar if they have the same AFP. Amongiadtidsks, AFPs are used in broad-
cast monitoring Shin et al.(2002, automatic metadata labeling from a central database and
guerying by example, where an excerpt of an unknown songsilplgcaptured in a noisy en-
vironment, such as a bar or pub) is used to identifyattsma and Kalkef2002; Wang(2003
and for automatic score followinGamarena-lbarrola and Chavg€010Q. AFP’s are mature
technologies used as software commaodities by a very langdauof applications of economic
importance.

In designing AFPs for such uses there is a tension betweendmpeting goals. On the one
hand a robudieaturegenerally implies a dense representation of the audio, amdspondingly
a robusftfingerprintgenerally implies a denser representations of a song. Oathiee hand, a
dense AFP imply more computer cycles to obtain the reprasent In some applications an
audio collection, represented by their AFP, is queried regjaan unknown audio sample. To
avoid comparing with all the audio sample in the collectios possible to build a metric index
to satisfy proximity queries.

There are some applications where the situation is revenseédhe audio collection is given
on-line and it need to be compared against a single audiolsap example application with
this behavior is the monitoring of radio broadcasting. Tbalgs tolistento a large set of audio
streams (the broadcasting stations in a city) and wait ferapearance of a particular audio
stream, such as a commercial advertising, in any one of tharas. In this case it is not even
possible to obtain all the AFP of all the audio streams in tmaé, using a single CPU. The
Graphics Processing Unit (GPU) represents a good alteenetispeedup the AFP process, a
portable, affordable and massive parallel devices, it waseived to speed up online rendering
and, actually, it can provide up to 50 times the processinggpacompared to the host computer
Lloyd et al.(2008.

Since its inception, the GPU was used as a dedicated deviepéading up graphics pro-
cessing applications, 3D video gaming, rendering, &ack (2007); Luebke and Humphreys
(2007). The progress of the GPU was faster than for CPU, probal#ytdwa smaller instruc-
tion set and single precision arithmetieberman et al(2008; Luebke and Humphrey{(2007).
The GPU is in many senses a portable super computer. Ceypaarof tasks can be solved us-
ing a massive parallel model, with a multi-core procesdmared memory and hyper threading
support.

The GPU programming evolved from hacking graphics speadfittreys and programs to a
more structured C-like programming environment. The mosteassful model is provided by
the Nvidia graphics card, with a driver hiding the low-level detailslatifferences between
different graphics card models. This model is dubbed Compltified Device Architecture
(CUDA) with a GPU-CPU interface, thread synchronizatiotadgpes, etcJoselli et al(2008);
Chen and Han@2008; Luebke(2008.

In this paper the goal is to obtain a better throughput fommenbrocessing of a multi-stream
source. In sectioR of this paper, we review the characteristics of an AFP, thaaifeature
extraction and the audio-fingerprint modeling. Secti8red4 analyse the entropy of a sig-
nal as a relevant perceptual feature and the multiband repecttropy signature. In section
5, we establish how to compare sounds. The sedioampares the CPU and GPU program-
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ming. In sectior6 , we analys the characteristic of GPU-CPU system paratel vee show the
experiments and obtained results, secBoRinally, a summary and conclusions are sketched.

2 CHARACTERISTICS OF AN AFP

To accomplish the tasks enlisted above, in the introductaomAFP should be robust to
signal degradations such as noise mixing, equalizatiamppng and time shifting. An AFP
should also be compact and determined with as little conipuia effort as possible. An AFP
system should also be scalable, that is, it should be ablpdcate with very large databases,
conditioned by a good indexing technique.

2.1 Feature extraction

The first thing an audio-fingerprinting system has to do iscteaet features from the signal.
Some AFP systems extract signal features directly in timmaio as inKurth and Scherzer
(2003 where the sign of the time derivative of the signal was fotmde robust to lossy
compression and low-pass filtering. liparrola and Chave2006 the entropy of the audio
signal is computed every second and from that the sign ofeitsvative with respect to time
is coded in an extremely compact AFP which was found to besttmilossy compression
and low-pass filtering and scaling, but not equalization.sM®FP systems however, extract
signal features in the frequency domain using a varietyraddr transforms such as the Dis-
crete Cosine Transform, the Discrete Fourier TransforenMlodulation Frequency Transform
Sukittanon and Atlag2002 and some Discrete Wavelet Transforms like Haar's and Walsh
Hadamard’'sSubramanya et a{1999.

Looking for more relevant features of audio signals a varadtperceptual features have
been assessed such as the Mel-frequency Cepstral coeffiddfrCC)Sigurdsson et a(2006);
LoudnessZwicker and Fast(1990; the Joint Acoustic and Modulation Frequency (JAMF)
Sukittanon and Atlag2002; Sukittanon et al(2005; the Spectral Flatness Measure (SFM)
Herre et al(200)); the Spectral Crest Factor (SCHgrre et al(2001); tonalityHellman(1972
and chroma valueBauws(2004) among other€ano et al(2002. In Seo et al(2005 it was
shown that Normalized SSC can be more robust than MFCC aaditiofor lossy compression
and equalization. Isukittanon and Atlag002) it was reported that the Normalized JAMF had
superior robustness than a spectral estimate for compreasd equalization. IRerre et al.
(200)) it was reported that SFM had superior robustness than Lesgdand SCF as well.

2.2 Audio-fingerprint modeling

Some AFP systems model the songs in a way that best servesrfiasp of the application
for which it has been designed. For examligjectories also known asraces are sequences
of feature vectors extracted at equally spaced instantsstordd in a list of vectors or in a
table; Statisticsrepresent an audio signal using computed properties suoiean, variance,
minimum and maximum values of the feature vectdedlmuth et al.(2001); Codebookstore
a small number of representative code vectors disregatdentemporal evolution of the audio
signal;Stringsare basically trajectories turned into long strings ofgeties through vector quan-
tization enabling the use of flexible string matching tegeis;Hidden Markov Models (HMM)
model non-stationary stochastic processes (e.g., soflge HMM model of a specific song re-
ports the probability that the query matches the candidatigBatlle et al.(2004ab); Gaussian
Mixture Models (GMM)work on the premise that songs are the result of a combinafiGaus-
sian componentRamalingam and Krishng2005; Lin et al. (2006. The technique described
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here differs to these approaches in that it does not replypeaniic domain knowledge, and is
therefore more widely applicable.

3 ENTROPY OF A SIGNAL AS A RELEVANT PERCEPTUAL FEATURE

The entropy of a signal is a measure of the amount of infoonatne signal carries. If
X is a random variable representing the signal, and we wantiquervalue to identify it,
then Shannon’s entropy is a good candidate. Small periarizaon the sample values of
produce smaller perturbations on the measured ent&@nnon and Weavéi949. If the
sample values oK are denoted byz;} then entropy is defined as

H(X)=— Zp(xi)ln(p(xi))a

wherep(z;) is the probability for the signal to take valuge

Over the time the audio signal contains different amounindfapy, distinguishing between
melodic, vocal, noise, etcetera. Since the audio signaldstiae we will fix our attention to
the modulation (the change) of the entropy over time. If wegote the entropy values in a
sliding window of the signal the sequence of values encodetianges of the audio entropy
over time. If the volume (the energy) of the audio is increlagedecreased the corresponding
entropy curve is also shifted preserving the relative ckandf the signal is lossy compressed
or low pass filtered the corresponding entropy curve is digitesl and the relative changes are
preserved as illustrated in figue A horizontal shift to the right is also observed due to the
mp3 compression.

Entropy profiles of audio excerpts

Entropy value

Different versions of the audio excerpt
Original ——

Increasing Volume with Clipping
) Compresseg mp3@32 Kst

. .
0 2 4 6 8 10 12 14
Time (seconds)

Figure 1: Entropy curves of a excerpt of a song and a scaled ¢lipping) and a lossy compressed (mp3@32Kbps)
versions of it

Adjusting shifts to match signals is an easy task, the \adrghift disappears if we take the
derivative of the signal, or even more if only the sign of teeidative is retained. Unfortunately,
other interesting distortions, like re-recording, are praffile invariant, as observed in figu2e
Similar effect is observed when the signal is equalized.

The Time-domain Entropy Signature (TES) is a sequence @rpimalues, one per each
frame, indicating the sign of the derivative of the entropgfie. This AFP was compared
with Haitsma et al AFPHaitsma and Kalke(2002 in Ibarrola and Chave2006 obtaining
good results for low pass filtering, lossy compression aridme changes. For re-recording or
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Figure 2: Entropy curves of an excerpt of a song and a re-decbrersions of it

equalization the results were not encouraging. Pursudteinbrk presented here, the entropy
calculation is undertaken in the frequency domain, withalitgmic bands used to offset the
effect of equalization.

4 THE MULTIBAND SPECTRAL ENTROPY SIGNATURE

The distortion observed in the time domain for re-recorcingqualization can be reverted
if we divide the signal in subbands using for example the ibigaic Bark scale of 24 critical
bands. After the band division, if we compute the entropyfifg@f each suband separately
the corresponding bands will have vertical shifts only,refgg distortions like equalization or
re-recording. This is illustrated in figuBwhere only some of the 24 bands are shown to avoid
overcrowding the figure.

0
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g18 g18
2 2
Wi W16
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100 200 300 o 100 200 300
“Time (seconds) Time (seconds)

Figure 3: Entropy profiles for individual bands in the Barklec

The subbands can be obtained with a standard filter bank tuitedhe corresponding fre-
quencies of the bark scale (1961).

4.1 Binary Encoding the Signature

For each frame we keep only an indication of whether the spleettropy is increasing or
not for each band. Equatiol)(states how the bit corresponding to bandnd framen of
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Figure 4: An illustration of the probabilistic pairing pskumetric. The smaller song/excerpt is shifted to search
for the best match, and this match is reported as the “distaria the figure, an actual fingerprint of a song is
presented

the AFP is determined using the entropy values of framasdn — 1. The same property of
compactness noted in TES is retained in the spectral ver€oty 3 bytes (i.e., 24 bits) are
needed for each frame of audio signal.

1 df [h(n)—hy(n—1)] >0
F(n,b) _{ 0 Otheﬁwise b ()

5 COMPARING SONGS

So far we have a binary array for each song or audio in thect@l® The Hamming distance
between two same sized excerpts accounts for the percegtoiddrity between them. The
smaller the Hamming distance the higher the perceptualagiity as it was discussed above. If
we want to know if an excerpt occur in some song in the colbecive need to scan, in principle,
all the collection to find the alignment with the smaller Hamgdistance.

The sequential scan with the MBSES does not scale well. Asmadiive experiment, we
used off-the-shelf desktop hardware to scan a database-aiopnputed MBSES. The database
comprised of approximately ten thousand songs from a widgaaf genres (from country to
classic). With these signatures pre-loaded into memorgne@ble to scan roughly 17 hours of
audio per second when using audio excerpt of 5 seconds, amotd of audio per second with
a 10 second excerpt. Nevertheless, to scale to collectiaghswillions of songs—as is the case
with iTunes for instance, with an ever growing set of usergneaie efficient indexing method
is needed. This motivates the use of a general index to sgeséauches.

5.1 Probabilistic Pairing Pseudo Metric

Lets assume we havebasedistancel(z, y) to compare similar sized audio sampteandy
of sizesm andn respectively withm ~ n. It can be the case the base distance requite n,
as for example the Hamming distance. If the case o&thadistance, sizes: andn need to be
just comparable.

Theprobabilistic pairing pseudo metri®PPM)D(z, y) is a generalization of the base dis-
tanced(z, y) defined as follows: I, < m:

D(z,y) Zd(g;iﬁn]y[l,n]] Vi<i<m-—n (2)

Otherwise:
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D(z,y) = D(y, z)

In other words we use a sliding window of the smaller obje@rdtie larger one and use the
minimum as the value of the distance. Figdrehows how probabilistic pairing is used to shift
the query (excerpt) to find the best match.

The function defined in Equatiahdoes not strictly satisfy the triangle inequality, althbug
it does satisfy it with high probability since the case whiere not satisfied is rarely found.

6 GPU AND CPU PROCESSING

A single PC with one or multiple cores cannot be compared nfop@ance with CUDA,
because hundreds of thousands of threads can be attenddthemously. Our proposal is to
used CUDA to boost the throughput in audio processing. Ossiple application is to monitor
simultaneously, with a single PC the hundreds of radio brastihgs in a large city, or to listen
for hundreds of simultaneous queries for query by conteatotio databases. Audio databases
and audio monitoring are specially suited for the massivalfgh model provided by CUDA.

A GPU can be considered as a multicore processor allowingye leumber of fine grained
threadsRyoo et al(2008. The GPU is different from other parallel architecturethia flexible
local resource assignment, either memory or register,hferthreads. Each stream multipro-
cessor can execute a variable number of threads, it is agroging decision the resource
assignement. Performance can be boosted by optimizing#igrement of resources.

The whole model consist in a traditional CPU based stati@hcare or more coprocessors,
the massive parallel compute devices. Each coprocessty thygpsame model of Simple In-
struction Multiple Data (SIMD), All computing units exeeuthe same code (not necessarily
sincronized) over the different set of data. The threadeesii@ same global memory.

CUDA is a computing environment allowing software develsye create isolated program-
ming components. Each componentt solve a problem over aatedi GPU device applying
massive parallel data processing. CUDA provides a progriagnmodel facilitating application
development on the GPU.

A CUDA program is a C/C++ extended with a set of instructiofkis instruction specify
parallel code and data structures to be executed in thealeVibose computing devices are
namedkernels A kernel describe the work of a single thread and can be ¢égddiy hundreds
of them. There are some restrictions on the kernels, theyataxecute recursive calls, static
variables cannot be declared and the number of argumentsiclaa variable.

A complete CUDA program have different phases to be execeitedr on the CPU or the
GPU. When the phase have low or null parallelism it is asslgoghe CPU. If the phase, on
the other hand, is massively parallel it is implemented asraed and executed over the GPU.

At the beginning and end of a program the host make a transfer/to the global of the
data device. Threads are organized in a three level higratghd the top level consisting in
a block of threadsBlock mid level consisting in a group of thread stablished by tHeisoe
developer and the lower levéhreadswhich can synchronize the task and share data inside the
same block. The number of grids, blocks and threads affegbéinfformance of the tasks, each
application have an optimal selection for these paramefera rule of thumb these parameters
are determined by experimentation.
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7 PARALLEL MULTI-MBSES

Figure5 illustrate the parallel architecture for the digital sigma dubbedV/ BSE'S,. As
said before the problem is particularly well suited for nnasgparallel processing.

Input Signal
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Figure 5: Architecture oM/ BSES,,

Multi signal processing is sketched Multi-M BS E'S,,, where additionally to parallel pro-
cessing of a single signal, multiple signals can be prockssence, each one of them perform-
ing the same task with different data. Fig@érglustrates.

Input Signal i

Input Signal O
Input Signal n

| AN - ]
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\
Answer \j
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Signal

Database

Figure 6: Multi signalM BSES,, system

In both M BSES, andMulti-M BSE'S, schemas the massive parallel architecture can be
applied. Several parameters need to be adjusted. In this werdiscuss three crucial parts
of the processing, computing: the Hanning window, computire fast Fourier transform and
signature entropy based on histograms.

7.1 Fast Fourier Transform

In the CUDA repository there is a library for parallel comipgtthe FFT, the CUFFT. We im-
plemented directly the FFT based on the original algoritifi@amley and Tukeyooley and Tukey
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(1965. The inverse and direct FFT can be computed changing aespaghmeter. The sample
is divided in two subsets of size half the original size, gsine Danielson Lanczos theorem
Danielson and Lanczad942. This process is repeated recursively or iterativelyluhé set
is of cardinality two.

We fixed in 512 threads to be executed in parallel. We first adgefhe bit-reverse vector
in a first stage in a second stage we properly computed theRegfThe bit-reverse, each even
index element in the first part of the vector is swapped witbhraasponding even index element
in the second part of the vector. Each swap is computed byfexelit thread. For a vector of
size N we need% threads. IfN is much larger than the number of available thre@dshen

each thread will swa% elements. This is illustrated in figui€a)

lteration=1  N=8 thread 0 fteration=1  N=8

’—‘ thread O thread 1 thread 2 thread 3
1 1 [ 1 [
0| 1| 2| 3| 4|5 |67 [e]=]=2[=]=[=]<]"7]
=2 ¢
\—‘ thread O thread 2
thread 1 [ \ [ |
Iteration=2 thread 0 L ‘ ° ‘ * ‘ 2‘ 3‘ 4‘ ° ‘ ° ‘ ’ ‘
Iteration=3 ¢
0 4 2 6 1|5 3 7 thread O thread 2
I S I
[ (el 2 2[=[=]=]<]"]
¢ thread 1 [S——
thread 1
Final Result ¢ thread 3
S W e e o I (o2 =[=]=]=]¢]["]
(a) Bit Reverse (b) fft

Figure 7: GPU based FFT computation

The second phase is where the FFT computation takes plagerpraSince it is not possible
to apply recursive calls, the solution is iterative. Eaaleddl, in each iteration, makes the proper
computation with the corresponding pair. If the number oé#lds is smaller than the vector
size each thread will take care of a fraction of the data. f&i@(b) the procedure is sketched
for each iteration.

7.2 The Hanning Window

Computing the Hanning window is an inner product, and hesseitable for massive paral-
lel processing. All the threads will perform the same opereand the final algorithm is a pure
data parallel procedure with no cross-talk between thre@lde usual consideration should be
applied, if the number of threads is smaller than the datg #ien each thread will take care of
a subset of the vector.

7.3 Entropy Signature

Computing the entropy of a signal requires some estimafitmedProbability Density Func-
tion (PDF). Such estimation may be accomplished using Ratraanmethods, non parametric
methods and histograms. Parametric metl®elcher and Vigna(2000 are advisable when
the distribution is known a priori and the amount of data lmed is not large. In non para-
metric methods, no assumptions are made about the digbritihe PDF belongs to, the PDF is
shaped by the data which is in turn smoothed by some kernelgdoametric methods are com-
putationally expensive and so not frequently used for irealpattern recognition applications.
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The histogram is the other method, it is simple and fast apgirdo estimate entropy. When is
necessary the online determination of the PDF of an aud@astyit is the good method. In this
case, the certainty of the histogram method is ensured bfatih¢hat thousands of audio sam-
ples will be used at building the histogram.The probabjityor valuew; to be a sample read
from the audio stream is computed using Laplace's formuta fﬁ wheref; is the number of
times that value; occurs in the sequenae= z, xo, .., xy, IV is the frame size.

The Bark scale defines 25 critical bands, the first 24 cormedipg to the bands of hearing.
The last, 25, is discarded since only the youngest and hestitbars are able to perceive. For
any given band, the elements of the time-domain frame of signal (after cateqh FFT) cor-
responding td are used to build two histograms, one for the real parts anthanone for the
imaginary parts of these elements. The histograms are asstitnate the probability distribu-
tion functions. The entropy for real and imaginary parts@puted separately and operated
together#, to obtaini-component of TES. The figu&shows this process.

real |—»| Entropy

| imag |—>| Entropy

| real || Entropy
,w{

| imag || Entropy

Figure 8: GPU based FFT computation

Signature

FFT(Signal) |

In the next section we describe every task necessary tolatdine entropy signature with
histograms on GPU.

7.3.1 Histogram

To compute the histogram is necessary many tasks, the fits¢ discretization the current
frame of signal, the continuous values have to convert toréiis values. This task implies to
obtain the max and min\{_m) over all frame components, real and imaginary part, fonthe
discretize them.M _m employs the max number of threads, 512, to obtain the max and m
value of subset of frame. Each thread works over the same ewafldata. After, the half of
threads are dedicated to calculate ther and the other half compute thein. Once adquired
min andmazx, every signal elements are transformed to a value betwesn.tfThis task is
similar to Hanning window, the threads will perform the samperation over a subset of frame
data, without comunication among them. We use 8 bits to semteeach elements of frame,
hence each discret data will take one of value between Q..255

The second task is compute the histogram. In this procesdjgtribution of the computation
between multiple execution threads is made by subdividintp® frame data between them.
Processing of the subset by each dedicated execution tAnebstoring the result into a certain
number of sub-histograms. Finally all the sub-histogramednto be merged into a single
histogram. Between inner steps is necessary the synchtamof threads.
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8 EXPERIMENTAL RESULTS

For a comparative analysis we selected a sequential CPl&imgpitation of the algorithms,
the fastest machine available for experiments had thewWailg characteristics. Intel core 2 Duo
E8200, with 2GB of RAM. We used three different GPU modelscimmparison. The 8500 GT,
9500 GT and 9500 GS. They had the following common charatiesi

Shared memory per block 16KB
Registers per block 8KB
Maximum number of threads per block 512

Maximum sizes of each dimension of a blogk 512 x 512 x 64
Maximum sizes of each dimension of a gri{i65535 x 65535 x ]

With the following differences.

GeForce 8500 GT | 9500 GT | 9500M GS
Global Memory| 512MB | 256MB 512MB
Multiprocessorsg 2 4 4

Cores 16 32 32
Central Clock || 450 MHz | 500 MHz | 475 MHz

The results shown for the speedup are the average over sewesa Figures9(a), 9(b)
and9(c) show the speedup for the Hanning window computation, the &l Histogram for
differents frame sizes. In all the cases we used the maxinumbaer of available threads.

We compared our implementation with the state GPU baseahilCUFFT, available in the
CUDA showroom. Our implementation surpass the efficienahefstate of the art. Figurk
shows the comparison.

In all cases our implementation was faster than CUFFT, wisithe state of the art.

Finally, we analized the overall speedup. At this mome@MhB S ES, is mixed, we used a
CPU/GPU model, the first three tasks were resolved over GidJast was computed in CPU.
When third task finalizes, the data had to be moved from the @Pdain memory of CPU.
Although, data transfers impose a severe restriction opén®rmance, the results are good.
Figurellshows the overall speedup when frame size is 16KB, this siequivalent to a frame
duration of 370ms.

In this case, we considered four GPUSs, the fourth is a GTX 6@ signal is processed in
frames of 370 ms, this frame size ensures an adequate tirpersdigr entropy computation ac-
cording to our experiments. The frame sizes normally useai¢ho-fingerprinting ranges from
10 ms to 500 ms according t©ano et al(2002. The frame size used iHaitsma and Kalker
(2002; Wang (2003 is precisely 370 ms.

9 CONCLUSIONS, REMARKS AND FUTURE WORK

In this work, we propose the use of a massive parallel arctoite based on the Graphics
Processing Unit (GPU) with the CUDA programming kit. We pgaxperimentally that even
with a relatively small GPU and using a single core in the GR&are able to obtain a speedup
of about 3 per core in a GPU/CPU model. We compared our FFTeimehtation against state
of the art CUFFT obtaining impressive results, hence our iRdlementation can help other
areas of application.
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Figure 9: Speedup of Hanning, FFT and Histograms computatio

We are currently working in many directions. One is to impéemall the steps in the
MBSES, computation in a pure GPU model, avoiding data transferssioaving down the

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar



Mecéanica Computacional Vol XXIX, pags. 3127-3141 (2010) 3139

fft vs. CUFFT B fit- 9500 GT

B CUFFT-9500 GT
[ fit- 9500M GS

B CUFFT-9500M GS
M Fft- 8500 GT

B CUFFT-8500 GT

Time

Size
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Figure 11: Overall SpeedUp df BSES,

process. Other is to increase the speedup expectativemtmy GPU cores and careful GPU
memory administrations. Finally, we are also implemenangassively parallel version of a
main memory metric index to support proximity queries.
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