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Abstract. To deal with multimedia objects, specially audio signals, we need to get an object represen-
tation that is stable and persistent to different natural degradation of the objects. This representation is
called fingerprint signal, particulary we focused on Audio Fingerprint (AFP).

An AFP should be an invariant of the audio signal, an intrinsic characteristic found in it even if it has
suffered severe degradations as long as it is still recognizable. If AFP represents the perceptual audio
features, it can be used to measure the similarity between audio signals. In order to design an AFP, a
dense representation is more robust than a sparse one. A dense representation also imply more compute
cycles and hence a slower processing speed.

The computational power associated with dedicated technologies for specific purposes, constant de-
velopment and low cost, have provided a valid alternative toparallel supercomputers. One the most
popular dedicated technologies are the GPU (Graphics Processing Unit). To speedup the computing of a
very dense audio fingerprint on GPU is our challenge.

In this work, we propose to obtain an audio fingerprint through the application of high perfomance
computing techniques using a parallel architecture as GPU.This parallel system will be part of a compre-
hensive system, which will allow to determinate the audio fingerprints of several audio signals generated
simultaneously. Finally, some experimental results are showed.
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1 INTRODUCTION

Audio identification consists in the ability to pair audio signals of the same perceptual na-
ture. The process of audio identification has to obtain the essential characteristics of digital
audio streams. In other words, it must get the Audio-Fingerprints (AFPs). Two audio signals
are perceptually similar if they have the same AFP. Among other tasks, AFPs are used in broad-
cast monitoring,Shin et al.(2002), automatic metadata labeling from a central database and
querying by example, where an excerpt of an unknown song (possibly captured in a noisy en-
vironment, such as a bar or pub) is used to identify itHaitsma and Kalker(2002); Wang(2003)
and for automatic score followingCamarena-Ibarrola and Chavez(2010). AFP’s are mature
technologies used as software commodities by a very large number of applications of economic
importance.

In designing AFPs for such uses there is a tension between twocompeting goals. On the one
hand a robustfeaturegenerally implies a dense representation of the audio, and correspondingly
a robustfingerprintgenerally implies a denser representations of a song. On theother hand, a
dense AFP imply more computer cycles to obtain the representation. In some applications an
audio collection, represented by their AFP, is queried against an unknown audio sample. To
avoid comparing with all the audio sample in the collection it is possible to build a metric index
to satisfy proximity queries.

There are some applications where the situation is reversedand the audio collection is given
on-line and it need to be compared against a single audio sample. An example application with
this behavior is the monitoring of radio broadcasting. The goal is tolistento a large set of audio
streams (the broadcasting stations in a city) and wait for the appearance of a particular audio
stream, such as a commercial advertising, in any one of the streams. In this case it is not even
possible to obtain all the AFP of all the audio streams in realtime, using a single CPU. The
Graphics Processing Unit (GPU) represents a good alternative to speedup the AFP process, a
portable, affordable and massive parallel devices, it was conceived to speed up online rendering
and, actually, it can provide up to 50 times the processing power, compared to the host computer
Lloyd et al.(2008).

Since its inception, the GPU was used as a dedicated device for speeding up graphics pro-
cessing applications, 3D video gaming, rendering, etc.Buck (2007); Luebke and Humphreys
(2007). The progress of the GPU was faster than for CPU, probably due to a smaller instruc-
tion set and single precision arithmeticLieberman et al.(2008); Luebke and Humphreys(2007).
The GPU is in many senses a portable super computer. Certain type of tasks can be solved us-
ing a massive parallel model, with a multi-core processor, shared memory and hyper threading
support.

The GPU programming evolved from hacking graphics specific settings and programs to a
more structured C-like programming environment. The most successful model is provided by
the Nvidia graphics card, with a driver hiding the low-level details and differences between
different graphics card models. This model is dubbed Compute Unified Device Architecture
(CUDA) with a GPU-CPU interface, thread synchronization data types, etc.Joselli et al.(2008);
Chen and Hang(2008); Luebke(2008).

In this paper the goal is to obtain a better throughput for online processing of a multi-stream
source. In section2 of this paper, we review the characteristics of an AFP, the signal feature
extraction and the audio-fingerprint modeling. Sections3 and4 analyse the entropy of a sig-
nal as a relevant perceptual feature and the multiband spectral entropy signature. In section
5, we establish how to compare sounds. The section6 compares the CPU and GPU program-
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ming. In section6 , we analys the characteristic of GPU-CPU system parallel, and we show the
experiments and obtained results, section8. Finally, a summary and conclusions are sketched.

2 CHARACTERISTICS OF AN AFP

To accomplish the tasks enlisted above, in the introduction, an AFP should be robust to
signal degradations such as noise mixing, equalization, cropping and time shifting. An AFP
should also be compact and determined with as little computational effort as possible. An AFP
system should also be scalable, that is, it should be able to operate with very large databases,
conditioned by a good indexing technique.

2.1 Feature extraction

The first thing an audio-fingerprinting system has to do is to extract features from the signal.
Some AFP systems extract signal features directly in time domain as inKurth and Scherzer
(2003) where the sign of the time derivative of the signal was foundto be robust to lossy
compression and low-pass filtering. InIbarrola and Chavez(2006) the entropy of the audio
signal is computed every second and from that the sign of its derivative with respect to time
is coded in an extremely compact AFP which was found to be robust to lossy compression
and low-pass filtering and scaling, but not equalization. Most AFP systems however, extract
signal features in the frequency domain using a variety of linear transforms such as the Dis-
crete Cosine Transform, the Discrete Fourier Transform, the Modulation Frequency Transform
Sukittanon and Atlas(2002) and some Discrete Wavelet Transforms like Haar’s and Walsh-
Hadamard’sSubramanya et al.(1999).

Looking for more relevant features of audio signals a variety of perceptual features have
been assessed such as the Mel-frequency Cepstral coefficients (MFCC)Sigurdsson et al.(2006);
LoudnessZwicker and Fastl(1990); the Joint Acoustic and Modulation Frequency (JAMF)
Sukittanon and Atlas(2002); Sukittanon et al.(2005); the Spectral Flatness Measure (SFM)
Herre et al.(2001); the Spectral Crest Factor (SCF)Herre et al.(2001); tonalityHellman(1972)
and chroma valuesPauws(2004) among othersCano et al.(2002). In Seo et al.(2005) it was
shown that Normalized SSC can be more robust than MFCC and tonality for lossy compression
and equalization. InSukittanon and Atlas(2002) it was reported that the Normalized JAMF had
superior robustness than a spectral estimate for compression and equalization. InHerre et al.
(2001) it was reported that SFM had superior robustness than Loudness and SCF as well.

2.2 Audio-fingerprint modeling

Some AFP systems model the songs in a way that best serves the purpose of the application
for which it has been designed. For example,Trajectories, also known astraces, are sequences
of feature vectors extracted at equally spaced instants andstored in a list of vectors or in a
table; Statisticsrepresent an audio signal using computed properties such asmean, variance,
minimum and maximum values of the feature vectorsHellmuth et al.(2001); Codebooksstore
a small number of representative code vectors disregardingthe temporal evolution of the audio
signal;Stringsare basically trajectories turned into long strings of integers through vector quan-
tization enabling the use of flexible string matching techniques;Hidden Markov Models (HMM)
model non-stationary stochastic processes (e.g., songs).The HMM model of a specific song re-
ports the probability that the query matches the candidate songBatlle et al.(2004a,b); Gaussian
Mixture Models (GMM)work on the premise that songs are the result of a combinationof Gaus-
sian componentsRamalingam and Krishnan(2005); Lin et al. (2006). The technique described
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here differs to these approaches in that it does not reply on specific domain knowledge, and is
therefore more widely applicable.

3 ENTROPY OF A SIGNAL AS A RELEVANT PERCEPTUAL FEATURE

The entropy of a signal is a measure of the amount of information the signal carries. If
X is a random variable representing the signal, and we want a unique value to identify it,
then Shannon’s entropy is a good candidate. Small perturbations on the sample values ofX
produce smaller perturbations on the measured entropyShannon and Weaver(1949). If the
sample values ofX are denoted by{xi} then entropy is defined as

H(X) = −
∑

i

p(xi)ln(p(xi)),

wherep(xi) is the probability for the signal to take valuexi.
Over the time the audio signal contains different amount of entropy, distinguishing between

melodic, vocal, noise, etcetera. Since the audio signal is additive we will fix our attention to
the modulation (the change) of the entropy over time. If we compute the entropy values in a
sliding window of the signal the sequence of values encode the changes of the audio entropy
over time. If the volume (the energy) of the audio is increased or decreased the corresponding
entropy curve is also shifted preserving the relative changes. If the signal is lossy compressed
or low pass filtered the corresponding entropy curve is also shifted and the relative changes are
preserved as illustrated in figure1. A horizontal shift to the right is also observed due to the
mp3 compression.
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Figure 1: Entropy curves of a excerpt of a song and a scaled (with clipping) and a lossy compressed (mp3@32Kbps)
versions of it

Adjusting shifts to match signals is an easy task, the vertical shift disappears if we take the
derivative of the signal, or even more if only the sign of the derivative is retained. Unfortunately,
other interesting distortions, like re-recording, are notprofile invariant, as observed in figure2.
Similar effect is observed when the signal is equalized.

The Time-domain Entropy Signature (TES) is a sequence of binary values, one per each
frame, indicating the sign of the derivative of the entropy profile. This AFP was compared
with Haitsma et al AFPHaitsma and Kalker(2002) in Ibarrola and Chavez(2006) obtaining
good results for low pass filtering, lossy compression and volume changes. For re-recording or
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Figure 2: Entropy curves of an excerpt of a song and a re-recorded versions of it

equalization the results were not encouraging. Pursued in the work presented here, the entropy
calculation is undertaken in the frequency domain, with logarithmic bands used to offset the
effect of equalization.

4 THE MULTIBAND SPECTRAL ENTROPY SIGNATURE

The distortion observed in the time domain for re-recordingor equalization can be reverted
if we divide the signal in subbands using for example the logarithmic Bark scale of 24 critical
bands. After the band division, if we compute the entropy profile of each suband separately
the corresponding bands will have vertical shifts only, even for distortions like equalization or
re-recording. This is illustrated in figure3 where only some of the 24 bands are shown to avoid
overcrowding the figure.

0 100 200 300
18

20

22

24

4t
h 

ba
nd

Original

0 100 200 300
18

20

22

24

4t
h 

ba
nd

Equalized

0 100 200 300

18

20

22

24

8t
h 

ba
nd

0 100 200 300

18

20

22

24

8t
h 

ba
nd

0 100 200 300
15

20

12
th

 b
an

d

0 100 200 300
15

20

12
th

 b
an

d

0 100 200 300

16

18

20

16
th

 b
an

d

0 100 200 300

16

18

20

16
th

 b
an

d

0 100 200 300

16

18

20

Time (seconds)

E
nt

ro
py

0 100 200 300

16

18

20

Time (seconds)

E
nt

ro
py

Figure 3: Entropy profiles for individual bands in the Bark scale.

The subbands can be obtained with a standard filter bank tunedwith the corresponding fre-
quencies of the bark scaleE. (1961).

4.1 Binary Encoding the Signature

For each frame we keep only an indication of whether the spectral entropy is increasing or
not for each band. Equation (1) states how the bit corresponding to bandb and framen of
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Figure 4: An illustration of the probabilistic pairing pseudo metric. The smaller song/excerpt is shifted to search
for the best match, and this match is reported as the “distance”. In the figure, an actual fingerprint of a song is
presented

the AFP is determined using the entropy values of framesn andn − 1. The same property of
compactness noted in TES is retained in the spectral version. Only 3 bytes (i.e., 24 bits) are
needed for each frame of audio signal.

F (n, b) =

{

1 if [hb(n)− hb(n− 1)] > 0
0 Otherwise

(1)

5 COMPARING SONGS

So far we have a binary array for each song or audio in the collection. The Hamming distance
between two same sized excerpts accounts for the perceptualsimilarity between them. The
smaller the Hamming distance the higher the perceptual similarity, as it was discussed above. If
we want to know if an excerpt occur in some song in the collection we need to scan, in principle,
all the collection to find the alignment with the smaller Hamming distance.

The sequential scan with the MBSES does not scale well. As a formative experiment, we
used off-the-shelf desktop hardware to scan a database of pre-computed MBSES. The database
comprised of approximately ten thousand songs from a wide range of genres (from country to
classic). With these signatures pre-loaded into memory, weare able to scan roughly 17 hours of
audio per second when using audio excerpt of 5 seconds, and 10hours of audio per second with
a 10 second excerpt. Nevertheless, to scale to collections with millions of songs—as is the case
with iTunes for instance, with an ever growing set of users—amore efficient indexing method
is needed. This motivates the use of a general index to speed up searches.

5.1 Probabilistic Pairing Pseudo Metric

Lets assume we have abasedistanced(x, y) to compare similar sized audio samplesx andy
of sizesm andn respectively withm ∼ n. It can be the case the base distance requirem = n,
as for example the Hamming distance. If the case of theeditdistance, sizesm andn need to be
just comparable.

Theprobabilistic pairing pseudo metric(PPPM)D(x, y) is a generalization of the base dis-
tanced(x, y) defined as follows: Ifn < m:

D(x, y) = min
d(x[i,i+n]

y[1, n]] ∀ 1 ≤ i ≤ m− n (2)

Otherwise:
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D(x, y) = D(y, x)

In other words we use a sliding window of the smaller object over the larger one and use the
minimum as the value of the distance. Figure4 shows how probabilistic pairing is used to shift
the query (excerpt) to find the best match.

The function defined in Equation2 does not strictly satisfy the triangle inequality, although
it does satisfy it with high probability since the case whereit is not satisfied is rarely found.

6 GPU AND CPU PROCESSING

A single PC with one or multiple cores cannot be compared in performance with CUDA,
because hundreds of thousands of threads can be attended simultaneously. Our proposal is to
used CUDA to boost the throughput in audio processing. One possible application is to monitor
simultaneously, with a single PC the hundreds of radio broadcastings in a large city, or to listen
for hundreds of simultaneous queries for query by content inaudio databases. Audio databases
and audio monitoring are specially suited for the massive parallel model provided by CUDA.

A GPU can be considered as a multicore processor allowing a large number of fine grained
threadsRyoo et al.(2008). The GPU is different from other parallel architectures inthe flexible
local resource assignment, either memory or register, for the threads. Each stream multipro-
cessor can execute a variable number of threads, it is a programming decision the resource
assignement. Performance can be boosted by optimizing the assignment of resources.

The whole model consist in a traditional CPU based station and one or more coprocessors,
the massive parallel compute devices. Each coprocessor apply the same model of Simple In-
struction Multiple Data (SIMD), All computing units execute the same code (not necessarily
sincronized) over the different set of data. The threads share the same global memory.

CUDA is a computing environment allowing software developers to create isolated program-
ming components. Each componentt solve a problem over a dedicated GPU device applying
massive parallel data processing. CUDA provides a programming model facilitating application
development on the GPU.

A CUDA program is a C/C++ extended with a set of instructions.This instruction specify
parallel code and data structures to be executed in the device. Those computing devices are
namedkernels. A kernel describe the work of a single thread and can be executed by hundreds
of them. There are some restrictions on the kernels, they cannot execute recursive calls, static
variables cannot be declared and the number of arguments cannot be variable.

A complete CUDA program have different phases to be executedeither on the CPU or the
GPU. When the phase have low or null parallelism it is assigned to the CPU. If the phase, on
the other hand, is massively parallel it is implemented as a kernel and executed over the GPU.

At the beginning and end of a program the host make a transfer from/to the global of the
data device. Threads are organized in a three level hierarchy: Grid the top level consisting in
a block of threads,Block mid level consisting in a group of thread stablished by the software
developer and the lower levelThreadswhich can synchronize the task and share data inside the
same block. The number of grids, blocks and threads affect the performance of the tasks, each
application have an optimal selection for these parameters. As a rule of thumb these parameters
are determined by experimentation.
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7 PARALLEL MULTI-MBSES

Figure5 illustrate the parallel architecture for the digital signature dubbedMBSESp. As
said before the problem is particularly well suited for massive parallel processing.
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Figure 5: Architecture ofMBSESp

Multi signal processing is sketched inMulti-MBSESp, where additionally to parallel pro-
cessing of a single signal, multiple signals can be processed at once, each one of them perform-
ing the same task with different data. Figure6 illustrates.
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Figure 6: Multi signalMBSESp system

In bothMBSESp andMulti-MBSESp schemas the massive parallel architecture can be
applied. Several parameters need to be adjusted. In this work we discuss three crucial parts
of the processing, computing: the Hanning window, computing the fast Fourier transform and
signature entropy based on histograms.

7.1 Fast Fourier Transform

In the CUDA repository there is a library for parallel computing the FFT, the CUFFT. We im-
plemented directly the FFT based on the original algorithm of Cooley and TukeyCooley and Tukey
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(1965). The inverse and direct FFT can be computed changing a single parameter. The sample
is divided in two subsets of size half the original size, using the Danielson Lanczos theorem
Danielson and Lanczos(1942). This process is repeated recursively or iteratively until the set
is of cardinality two.

We fixed in 512 threads to be executed in parallel. We first compute the bit-reverse vector
in a first stage in a second stage we properly computed the FFT.For the bit-reverse, each even
index element in the first part of the vector is swapped with a corresponding even index element
in the second part of the vector. Each swap is computed by a different thread. For a vector of
sizeN we needN

4
threads. IfN is much larger than the number of available threadsT , then

each thread will swap
N

4

T
elements. This is illustrated in figure7(a)
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Figure 7: GPU based FFT computation

The second phase is where the FFT computation takes place properly. Since it is not possible
to apply recursive calls, the solution is iterative. Each thread, in each iteration, makes the proper
computation with the corresponding pair. If the number of threads is smaller than the vector
size each thread will take care of a fraction of the data. Figure 7(b) the procedure is sketched
for each iteration.

7.2 The Hanning Window

Computing the Hanning window is an inner product, and hence is suitable for massive paral-
lel processing. All the threads will perform the same operation and the final algorithm is a pure
data parallel procedure with no cross-talk between threads. The usual consideration should be
applied, if the number of threads is smaller than the data size, then each thread will take care of
a subset of the vector.

7.3 Entropy Signature

Computing the entropy of a signal requires some estimation of the Probability Density Func-
tion (PDF). Such estimation may be accomplished using Parametric methods, non parametric
methods and histograms. Parametric methodsBercher and Vignat(2000) are advisable when
the distribution is known a priori and the amount of data involved is not large. In non para-
metric methods, no assumptions are made about the distribution the PDF belongs to, the PDF is
shaped by the data which is in turn smoothed by some kernel. Non-parametric methods are com-
putationally expensive and so not frequently used for realtime pattern recognition applications.
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The histogram is the other method, it is simple and fast approach to estimate entropy. When is
necessary the online determination of the PDF of an audio stream, it is the good method. In this
case, the certainty of the histogram method is ensured by thefact that thousands of audio sam-
ples will be used at building the histogram.The probabilitypi for valuevi to be a sample read
from the audio stream is computed using Laplace‘s formulapi =

fi
N

, wherefi is the number of
times that valuevi occurs in the sequencex = x1, x2, .., xN , N is the frame size.

The Bark scale defines 25 critical bands, the first 24 corresponding to the bands of hearing.
The last, 25, is discarded since only the youngest and healthiest ears are able to perceive. For
any given bandb, the elements of the time-domain frame of signal (after computed FFT) cor-
responding tob are used to build two histograms, one for the real parts and another one for the
imaginary parts of these elements. The histograms are used to estimate the probability distribu-
tion functions. The entropy for real and imaginary parts arecomputed separately and operated
together,#, to obtaini-component of TES. The figure8 shows this process.

.
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FFT(Signal)

real
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Entropy
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Entropy
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imag
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Entropy
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Figure 8: GPU based FFT computation

In the next section we describe every task necessary to calculate the entropy signature with
histograms on GPU.

7.3.1 Histogram

To compute the histogram is necessary many tasks, the first isthe discretization the current
frame of signal, the continuous values have to convert to discrete values. This task implies to
obtain the max and min (M_m) over all frame components, real and imaginary part, for then
discretize them.M_m employs the max number of threads, 512, to obtain the max and min
value of subset of frame. Each thread works over the same number of data. After, the half of
threads are dedicated to calculate themax and the other half compute themin. Once adquired
min andmax, every signal elements are transformed to a value between them. This task is
similar to Hanning window, the threads will perform the sameoperation over a subset of frame
data, without comunication among them. We use 8 bits to represent each elements of frame,
hence each discret data will take one of value between 0..255.

The second task is compute the histogram. In this process, the distribution of the computation
between multiple execution threads is made by subdividing of the frame data between them.
Processing of the subset by each dedicated execution threadand storing the result into a certain
number of sub-histograms. Finally all the sub-histograms need to be merged into a single
histogram. Between inner steps is necessary the synchronization of threads.
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8 EXPERIMENTAL RESULTS

For a comparative analysis we selected a sequential CPU implementation of the algorithms,
the fastest machine available for experiments had the following characteristics. Intel core 2 Duo
E8200, with 2GB of RAM. We used three different GPU models forcomparison. The 8500 GT,
9500 GT and 9500 GS. They had the following common characteristics.

Shared memory per block 16KB
Registers per block 8KB

Maximum number of threads per block 512
Maximum sizes of each dimension of a block 512 x 512 x 64
Maximum sizes of each dimension of a grid65535 x 65535 x 1

With the following differences.

GeForce 8500 GT 9500 GT 9500M GS
Global Memory 512MB 256MB 512MB
Multiprocessors 2 4 4

Cores 16 32 32
Central Clock 450 MHz 500 MHz 475 MHz

The results shown for the speedup are the average over several runs. Figures9(a), 9(b)
and9(c) show the speedup for the Hanning window computation, the FFTand Histogram for
differents frame sizes. In all the cases we used the maximum number of available threads.

We compared our implementation with the state GPU based library CUFFT, available in the
CUDA showroom. Our implementation surpass the efficiency ofthe state of the art. Figure10
shows the comparison.

In all cases our implementation was faster than CUFFT, whichis the state of the art.
Finally, we analized the overall speedup. At this moment, theMBSESp is mixed, we used a

CPU/GPU model, the first three tasks were resolved over GPU, the last was computed in CPU.
When third task finalizes, the data had to be moved from the GPUto main memory of CPU.
Although, data transfers impose a severe restriction on theperformance, the results are good.
Figure11shows the overall speedup when frame size is 16KB, this size is equivalent to a frame
duration of 370ms.

In this case, we considered four GPUs, the fourth is a GTX 260.The signal is processed in
frames of 370 ms, this frame size ensures an adequate time support for entropy computation ac-
cording to our experiments. The frame sizes normally used inaudio-fingerprinting ranges from
10 ms to 500 ms according toCano et al.(2002). The frame size used inHaitsma and Kalker
(2002); Wang(2003) is precisely 370 ms.

9 CONCLUSIONS, REMARKS AND FUTURE WORK

In this work, we propose the use of a massive parallel architecture based on the Graphics
Processing Unit (GPU) with the CUDA programming kit. We prove experimentally that even
with a relatively small GPU and using a single core in the GPU,we are able to obtain a speedup
of about 3 per core in a GPU/CPU model. We compared our FFT implementation against state
of the art CUFFT obtaining impressive results, hence our FFTimplementation can help other
areas of application.
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(a) Hanning

(b) fft

(c) Histogram

Figure 9: Speedup of Hanning, FFT and Histograms computation

We are currently working in many directions. One is to implement all the steps in the
MBSESp computation in a pure GPU model, avoiding data transfers that slowing down the
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Figure 10: FFT vs CUFFT

Figure 11: Overall SpeedUp ofMBSESp

process. Other is to increase the speedup expectatives thrumany GPU cores and careful GPU
memory administrations. Finally, we are also implementinga massively parallel version of a
main memory metric index to support proximity queries.
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Danielson G.C. and Lanczos C. Some improvements in practical fourier analysis and their appli-
cation to x-ray scattering from liquids.J. Franklin Institute, 233:365â̆AŞ380 and 435â̆AŞ452,
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