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Abstract. In this work are investigated two topics associated with numerical calculations of the 

acoustic transmission loss in acoustical silencers: analysis of acoustic chambers employing 

active/inactive finite elements and its optimization using the GA with integer variables. The 

technical information on the use of active/inactive elements and the definition of all the design 

variables used for the entire control of the finite element mesh are detailed. Although simple, 

the numerical results for the examples analyzed show excellent convergence achieved with the 

combination of these two techniques for the optimization of symmetrical acoustic chambers.  
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1 INTRODUCTION 

The transmission loss, TL(ω), can be used to define the problem of optimization of 

acoustic chambers (mufflers) as (Luenberger, 1989; Bazaraa et. all., 1993):  

 

Maximize or Minimize         f(TL(ω))     

Subject to                              xjL ≤ xj ≤ xjU       j=1,2,3,...,nd            (1)     

 

where f(TL(ω)) is the objective function that depends of the excitation frequency ω and the  

nd variables of design xj with lower limit xjL and upper limit xjU. 

To perform the optimization of the acoustic chamber on discrete frequencies is defined an 

objective function with discrete values of the transmission loss as: 

∑ ωα=ωωω
=

n

1i
iin21 )(TL),...,,(f         (2)

  

where αi represents  a positive penalty parameter defined with the purpose of enhancing the 

value of transmission loss in a specific frequency ωi.  

For the optimization in all frequency range the objective function can be written using the 

average transmission loss in different frequency ranges. Mathematically this function is 

expressed in the following way (Barbieri and Barbieri, 2006): 

∑ ω∆α=ω∆ω∆ω∆
=
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and αi  represents a positive penalty parameter defined with the purpose of enhancing the 

value of transmission loss in a specific frequency  range ωiL≤ iω∆ ≤ωiU. 

After selecting an appropriate objective function and the definition of design variables and 

their limits, the mathematical problem defined in Eq (1) can be solved using traditional 

optimization methods in the literature. 

In this work was used the finite element method to evaluate the objective function together 

with the concept of active/inactive finite element to make the control of the mesh. The method 

of GA with integer variables was used to perform the optimization calculations and the great 

advantage of this approach is the reduced processing time. All methodology with use of 

active/inactive elements and the definition of design integer variables used in the GA are 

detailed later in this paper. Although simple, the numerical examples shown in this paper are 

to point out the quality of the results obtained with this approach. 

 

2 THE CONTROL OF THE MESH AND THE DEFINITION OF DESIGN 

VARIABLES  

 

After the construction of a homogeneous mesh of finite elements is defined a region where 

it want to control the geometry in order to optimize the design. Figure 1 show a shaded region 
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composed to nd columns with 10 finite elements per column. This is the design domain. 

                   
 

Figure 1 – Mesh of finite elements and the design domain. 

 

Analogous to the process of topology optimization widely used in structural optimization, 

the finite element within the design domain are called to active or inactive elements. The 

active elements are those where the Helmholtz equation is usually modeled with FEM and 

inactive elements are those where the characteristic matrices of finite element are null. 

Each column in the design domain has Nj elements that corresponds to the upper limit of 

the design variable xj, j = 1,2 ,..., nd. In Figure 1, Nj = 10 for any column. 

The design variables are used to define the number of inactive elements in each column of 

the design domain. Thus each xj is an integer variable and 1≤ xj ≤ Nj. Figure 2 shows that xm 

= 8 indicating that there are only 8 inactive elements (filled with black color) in the column m 

= 5 of the design domain. 

 

 
Figure 2 – Inactive elements in the column m (filled with black color). 

 

After assembling all the elements, some rows and columns of the finite element matrix can 

have all null elements. These rows and columns are associated to the nodes inside the design 

domain that belong only to inactive elements. Therefore, to avoid the singularity of the final 

system of equations is sufficient to specify to these diagonals any nonzero value. This 

procedure does not change the result of the analysis, because these nodes are completely 

uncoupled (inactive node) of the other nodes of the mesh and pertain to inactive elements that 

are not post-processed. In Figures 3a and 3b are illustrated examples of this situation to 

meshes build with linear and quadratic elements, respectively. These figures show the shaded 

inactive elements and inactive nodes filled with black color. However, the approach described 

above can be applied to any other type of element.  

x5=8 

x1,x2,x3,...,xnd 
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(a)                                                 (b) 

 

Figure 3 – Uncoupled nodes during the optimization process. (a) Mesh with linear finite 

elements and (b) mesh with quadratic finite elements. 
 

During all the optimization process the finite element mesh remains unchanged, but for 

each evaluation of the objective function some active elements may become inactive and vice 

versa, because there are changes in the values of design variables. As the mesh does not 

change the final value of the objective function depends of ∆h that defines the size of the 

elements of each of the columns pertain the design domain. The point of optimum obtained 

with these integer variables tends to the value obtained with real variables when ∆h tends to 

zero (very refined mesh). It is clear that the use of very refined mesh increases substantially 

the processing time of the analysis, due to the fact that increasing the number of degrees of 

freedom model and the integral used to evaluate the objective function is solved numerically. 

Therefore, an h-adaptive refinement is indicated to obtain small values for ∆h that defines the 

size of the element mesh and the desired accuracy of the calculations. 

3 NUMERICAL EXAMPLES 

All the examples illustrated in this work were calculated using the following characteristics 

for the GA: crossover probability of 50%; probability of permutation of 2%, in each 

generation were evaluated 25 times the objective function and maintaining the characteristics 

of elitist reproduction. 

The computational finite element and GA routines were developed by the authors and 

written in Fortran 90. The Lagrangean element of 9 nodes was used in all tests and the 

properties of the medium were c=346 m/s and ρ=1,21 kgf/m
3
. 

 

3.1 Example 1 

In this example it is shown the optimization of a single chamber with extended inlet/outlet 

ducts. The single chamber has the following geometric data: D=150 mm for the chamber 

diameter, d1=d2=50 mm for the inlet/outlet ducts, and L=300 mm for the chamber length.  

With these geometric features and considering c = 346 m/s, the first two frequencies of this 

chamber where the null acoustic attenuation are f1=c/2L=576,66 Hz and f2=c/L=1153,33 Hz. 

Based on this information it selects two frequency ranges to maximize the TL(ω) with the 

following objective function:  
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where the integrals are numerically calculated with the known Simpson rule and TL(ω) is 

evaluated with step of 5 Hz. In this way, are necessary 11 calculations of TL(ω) to evaluate 

the first integral and 21 calculations to evaluate the second integral. 

In the evaluation of TL(ω)  is used the finite element mesh quadratic (9 nodes) illustrated in 

Figure 4. Are defined only two design variables (x1 and x2) to control the h1 and h2 lengths 

of the inlet/outlet extended ducts. These design variables defines the number of inactive 

elements of the finite element mesh that appear filled with black color in this figure.  

Therefore, the limits for these design variables (integers) defined for the solution of this 

example are 1≤x1≤30 and 1≤x2≤25, because the mesh is homogeneous with element size of 

∆h=5mm. Although this is a mesh with small number of elements the results can be 

considered reliable until the frequency of 3000 Hz which is the upper value shown in Fig. 5.  

The analysis of phase errors (numerical x analytical) and amplitude to the problems of linear 

acoustics is widely studied in the literature, for example: Ihlemburg et al. (1997) e Barbieri et. 

al. (2004). Barbieri et al. (2004) found maximum amplitude error of 0.01% and 0.1% for the 

phase between the analytical and numerical solution in the quasi-singularity. Near the singular 

point is expected minor error: 0.004% for amplitude and 0.01% for the phase. These values 

were obtained using 23 elements per wavelength (3000 Hz) and due to error curves shown in 

this reference.  

 The design variables x1 and x2 are calculated as the integer part of h1/∆h and h2/∆h. 

Therefore, the maximum number of evaluation of the objective function to find the optimal 

solution to this finite element mesh is at most equal to 30×25=750. In relation to the optimal 

values calculated with real variables it is expected maximum error in h1 and h2 of 2.5 mm 

which corresponds to half the characteristic size of the element.  

 
 

h1 h2 

300 

25 

50 

 
 

Figure 4 – Finite element mesh and design variables (real). 

 

The convergence is achieved in the first generation (iteration) with 25 evaluations of the 

objective function. Figure 3 shows the two regions used to define the optimization intervals 

(550-600 Hz and 1100-1200 Hz) and the TL(ω) curves for the single chamber (h1=h2=0) and 

to the optimized chamber using extended inlet/outlet ducts (h1= 40 mm and h2= 60 mm). It 

can be noted that between 1100 and 1200 Hz there is a low attenuation of optimized TL(ω) 

curve due to use of elements with size of 5 mm. Results for this optimization problem using 

real variables can be found in Barbieri and Barbieri (2006) and show that these low 

attenuations in TL(ω) can be eliminated by refining the mesh.  
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Figure 5 –  TL(ω) for single chamber (dashed line) and for optimized chamber with 

extended inlet/outlet ducts (solid line). 

 

3.2 Example 2 

 

In the results shown in Fig. 5 is easily noted that the acoustic attenuation in the frequency 

range from 2200 to 2400 Hz is lower and a new optimization was performed in order to 

eliminate this disadvantage.  The strategy employed was to use mini-chambers in the inlet 

duct in order to not significantly alter the volume of the chamber and does not cause 

substantial changes in the TL(ω) curve. Similar strategy was used by Lima (2008) who used 

corrugated pipes to eliminate this kind of problem with satisfactory results. 

In Figure 6a is show the design domain used to new optimization problem and Figure 6b 

shows the design variables and the illustration of a homogeneous mesh with ∆x=∆y=5mm 

where the filled elements represent the inactive elements. 

 

  

h1 h3 
h2/2 

 70 

25 

25 

 70 

h2/2 

 
 

a) Design domain. b) Design variables and control of mesh. 

 

Figure 6 – Geometry, finite element mesh and design variables. 

 

R 
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The optimization process was carried out using homogeneous mesh with ∆x=∆y=2,5mm 

and the geometric constraints imposed to the design variables (integers) were defined as 

2≤x1≤16; 2≤x2≤16 and 2≤x3≤16. The frequency range used to calculate the objective function 

was 2150 to 2450 Hz and the final geometry found is illustrated in Fig. 7 where the elements 

filled with black color indicate the inactive elements (walls).  The convergence to the 

optimum values was also achieved at the end of the first generation (25 iterations). 

 

 
Figure 7 – Geometry and finite element mesh after optimization. 

 

The values found for the design variables were h1= 32.5 mm ; h2= 25 mm and h3= 30 mm 

with f=44,806 dB. The TL(ω) curve obtained with this new geometry is show in Fig. 8 and it 

can be noted significant increase of  TL(ω) in the frequency range of 2000 to 3000 Hz and 

lower changes in other regions were already expected in function of change in the in internal 

volume of the chamber.  
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Figure 8 – TL(ω) for optimized chamber with inlet/outlet extended ducts (dashed line) 

and with mini-chambers in the input (solid line). 
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3.3 Example 3 

In this example is show the optimization of the same simple camera used in Example 1, but 

the frequency range used in the optimization was 350 Hz to 400 Hz and was defined 60 design 

variables to define the region area. Each of these design variables takes the value 0 (inactive) 

or 1 (active). The inactive elements indicate the existence of material (wall) and the active 

elements indicate free passage of airflow. In Figure 9 is illustrated the situation where all 

elements of the design domain are inactive. 

 
 300 

25 

50 

60 design 

 variables 

Figure 9 - Finite element mesh and design variables (real). 

 

The optimization was performed using 20 evaluations of the objective function for each 

generation and the objective function was calculated using ∆ω=5Hz and the same finite 

element mesh of example 1. The optimum geometry obtained using these conditions is shown 

in Figure 10 and it was reached after 8 generations (160 evaluations of the objective function) 

as shown in Fig.11. The TL(ω)  curve for these conditions is shown in Fig.12 which is also 

shown the frequency range used in the optimization process. 
 

215 

 
Figure 10 - Geometry and finite element mesh after optimization. 
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Figure 11 – Convergence analysis for example 3. 
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Figure 12 –   TL(ω) curve after optimization and frequency range used in the 

optimization process. 

 

3.4 Example 4 

  

In this application are used 3 design variables for the optimization of the double extension 

chamber with extended pipes in the internal division, Figure 13. The dimensions of the 
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chamber and inlet/outlet ducts are the same as the previous example. The finite element mesh 

also has a characteristic size of 5 mm and the limitation of  the 3 real design variables are 

given by h1≤160; h2≤h1-5 and h3≤295-h1 and they are associated with 3 integer design 

variables: 1≤x1≤32; 1≤x2≤x1-1 and  1≤x3≤59-x1. 

 
 

h1 

h2 

300 

25 

50 

h3  
 

Figure 13 – Finite element mesh and design variables. 

 

Figure 14 - Geometry and finite element mesh after optimization 

 

 

The optimum values were also found at the end of the first generation and they were equal 

to f = 47.36 dB, h1 = 150, h2, and h3 = 130 = 127.5. The difference between h2 and h3 is the 

value of the central wall thickness (2.5 mm) and as the mesh has elements with 5 mm of 

length there is no possibility of greater accuracy than this. The geometry and finite element 

mesh for the optimum values that shown in Fig.14 and the TL(ω) curve  for this situation is 

shown in Fig.15. Again, probably better results could be obtained by refining the mesh.  
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Figure 15 – TL(ω) after optimization. 

4 CONCLUSIONS 

The conclusions from the results shown above are: 

 

1. The quality of results obtained with the technique of active/inactive finite elements is 

associated with the size of the element. Best results are obtained for smaller meshes; 

2. The control of mesh for each stage of optimization is quite simple and extremely fast; 

3. The GA with integer variables produces satisfactory results and good convergence. 

Examples 1.2 and 4 converged to the optimal geometry in the first-generation; 

4. Even using 60 design variables the convergence shown in Example 3 was also very good. 
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