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Abstract.
Nowadays, the resolution of Aeroacoustic problems using numerical methods (CAA) is currently a

very active area of research, with great industrial interest. However, the simulation of the sound propaga-
tion is a very difficult numerical problem, and moreover, most of industrial applications present complex
geometries. Thus, numerical methods successfully used in unstructured grids in aeronautics fail when
applied to CAA. This is due to the excessive amount of dissipation and not enough spectral resolution
of these schemes. In this paper we present the application of a high-order finite volume method based in
Moving Least Squares (FV-MLS) to the simulation of acoustic wave propagation in complex domains.
This work continues the work of the authors in the development of numerical methods to be used in the
resolution of acoustic problems of engineering interest.
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1. INTRODUCTION

Nowadays there is a need of decreasing the noise generation of industrial devices. Environ-
mental problems and the interest in public health have increased the attention to the effects of
noise-pollution. Thus, laws about the level of noise are currently more restrictive, and a low-
noise-level emission is a key feature that can rule the success or the failure of a commercial
product (for example air-conditioning machines, vacuum cleaners, wind turbines, etc). In this
context, the resolution of Aeroacoustic problems using numerical methods (CAA) is currently
a very active area of research, with great industrial interest.

The simulation of the sound propagation in the air is a very difficult numerical problem (Tam
(1995)). High-resolution finite difference schemes or spectral methods have been traditionally
used as the main methods for the resolution of aeroacoustic problems (Hu et al. (1996); Tam y
Webb (1993)). The reason is the low-dissipation and excellent dispersion relation of this kind
of numerical schemes. However, these schemes require structured grids to be used, and this
is an important drawback for its application to complex geometries. Thus, the time needed to
generate a block-structured grid for complex geometry problems is very often bigger than the
time required for the numerical simulation. In this context, unstructured grids are preferred.

Finite volume methods have been very widely and successfully used in aerodynamics. Ho-
wever, the application of these methods in its most usual formulation (at most order two) to
CAA on unstructured grids is not straightforward, due to the excessive dissipation and lack of
resolution of the numerical method. Even though rising the order is not the only (nor probably
the best) way to improve the resolution of the schemes, it is the most usual approach on uns-
tructured grids, due to the difficulty in generalize the methods developed for structured meshes
(Lele (1992)). But this is also not obvious. The main problem relies on the evaluation of high
order derivatives.

The FV-MLS method (Cueto-Felgueroso et al. (2007); Nogueira et al. ((2009)) overcomes
this difficulty by using Moving Least Squares (MLS) (Lancaster y Salkauskas. (1981)) to com-
pute the gradients and successive derivatives on a finite volume framework, without the intro-
duction of new degrees of freedom. This method has already been applied to test cases of CAA
with excellent results (Nogueira et al. (2010b); Khelladi et al. (2010)). In this work we show the
behavior of the FV-MLS method to the computation of acoustic wave propagation in complex
geometries.

2. THE LINEARIZED EULER EQUATIONS

Most of aeroacoustic problems are linear, so it is possible to linearize Euler equations around
a (mean) stationary solution UUUUUUUUUUUUUU0 = (ρ0, u0, v0, p0). Then, the Linearized Euler Equations written
in conservative form are the following:

∂UUUUUUUUUUUUUU

∂t
+
∂EEEEEEEEEEEEEE

∂x
+
∂FFFFFFFFFFFFFF

∂y
+HHHHHHHHHHHHHH = SSSSSSSSSSSSSS (1)

being SSSSSSSSSSSSSS a source term and

UUUUUUUUUUUUUU =


ρ′

ρ0u
′

ρ0v
′

p′

 EEEEEEEEEEEEEE =


ρ′u0 + ρ0u

′
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′

ρ0u0v
′

u0p
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′
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′
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HHHHHHHHHHHHHH =


0
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′ + u0ρ
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∂u0

∂x
+ (ρ0v

′ + v0ρ
′)
∂u0

∂y

(ρ0u
′ + u0ρ

′)
∂v0

∂x
+ (ρ0v

′ + v0ρ
′)
∂v0

∂y
(γ − 1) p′∇∇∇∇∇∇∇∇∇∇∇∇∇∇ · u0 − (γ − 1)u′∇∇∇∇∇∇∇∇∇∇∇∇∇∇p0

 (3)

where the velocity is νννννννννννννν = (u, v), ρ is the density, p the pressure and γ = 1,4. Subscript 0 is
referring to mean values and ′ indicates perturbation quantities around the mean. In case of an
uniform mean flow, HHHHHHHHHHHHHH is null.

3. NUMERICAL METHOD

A method based on the application of Moving Least Squares to compute the derivatives
on a finite volume framework (FV-MLS) (Cueto-Felgueroso et al. (2007); Cueto-Felgueroso y
Colominas (2008); Nogueira et al. (2010a)) has been used to discretize the Linearized Euler
Equations (1). In order to increase the order achieved by the method, a Taylor expansion of
the variable is performed at the interior of each cell. Next, the approximation of the higher
order derivatives needed to compute the Taylor reconstruction are obtained by a Moving Least
Squares approach.

Thus, if we consider a function Φ(xxxxxxxxxxxxxx) defined in a domain Ω, the basic idea of the MLS
approach is to approximate Φ(xxxxxxxxxxxxxx), at a given point xxxxxxxxxxxxxx, through a weighted least-squares fitting of
Φ(xxxxxxxxxxxxxx) in a neighborhood of xxxxxxxxxxxxxx as

Φ (xxxxxxxxxxxxxx) ≈ Φ̂ (xxxxxxxxxxxxxx) =
m∑
i=1

pi (xxxxxxxxxxxxxx)ααααααααααααααi (zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

= ppppppppppppppT (xxxxxxxxxxxxxx)αααααααααααααα (zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

(4)

ppppppppppppppT (xxxxxxxxxxxxxx) is an m-dimensional polynomial basis and αααααααααααααα(zzzzzzzzzzzzzz)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

is a set of parameters to be determi-
ned, such that they minimize the following error functional:

J
(
αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

)
=

∫
yyyyyyyyyyyyyy∈Ωxxxxxxxxxxxxxx

W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

[
Φ(yyyyyyyyyyyyyy)− ppppppppppppppT (yyyyyyyyyyyyyy)αααααααααααααα(zzzzzzzzzzzzzz)

∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

]2

dΩxxxxxxxxxxxxxx (5)

being W (zzzzzzzzzzzzzz − yyyyyyyyyyyyyy, h)
∣∣∣
zzzzzzzzzzzzzz=xxxxxxxxxxxxxx

a kernel with compact support (denoted by Ωxxxxxxxxxxxxxx) centered at zzzzzzzzzzzzzz = xxxxxxxxxxxxxx. The
parameter h is the smoothing length, which is a measure of the size of the support Ωxxxxxxxxxxxxxx. In this
work the following polynomial cubic basis is used:

pppppppppppppp(xxxxxxxxxxxxxx) =
(
1 x y xy x2 y2 x2y xy2 x3 y3

)T (6)

which provides cubic completeness. In the above expression, (x, y) denotes the cartesian coor-
dinates of xxxxxxxxxxxxxx. In order to improve the conditioning, the polynomial basis is locally defined and
scaled: if the shape functions are going to be evaluated at xxxxxxxxxxxxxxI , the polynomial basis is evaluated
at (xxxxxxxxxxxxxx − xxxxxxxxxxxxxxI)/h. Following (Cueto-Felgueroso et al. (2007)), the interpolation structure can be
identified as

Φ̂(xxxxxxxxxxxxxx) = ppppppppppppppT (xxxxxxxxxxxxxx)MMMMMMMMMMMMMM−1(xxxxxxxxxxxxxx)PPPPPPPPPPPPPPΩxxxxxxxxxxxxxxWWWWWWWWWWWWWW (xxxxxxxxxxxxxx)ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΩxxxxxxxxxxxxxx = NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx)ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΩxxxxxxxxxxxxxx =

nxxxxxxxxxxxxxx∑
j=1

Nj(xxxxxxxxxxxxxx)Φj (7)
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where MMMMMMMMMMMMMM is the moment matrix, PPPPPPPPPPPPPPΩxxxxxxxxxxxxxx =
(
pppppppppppppp(x)1 · · ·pppppppppppppp(x)nxxxxxxxxxxxxxx

)
, ΦΦΦΦΦΦΦΦΦΦΦΦΦΦΩxxxxxxxxxxxxxx =

(
Φx1 · · ·Φxnxxxxxxxxxxxxxx

)
and

WWWWWWWWWWWWWW (xxxxxxxxxxxxxx) = diag(Wi(xxxxxxxxxxxxxx)) with i = 1, ..., nxI
(Cueto-Felgueroso et al. (2007)). As in the finite

element method, the approximation is written in terms of the MLS “shape functions” NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx).
The derivatives of NNNNNNNNNNNNNNT (xxxxxxxxxxxxxx) can be used to compute an approximation to the derivatives of the
function. So, the gradient of Φ̂(xxxxxxxxxxxxxx) is evaluated as

∇∇∇∇∇∇∇∇∇∇∇∇∇∇Φ̂(xxxxxxxxxxxxxx) =

nxxxxxxxxxxxxxxI∑
j=1

Φj∇∇∇∇∇∇∇∇∇∇∇∇∇∇Nj(xxxxxxxxxxxxxx) (8)

The equation to be solved is the one resulting by the application of the finite volume discre-
tization to equations (1):

AI
∂UUUUUUUUUUUUUU I

∂t
=

nedgeI∑
iedge=1

nqI∑
iq=1

[−FFFFFFFFFFFFFF · nnnnnnnnnnnnnn]iqWiq + SSSSSSSSSSSSSSI (9)

where FFFFFFFFFFFFFF = (EEEEEEEEEEEEEEx, FFFFFFFFFFFFFF y), AI is the area of cell I , nedgeI the number of cell edges, UUUUUUUUUUUUUU I and SSSSSSSSSSSSSSI are
the average values of UUUUUUUUUUUUUU and SSSSSSSSSSSSSS respectively, over the cell I (associated to the cell centroid). W
are the integration weights and iq is the index for integration points. FFFFFFFFFFFFFF · nnnnnnnnnnnnnn is computed with a
standard flux vector splitting technique (Toro (1999)).

The MLS approximation has been used to compute the derivatives for the reconstruction of
variables at quadrature points at the edges by using a Taylor expansion until the fourth derivati-
ve. The resulting scheme is a fifth order method (Cueto-Felgueroso et al. (2007); Nogueira et al.
((2009)).

For time integration, we use the Implicit Differential Algebraic (IDA) solver (Hindmarsh
et al. (2005)). As major feature, the time integration method is the variable-order (from 1 to 5)
variable-coefficient Backward Differentiation Formula, with adaptive time-step, (Brenan et al.
(1996)) for more details. For the solution of the linear system (21), an inexact Newton/Krylov
subspace iterative corrections based on a scaled preconditioned GMRES solver is used. See
Khelladi et al. (2010) for more details.

The particles needed for the application of the method are identified with the centroids of
every cell of the grid. For boundary cells, we add nodes (ghost nodes) placed in the middle of
the edge defining the boundary. The definition of the stencil for each cell is done at the beginning
of the calculations. An exponential kernel has been used, defined in 1D as:

W (x, x∗, sx) =
e−( s

c)
2

− e−( dm
c )

2

1− e−( dm
c )

2 (10)

with s = |x− x∗|, dm = max (|xi − x∗|), i = 1, ..., nx∗ c = dm
2sx

, x∗ is the reference point (the
point around which the stencil moves, in this case the centroid of each cell, I), and sx is a shape
parameter. A 2D kernel is obtained by multiplying two 1D kernels:

Wj(xxxxxxxxxxxxxx,xxxxxxxxxxxxxx
∗, sx, sy) = Wj(x, x

∗, sx)Wj(y, y
∗, sy) (11)

The shape parameter sx varies from 1 to 6 according to the applications. A complete analysis of
the influence of the kernel parameters on the properties of the numerical scheme can be found
in Nogueira et al. (2010a). Here, in 1 we show the dispersion and dissipation characteristics of
the FV-MLS 3rd order scheme for different values of sx.

In this work we have used the values of sx = sy = 3.
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3.1. Boundary Conditions

Absorbing boundary conditions have been implemented by using grid stretching and a MLS-
based filtering. Grid stretching transfers the energy of the wave into increasingly higher wave-
number modes and the filter removes this high-frequency content. With this process the energy
of the wave is dissipated. The filtering process is developed by the application of a MLS recons-
truction of the variables, i.e:

ΦΦΦΦΦΦΦΦΦΦΦΦΦΦ(xxxxxxxxxxxxxx) =

nxxxxxxxxxxxxxxI∑
j=1

Φ(xxxxxxxxxxxxxx)Nj(xxxxxxxxxxxxxx) (12)

where Φ is a variable, ΦΦΦΦΦΦΦΦΦΦΦΦΦΦ is the filtered variable and N is the MLS shape function. This re-
construction is performed by using a kernel with different shape parameters that the used to the
approximation of the variables. The value of these parameters determines the range of frequen-
cies to be filtered.

4. NUMERICAL EXAMPLES

4.1. Noise generated for a monopolar source placed on a volute-like domain

Here we propose to solve the 2D Linearized Euler Equations (LEE)in complex geometry
using the proposed formulation. A previous work has been done by the authors [38,39] concer-
ning the application of FV-MLS to CAA problems on unstructured grids. We have shown that
FV-MLS is very well adapted to solve LEE with a very good accuracy. Here we show the po-
tential of this formulation for use with unstructured grids. In this first example, we simulate the
propagation of acoustic waves originated for a monopolar acoustic source placed on a domain
that mimics the geometry of the volute of a turbomachine. The complexity of the geometry is
evident.

The monopolar source is defined as:

Sp =
1

2
e

(
−ln(2)

(x−xs)
2+(y−ys)

2

2

)
sin (ωt)× [1, 0, 0, 1]T (13)

where the angular frequency is ω = 2π/30 and t is the time coordinate. The wave length is
λ = 30 units. In figure 2 we plot the isosurfaces of the acoustic pressure for different times.

4.2. Noise generated for a several bipolar sources placed on a turbomachine-like domain

The nature of the noise generated in centrifugal turbomachines is bipolar. It is originated by
the unsteady forces acting over the rotor blades. In the second example, we show the acoustic
wave propagation generated in the rotation of 9 artificial bipolar sources, simulating a centrifu-
gal turbomachine with a nine-blade rotor. This setup of the problem mimics the noise generated
at the trailing edge of rotor blades in a centrifugal turbomachine.

The acoustic source is defined as:

Sp =
1

2
e

(
−ln(2)

(x−xs)
2+(y−ys)

2

2

)
sin (ωt)× [0, nx, ny, 0]T (14)

where the angular frequency is ω = 2π/30 and t is the time coordinate. The wave length is
λ = 30 units.

In figure 3 we plot the isosurfaces of the acoustic pressure for different times.
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Figura 1: Dispersion and dissipation characteristics of the FV-MLS 3rd order scheme for different values of sx

Figura 2: Propagation of acoustic waves on a volute-like domain. On the left we plot the acoustic pressure at t = 0
and on the right, we plot the acoustic pressure att = 8
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5.3 Analyse acoustique de la machine

FIGURE 5.14 – Distribution du champ de pression dans la machine à t= multiple s

CHAPITRE 5 : Application à la propagation des ondes acoustiques dans les turbomachines 112

Figura 3: Pressure distribution inside and outside the turbomachine for different times
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5. CONCLUSIONS

In this work we show the application of the FV-MLS method to the resolution of CAA
problems in complex geometries. We present the results of acoustic pressure propagation in tur-
bomachinery. Preliminary results are really excellent. The results encourage us to go further and
use the FV-MLS scheme to compute the noise sources by solving the Navier Stokes equations
in a LES simulation. Work is in progress in this direction.
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