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Abstract. Isotachophoresis (ITP) belongs to a wide group of analytical techniques named as Elec-
trophoretic separations, which also includes capillary electrophoresis, isoelectric focusing and free flow
electrophoresis. Electrophoretic separations are based on the dissimilar mobility of ionic species under
the action of an external electric field. In particular in ITP assays, the sample is introduced between a fast
leading electrolyte and a slow terminating electrolyte. After applying a difference of electric potential,
a low electrical field is created in the leading electrolyte and a high electrical field in the terminating
electrolyte. The constituents will completely separate from each other, and concentrate at an equilibrium
point, surrounded by sharp electrical field differences. These sharpnesses in the electric field give place to
spurious oscillations due to the high local values of the Pèclet number. In order to avoid this oscillations,
a large amount of nodes in the mesh are required. The additions of points have to be cleverly done in
order to avoid a substantial increase in the computational costs. This is achieved by using an h-adaptive
mesh refinement (AMR) method. In this work, we present two examples of ITP in microfluidic chips,
in order to show the advantages of using AMR in these kind of problems. Examples were solved by us-
ing a generalized numerical model of electrophoresis on microfluidic devices previously presented. The
model is based on the set of equations that governs electrical phenomena (Poisson equation), fluid dy-
namics (Navier-Stokes equations), mass transport (Nerst-Planck equation) and chemical reactions. The
numerical simulations were carried out by using PETSc-FEM (Portable Extensible Toolkit for Scien-
tific Computation - Finite Elements Method), in a Python environment using high performance parallel
computing and solving techniques based on domain decomposition methods.
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1 INTRODUCTION

Electrophoretic separation techniques are based on the mobility of ions under the action of
an external electric field. These techniques, which are widely used in chemical and biochem-
ical analysis, have been miniaturized in the last 20 years and now represent one of the most
important applications of lab-on-a-chip (LOC) technology (Manz et al., 1990; Tian and Fine-
hout, 2008). The LOC’s are instruments that integrate one or several laboratory functions on a
single chip of only millimeters to a few square centimeters (Wikipedia, 2008). The LOC’s have
provided a platform to conduct chemical and biochemical analysis in a variety of scientific ar-
eas as genetics, molecular biology, pharmacology, environment, among others. Electrophoretic
separations carried out by LOC’s technology comprise a group of different techniques such
as: capillary zone electrophoresis (CZE), isoelectric focusing (IEF) and isotachophoresis (ITP)
among others (Landers, 2007). In particular, ITP works using a discontinuous electrical field to
create sharp boundaries between the sample constituents. ITP is a powerful sample preconcen-
tration (stacking) technique which is useful in the analysis of low abundance species.

As microchips for electrophoresis are becoming increasingly complex, simulation tools are
required to numerically prototype the devices, as well as to control and optimize manipulations
(Erickson, 2005). However, there are difficulties due to the several orders of magnitude of the
relevant length scales involved: the electric double layer (EDL) thickness (in nm), microchan-
nels width (in µm), and microchannels length (in mm). At the same time, the most challenging
and interesting aspect of computational simulation of microfluidic chips is the multiphysics na-
ture, which combines fluidics, mass transport, electromagnetics and chemical reaction kinetics.

The first mathematical model of electrophoresis, including ITP, was developed by Saville
and Palusinski (1986). More complex models of conventional electrophoretic separations were
later reported (Hruska et al., 2006; Thormann et al., 2007; Bercovici et al., 2009). Numerical
simulations aimed to LOC technology involving fluid flow and species transport were early
addressed to electrokinetic focusing and sample dispensing techniques, by employing finite
volume method in structured grids (Patankar and Hu, 1998; Ermakov et al., 1998, 2000). Due
to its non-continuous character, ITP represents an extra challenge from the numerical point of
view, and in consequence, a few works in the area were reported, such as Hruska et al. (2006)
and Thormann et al. (2007) in 1D domains, and by Shim et al. (2007) in 2D domains. Adaptive
mesh refinement (AMR) in numerical simulations of ITP were previously reported by Bercovici
et al. (2009) in 1D finite differences.

The need to use AMR in ITP simulations is based in the sharp variations of electric field
between the leading electrolyte and sample, between sample and the terminating electrolyte,
and also, between sample components, that generates high local values of the Pèclet number.
Adaptive mesh refinement has well known benefits when different length scales, great magni-
tude advective terms and discontinuities are present in the solution field. Among the differ-
ent mesh adaptation techniques, region subdivisions (h-adaptation), has also shown to be the
most widely accepted in the scientific community when solving unsteady problems (Löhner
and Baum, 1992; Berzins and Speares, 1997; Usmani, 1999; Remacle et al., 2002; Waltz, 2004;
Alauzet et al., 2007). The AMR helps to reduce the numerical instabilities near high gradient
regions and better define the aforementioned discontinuities without increasing the computa-
tional costs. AMR tool used in this work was previously presented in solving compressible
flow problems (Ríos Rodriguez et al., 2005, 2006, 2008, 2009b).

In this paper, a previously presented model for generalized electrophoretic processes in mi-
crofluidic chips (Kler et al., 2010) is employed to simulate ITP assays. The use of AMR in
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ITP numerical simulations allows a better exploitation of computational resources in model
resolution. Two application examples are included in order to show AMR advantages.

2 MODELLING

This section summarizes the mathematical model previously presented (Kler et al., 2010).
First the fluid dynamics and the electric field are discussed, and then the mass transport balance
for all species considered and the chemistry involved are described.

2.1 Flow field

Fluid velocity u and pressure p are governed by the following equations (Probstein, 2003;
Li, 2004):

−∇ · u = 0, (1)

ρ(
∂u

∂t
+ u · ∇u) = ∇ · (−pI + µ(∇u +∇uT )) + ρg + ρeE . (2)

Equation 1 expresses the conservation of mass for incompressible fluids. Equation 2 ex-
presses the conservation of momentum for Newtonian fluids of density ρ, viscosity µ, subjected
to gravitational field of acceleration g and electric field strength E. The last term on the right
hand side of Eq. 2 represents the contribution of electrical forces to the momentum balance,
where ρe = F

∑
j zjcj is the electric charge density of the electrolyte solution, obtained as the

summation over all type-j ions, with valence zj and concentration cj , and F is the Faraday
constant. The treatment of this term deserves a complex analysis (see Kler et al. (2010)) due to
the strong coupling between the fluid dynamics, the electric field and the concentrations fields.
Physicochemical processes related to the coupling are located at the solid-liquid interface were
the Electric Double Layer (EDL) forms (Hunter, 2001). One common approximation is the thin
EDL approximation. This approximation is employed in this work, and briefly described above.

2.2 Thin EDL approximation

The thickness of the EDL is quantified through Debye length (Probstein, 2003). For the ionic
concentrations normally used in practice, this thickness is in the order of 1−10 nm, while cross-
sectional channel dimensions are in the 10− 100 µm range. Consequently, in most of the flow
domain ρe ≈ 0, except in the close vicinity of charged interfaces. When an external electric
field ∇φa is applied tangent to the interface, the electric forces acting on excess ions in the EDL
drag the surrounding liquid, and thus EOF develops. For thin EDL in relation to the channel
width, the effect is confined to a certain plane parallel to the channel wall, also designated shear
plane, where the surface potential is the electrokinetic potential (ζ). Under these conditions,
the electro-osmotically driven flow can be regarded as the result of an electrically-induced slip
velocity, the magnitude of which is:

uEO = −εζ

µ
∇φa (3)

Further, the last term on the RHS of Eq. (2) vanishes, and the EOF is considered by using
Eq. (3) as a boundary value at channel walls.
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2.3 Electric Field

The electric potential φ is calculated from the charge conservation equation in steady state
(Probstein, 2003):

∇ · (−σ∇φ− F

N∑
j=1

zjDj∇cj + ρeu) = 0 (4)

where Dj is the diffusion coefficient, and σ is the electrical conductivity of the electrolyte
solution,

σ = F 2

N∑
j=1

zj
2Ωjcj (5)

where Ωj is the ionic mobility. In fact, the terms between brackets in Eq. 4 constitute the
electric current density i, which accounts for the ion fluxes due to fluid convection, electrical
forces, and Brownian diffusion.

2.4 Mass transport and chemistry

The mass transport of weakly concentrated sample ions and buffer electrolyte constituents
can be modelled by a linear superposition of migrative, convective and diffusive transport mech-
anisms, plus a source term due to chemical reactions. In a non-stationary mode, the concentra-
tion of each j-type species, is governed by (Probstein, 2003):

∂cj

∂t
+∇ · (−zjΩj∇φcj + ucj −Dj∇cj)− rj = 0 (6)

were rj is the reaction term. Different electrolytes (acids, bases and ampholytes), analytes, and
particularly the hydrogen ion have to be considered. In electrolyte chemistry the processes of
association and dissociation are much faster than the transport electrokinetic processes, hence,
it is a good approximation to adopt chemical equilibrium constants to model the reactions of
weak electrolytes (Arnaud et al., 2002), while strong electrolytes are considered as completely
dissociated.

2.4.1 Acid-base reactions

For the general case, reactions associated to an ampholyte A are

AH GGGBFGGGA− + H+ (7)

AH+
2 GGGBFGGGAH + H+ (8)

then the equilibrium state is characterized by,

ka2

ka1

=
[A−][H+]

[AH]
= Ka (9)

kb2

kb1

=
[AH][H+]

[AH+
2 ]

= Kb (10)
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where the square brackets represent concentration (mol/m3) of the given specie. The corre-
sponding expressions of rj are obtained as follows,

rA− = −ka1[A−][H+] + ka2[AH] (11)
rAH = ka1[A−][H+]− ka2[AH]− kb1[AH][H+] + kb2[AH+

2 ] (12)
rAH+

2
= kb1[AH][H+]− kb2[AH+

2 ] (13)

rH+ = −ka1[A−][H+] + ka2[AH]− kb1[AH][H+] + kb2[AH+
2 ] (14)

In Eq. 14 the water dissociation term is not included due to the fact that this reaction is
several orders of magnitude faster than reactions 7 and 8 (Arnaud et al., 2002), then [OH−] can
be calculated directly as

[OH−] =
Kw

[H+]
(15)

were Kw = 10−14.

2.4.2 Effective charge and mobility of analytes

When the concentration of analytes is much lower than that of buffer constituents, its effect
on the pH is negligible. In these cases, considering all ionic species represents a high computa-
tional cost. However the influence of pH on the analytes must be taking into account. Thus the
transport equation of these analytes includes rj = 0, and the product zjΩj as a function of pH.
For example, if the specie is an ampholyte that obeys a reaction scheme like the one shown in
Eqs. 7 and 8, zjΩj is included in Eq. 6 as an effective charge-mobility product (zeff(j)Ωeff(j);
Chatterjee (2003)). This product is calculated as (α0 − α2)Ωj , where α0 = [A−]/[AT ] and
α2 = [AH+

2 ]/[AT ] with AT = [AH+
2 ] + [AH] + [A−], are the degrees of dissociation of anions

and cations, respectively, which are written in terms of [H+] as,

α0 =

KaKb

[H+]2

1 + Kb

[H+]
+ KaKb

[H+]2

(16)

α2 =
1

1 + Kb

[H+]
+ KaKb

[H+]2

(17)

Therefore the governing equation for the sample plug results,

∂cj

∂t
+∇ · [−(α0 − α2)Ωj∇φcj + ucj −Dj∇cj] = 0 (18)

where it is observed that the physical motion of analytes is coupled to the degree of dissoci-
ation at a given pH.
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3 MESH ADAPTATION

3.1 Overview

The adaptation strategy used to solve the problem is that introduced in a series of previous
works (Ríos Rodriguez et al., 2005, 2006, 2008, 2009b). It is based on an h- refinement /
derefinement algorithm that allows to adapt unstructured linear finite element meshes made up
of triangles, quadrangles, tetrahedrons and hexahedron. By now the strategy does not support
meshes of mixed-type elements nor the unrefinement of the starting mesh (i.e. the mesh used to
start the simulation). The procedure generates refined meshes where the elements corresponding
to the finer levels are completely nested within the coarser ones, until a maximum level of
refinement is reached. Figure (1) shows a detail of a mesh made up of quadrilaterals with four
levels of refinement. The boundary conditions for the problem are specified on the starting mesh
and are automatically updated by the adaptation procedure. A solution projection is realized to
get an initial condition in order to restart calculations.

3.2 Basic requirements, refinement cases and refinement constraints

Since a great number of refinements and derefinements of the mesh are needed in order to
“follow” the structures of interest through the solution domain, the adaption algorithm should
introduce little memory overhead to the solution procedure and should also be fast. Another
desirable feature is to minimize the geometrical quality degradation of the starting mesh. To
address these issues, an h-refinement strategy uniquely based on the 1:4 and 1:8 regular sub-
division patterns for triangles, quadrangles and hexaedra are adopted (figures 2.a, 2.b and 2.c).
Because no regular 1:8 subdivision exists for a tetrahedron, refining it by joining the midpoints
of its edges and choosing then the shortest diagonal of the inner octaedron (figure 2.d) to re-
fine it and get the remaining tetrahedra has shown, through a series of numerical experiments,
a good tradeoff between the required computational effort and the geometrical quality of the
resulting tetrahedra (Ríos Rodriguez et al., 2009b).

Figure 1: Detail of a refined quadrilateral mesh.

No transition elements are used to match zones with different levels of refinement so that
hanging nodes appear and the refined meshes are non-conforming. The well known 1-irregular
vertex refinement constraint introduced by (Babuska and Rheinboldt, 1978) and already used
by numerous authors (Greaves, 2004; Popinet, 2003; Remacle et al., 2002) is adopted as a
smoothing procedure (i.e. to ensure a uniform element size distribution). This rule states that no
more than one hanging node should be shared among neighbour elements through the common
edge to which the hanging node belongs (see fig.(3)). Also, an extension to it for tetrahedra
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(a) (b) (c) (d)

Figure 2: 1:4 and 1:8 subdivision patterns for bi- and three-dimensional elements.

Not

Allowed

Allowed

Figure 3: 1-irregular vertex refinement constraint for 2-D meshes.

meshes is presented in (Ríos Rodriguez et al., 2009b). In this manner, the resulting refinement
strategy eliminates the effort of managing a great number of transition templates (Staten, 1996;
Löhner and Baum, 1992; Remacle et al., 2002) and also keeps bounded the quality degradation
of the mesh (Ríos Rodriguez et al., 2009b).

Also, since continuous finite element functions are used in the numerical formulation, con-
straints for the solution at irregular nodes must be applied. We enforce the solution at these
hanging nodes to the average of the corresponding values at the nodes which define the edges
or faces to which the hanging nodes belong.

3.3 Selection criterion

The regions of the base mesh that need to be refined are selected based on the gradient’s
magnitude of the electrical conductivity field σ. All the elements whose gradient magnitude
times its size is equal to or greater than a percentage of the maximum corresponding value for
all the elements in the mesh are marked to be refined

c1 ≤
‖ ∇iσ ‖ ·hi

maxi=1,...,Nel(‖ ∇iσ ‖ ·hi)
(19)

where c1 is a constant set beforehand by the user, hi is a measure of the element size (the longest
edge is chosen in this case), ‖ ∇iσ ‖ is the magnitude of the σ gradient computed for element-i
and Nel is the number of elements in the mesh. The accurate choice of c1 mostly depends on the
user’s experience and was set equal to 0.1 for both simulations. This is a classical procedure to
tag the cells that need to be refined, commonly used in compressible flow problems (Mavriplis,
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Figure 4: Solution interpolation at the first adaptation step.

1995; Berzins and Speares, 1997; Waltz, 2004; Young and Kwon, 2005).

3.4 Adaptation strategy in unsteady problems

When the base mesh is refined for the first time, the last state computed on it by the solver is
linearly interpolated to the new vertices added in the refinement (figure 4). When the maximum
level of refinement allowed by the user is attained, this interpolated state is used as the initial
condition to resume the solution of the problem equations.

After the solution is advanced nsteps time steps, the selection criterion given by eq.(19) is
applied again to the last computed solution and elements are marked to be refined. We assume
in this work that all the elements that are not selected for refinement should be unrefined up
to the base mesh (coarsest) level. Also, since a maximum level of refinement is imposed, only
those elements that do not belong to the maximum level of refinement are finally included
in the list of elements to be actually refined. On the other hand, an element is unrefined if
only all its brothers (7 in three dimensions and 3 in two dimensions) are also marked to be
unrefined. If this is so, they are replaced by their parent element in the mesh. This search parent
procedure is recursively applied on the data structure that stores the hierarchical relationship of
the elements in the mesh until the coarsest mesh level is attained. It must be taken into account
that although some elements are initially marked to be unrefined, the subsequent application
of the refinement and unrefinement constraints may not allow it. After the mesh is updated
for the current adaptation step, the state needs to be projected again. In this case, and for all
the forthcoming adaptation steps, the projection is done as follows: given a vertex V in the
currently adapted mesh (adaptation step n) it is required to find the element in the previously
adapted mesh (adaptation step n − 1) that contains it. This is done by building first the list
of elements that share vertex V in the current mesh. A recursive search is then applied on
this list to find the parents of this elements in the base mesh whereupon they are replaced
by their descendants in the previously adapted mesh. These elements are “candidates” for
containing V since they are in its neighbourhood. Then, it is possible to find the element that
effectively contains vertex V by iterating on this list and computing the volume (3-D) or area
(2-D) coordinates N

(ei)
j , j = 1, . . . , ne for each one of the candidates. Here ne is the number

of nodes per element and j is the index of the local vertex in the element. If any of the volume /
area coordinates N

(ei)
j is less than zero, point V is outside of element ei and the next element in

the list is checked. Only if all the volume coordinates for an element are greater than or equal
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(a) Vertex position at adap-
tion step n-1

(b) Vertex position at adap-
tion step n

Figure 5: State projection - Finding vertex position in the previous mesh.

to zero it can be stated that V is inside element ei or over one of its faces or edges. In this case
traversal of the list is interrupted and the state vector is computed as follows

U
(n)
V =

Ne∑
j=1

N
(ei)
j (xV ) ·U(n−1)

j (20)

where U
(n−1)
j is the state vector defined at local vertex j of the element ei at adaptation step

n − 1, xV is the coordinate vector for vertex V and U
(n)
V is the state vector for vertex V at

adaptation step n. Dashed lines in figure 5.a) illustrate the volume coordinates at vertex V
while figure 5.b) shows the situation for the current adaptation step. If quadrangles or hexaedra
are used, they have to be previously splitted into two triangles or five tetrahedra correspondingly.
Special care has to be taken in this case for highly deformed elements (Löhner, 2008).

Now, a few words about the frequency for the adaptation of the mesh would like to be men-
tioned, since this is set constant for the whole simulation. First of all, the time step size ∆t for
the numerical problem is updated after every mesh adaptation in order to satisfy the Courant
condition

∆t = CFL min
j=1,...,Nel

(hj/|u∗j |) (21)

so the time simulated between two successive adaptations of the mesh is not constant. In eq.(21)
CFL is the Courant number, hj is the length of the shortest edge for element-j and u∗j is the max-
imum value for the sum of the advection and the maximum migration speeds overall species,
for all the vertices in element-j (see eq.(6)). Because the most refined regions of the mesh are
expected to be at discontinuities, the time step size will be dictated by the size of those ele-
ments (i.e. the combination of smaller elements and higher speeds is more probable to happen
at discontinuities). This helps to prevent the discontinuities to move outside of the most refined
regions until the mesh is adapted again.
The proper choice of the adaptation frequency depends on various factors. Several authors
(Waltz, 2004; Ripley et al., 2004; Remacle et al., 2002) and us (Ríos Rodriguez et al., 2009a)
have found in practice that the adaptation of the mesh takes just a small fraction of the overall
simulation time in 3-D compressible problems (approximately less than 5 per cent). This result
induce us to choose a high updating frequency for the mesh for not compromising the overall
performance of the adaptive solution procedure. If the time required by the adaptation of the
mesh were found to be a greater percentage of the overall simulation time, then a lower updat-
ing frequency should be chosen. However, in this latter case a bigger cost would be transferred
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Figure 6: Inheritance of entity properties during refinement.

to the flow computation stage since the refined regions of the mesh would need to be wider to
ensure that discontinuities will be kept inside them until the mesh is adapted again. Choos-
ing a higher frequency for adapting the mesh enables to use narrower refined regions around
discontinuities and the fluid flow problem is less expensive to solve.

3.5 Management of mesh entities properties

To carry on the numerical simulation with mesh adaptation, it is necessary to properly man-
age its boundary conditions and other properties associated to the mesh entities (i.e. elements,
faces, edges and vertices). This is achieved by assigning a property identifier or flag (illustrated
as f1 in figure 6 ) to the entities of the base mesh. During refinement, this flag is inherited from
a parent entity to its children by assigning them the same value. The flag is defined by the user
and can describe a set of features of different “nature” for an entity (e.g. the identifier assigned
to an edge could mean that a fixation for a particular degree of freedom of the problem has to
be enforced on that edge and maybe that it also belongs to a curved boundary of the domain).
Before starting the solution procedure, the user must supply a list of vertices which define the
entities of the mesh that have a particular set of properties. In this way the flag is only assigned
to an entity provided certain conditions on that list of vertices are satisfied (e.g. if a set of prop-
erties is to be applied to faces then this condition might be that all the vertices of a face should
be in the list for the identifier to be assigned to that face). After refinement, the entities with the
same properties are identified in order to update the boundary conditions supplied to the flow
solver.

4 SIMULATION TOOLS

4.1 Software

All numerical simulations presented were performed within a Python programming environ-
ment built upon MPI for Python (Dalcín et al., 2008), PETSc for Python (Dalcín, 2005-2008),
and PETSc-FEM (Sonzogni et al., 2002). PETSc-FEM is a parallel multiphysics code primarily
targeted to 2-D and 3-D finite elements computations on general unstructured grids. PETSc-
FEM is based on MPI and PETSc (Balay et al., 2008), it is being developed since 1999 at
the International Center for Numerical Methods in Engineering (CIMEC), Argentina. PETSc-
FEM provides a core library in charge of managing parallel data distribution and assembly of
residual vectors and Jacobian matrices, as well as facilities for general tensor algebra com-
putations at the level of problem-specific finite element routines. Additionally, PETSc-FEM
provides a suite of specialized application programs built on top of the core library but targeted
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to a variety of problems (e.g., compressible/incompressible Navier–Stokes and compressible
Euler equations, general advective-diffusive systems, weak/strong fluid-structure interaction).
In particular mass transport, chemistry and fluid flow computations presented in this article are
carried out within the Navier–Stokes module available in PETSc-FEM. This module provides
the required capabilities for simulating mass transport and incompressible fluid flow through a
monolithic SUPG/PSPG (Tezduyar et al., 1992; Tezduyar and Osawa, 2000) stabilized formu-
lation for linear finite elements. Electric Computations are carried out with the Laplace’s and
the Charge Conservation modules.

4.2 Hardware

Simulations were carried out using a Beowulf cluster Aquiles (Storti, 2005-2008). The hard-
ware consists of 82 disk-less single processor computing nodes with Intel Pentium 4 Prescott
3.0GHz 2MB cache processors, Intel Desktop Board D915PGN motherboards, Kingston Value
RAM 2GB DDR2 400MHz memory, and 3Com 2000ct Gigabit LAN network cards, intercon-
nected with a 3Com SuperStack 3 Switch 3870 48-ports Gigabit Ethernet.

5 NUMERICAL EXAMPLES

In what follows, two different numerical examples are presented. Both were carried out ex-
perimentally in the literature. First a capillary ITP assay (Khurana and Santiago, 2008) where
the method is validated in 1D. Then a 2D simulation of a LOC process in which two elec-
trophoretic separations are coupled: ITP + CZE.

5.1 Capillary ITP

In this example a capillary ITP is simulated. Computational domain consist in a 6 mm long
capillary in which Acetic acid and 3-Phenilpropionic acid are separated. Also 3 fluorescent
markers are added in order to carry out the mobility markers technique developed by Khurana
and Santiago (2008). Physicochemical properties of buffer constituents and analytes are listed
in Table 1.

Component pKa pKb Mobility Diffusivity Initial con-
(m2/V s) (m2/s) centration

Hydrochloric acid −2.0 − 7.91 10−8 2.03 10−9 5 mM
Tetraphenylborate 5.0 − 1.8 10−8 4.6 10−10 5 mM

Tris − 8.076 2.95 10−8 7.6 10−10 75 mM
Acetic acid 4.756 − 4.2 10−8 1.08 10−9 380 µM

3-Phenylpropionic acid 4.664 − 2.65 10−8 6.8 10−10 190 µM
Oregon Green carboxilic acid 4.7 − 4.3 10−8 1.10 10−9 1.9 µM

Fluorescein 6.7 − 3.3 10−8 4.2 10−10 1.9 µM
Bodipy 5.0 − 2.0 10−8 5.1 10−10 1.9 µM

Table 1: Physicochemical properties of buffer constituents and analytes from Bercovici et al.
(2009).

The leading electrolyte (LE) is composed of Tris-HCl and the terminating electrolyte is com-
posed of Tris-Tetraphenylborate. Tris concentration is determined to achieve an initial pH of
9.2. Initial concentrations for sample and buffer constituents are shown in Fig. 7. Conductiv-
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ity field is used as reference for refinement process, its aforementioned discontinuities are also
shown in Fig. 7. Potentials are applied to obtain a current density around 300 A/m2.

Figure 7: Initial conditions for pH, conductivity, and, sample and buffer constituents.

The initial uniform grid consist in 150 nodes. In order to solve correctly this problem with a
uniform mesh at least 800 nodes are required. In this solution, the maximum number of points
is around 450. Stationary state is achieved after 5 seconds. Separation results as equivalent
light intensity, analytes and markers distribution, and conductivity perfectly match with those
reported in literature and are shown in Fig.8.

5.2 Two Dimensional Electrophoresis:ITP + CZE

In this example a 2DE experimental assay from the literature is simulated. Two-dimensional
electrophoretic (2DE) separations consist of two independent mechanisms that are employed
sequentially (O’Farrell, 1975). Each mechanism provides a selective relative displacement be-
tween analytes based on different properties of such analytes. The separation efficiency is
estimated as the product of the independent efficiency of each method, provided the methods
are uncoupled (orthogonality). ITP and CZE satisfy orthogonality and have been extensively
employed in the analysis of complex protein samples in conventional devices (Herr et al., 2003).

Particularly, in this case the two mechanisms are ITP and CZE. The chip consist in a cross-
shape network (28×0.2 mm2, for each branch), were in the horizontal axis ITP is carry out, and
then in an asynchronous process the CZE is developed in the vertical channel. Geometry, con-
ductivity, and details about the refined mesh are shown in Fig. 9. In this assay three compounds
are separated: FITC-Ovoalbumin, FITC-Dextran, and Recombinant green fluorescent protein
(GFP). Phosphoric acid is used as leading electrolyte and NaOH as terminating electrolyte.

After focusing, species arrive the intersection, and voltages are switched in order to inject
sample into the vertical channel to carry out the CZE. This asynchronous process asserts the
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(a) Sample, electrolytes distribution and equivalent light signal.

(b) Markers concentration and conductivity.

Figure 8: Stationary state results for the capillary ITP at t=5s.
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Figure 9: Initial conditions for conductivity and mesh refinement details.

orthogonality of the methods employed. Results of the sample distributions at different values
of time are shown in Fig. 10.

6 CONCLUSIONS

In this work, a mathematical model for electrophoretic separations in microfluidic devices
previously presented was used, employing AMR, in solving ITP problems. Numerical imple-
mentation of the model is carried out by using FEM with high performance parallel computing
techniques.

In to show model + AMR capabilities, two numerical experiments were carried out. These
experiments were taken from the literature and provide an excellent experimental validation for
the method. In both cases results agree with those from experiments.

Combining the model with AMR, provides reduction of computational costs allowing to
solve complex problems with high gradients and Pèclet numbers, that are frequently found in
ITP and others electrophoretic assays.

Finally, solving a 2DE experiment denotes the capability of the tools presented to test and
design state-of-the-art electrophoretic chips.
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(a) 1 second. (b) 4 seconds

(c) 7 seconds. (d) 10 seconds

(e)

Figure 10: Total sample concentration at different times.
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