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Abstract. In this work an improved moving lagrangian interface technique applied to update
the front position between two fluids is presented. The main drawback of classical lagrangian
schemes is the progressive distortion in the distribution of the markers used to identify the
material front. To avoid this problem a redefinition of markers obtained using a diffuse
approximation technique is proposed. The remeshing algorithm imbedded in the
computational fluid dynamics code is described. Aspects of the capabilities of the proposed
formulation are evaluated in a simple test: the filling of a step mould.

Resumen. En este trabajo se presenta una técnica numérica para el seguimiento de una
interfaz entre dos liquidos que no se mezclan utilizando para la actualizacion temporal un
meétodo lagrangeano. Con la finalidad de evitar la distorsion de la malla con que se identifica
el frente material se propone una técnica de redefinicion de dicha malla. La metodologia de
remallado propuesta se basa en la técnica de aproximacion difusa utilizada en los métodos
sin malla y particularmente aplicada a la generacion de mallas para geometrias complejas.
Es requisito de la técnica de remallado que no modifique el volumen y que satisfaga ciertos
aspectos relacionados a la fisica del problema. En este trabajo se propone incorporar
algunos criterios para el remallado. Las capacidades del método se analizan en el problema
de llenado de un canal escalon.
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1 INTRODUCTION

As it is well-known, many manufacturing processes such as mould filling or hot metal
forming requires time-dependent flow analysis with moving two-liquid interfaces or free
surfaces. Several difficulties are presented in the numerical simulations of moving interfaces.
Mass preserving and discontinuity material properties are one of the most important aspects
to properly describe in order to avoid numerical oscillations and to produce accurate results.
Several studies have been proposed numerical formulations capable of dealing with solution
of this class of problems.

Different numerical techniques have been proposed to analyse flow problems with moving
interfaces and free surfaces'™. If the fluid dynamic is computed over a mesh, the techniques
can be categorized into two main groups: moving-mesh and fixed-mesh techniques. The
Arbitrary  Lagrangian-Eulerian (ALE) techniquel’2 and the Deformable-Spatial-
Domain/Stabilized Space-Time (DSD/SST) method®* are both moving-mesh formulations. In
these methods the interface is tracked with the moving mesh, and the mesh is updated every
time step to accommodate the tracking. Such techniques have good numerical accuracy, but
the frequency of remeshing may become too high when complex and very unsteady interfaces
need to be tracked. A different formulation varying the mesh over time has been recently
proposed and successfully used in [5].

In the context of fixed-mesh finite element methods, one of the most common ways of
updating the interface has been performed by using an advection equation considered to
calculate the time-evolution of a pseudo-concentration function®'®. To prevent numerical
oscillations that might be generated in solving an advection-dominated problem with a
standard Galerkin formulation, methods that stabilize the formulation need to be applied.
Among the stabilized methods used for this purpose by other researchers are the Taylor-
Galerkin and  streamline-upwind/Petrov-Galerkin  (SUPG) approaches'®'*'®.  These
approaches must be supplemented with techniques that reduce the smearing of the pseudo-
concentration profile and yield more accurate representation of the interface. To this end, in
the fixed-grid finite difference level set methods'' ™, a distance reinitialization procedure is
used to redefine the pseudo-concentration function, assuring that it does not become too flat
or too steep near the interface. In this local approach, the interface advection equation is
solved only around the interface, with a predetermined width of typically five or six grid
subdivisions. Problems involving mass loss were observed and significant improvements
were made''°. More recently, a finite element Enhanced-Discretization Interface-Capturing
Technique (EDICT)'*"* has been developed to increase the accuracy in representing the
interface.

In the same fixed-mesh finite element context, an alternative methodology to obtain the
transient interface location has been proposed where the aim was to track the interface front
position in a lagrangian way'®?'. This technique was improved including a global mass—
conservation algorithm and an enhanced element integration of the flow equation in order to
capture more properly the discontinuities in the material properties due to material front. This
improved technique is called Moving Lagrangean Interface Technique (MLIT)***’. However,
the transient Navier-Stokes equations are solved in a traditional eulerian form using a fixed
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mesh. The stabilized finite element formulation is written in terms of the generalized
streamline operator technique. Hence, this proposed methodology retains the advantages of
computing the fluid dynamics equations in a unique mesh and provides a good behaviour in
unstructured meshes. Moreover, this technique includes the concepts of the interface-
sharpening and global mass-conservation. Nevertheless, due to the lagrangian nature of the
updating interface algorithm, the mesh used to define the interface usually distorts during the
transient analysis. The points that act as markers of the interface need to be re-positioned
along the interface. To this end, an interface remeshing technique based on a diffuse
approximation technique*** was proposed to redefine the material front at certain times of
the analysis at which the front presents a unacceptable distortion’®. Thus, the flow
computation is restarted from these instants using a remeshed front with a predetermined
number of new markers.

In this paper, a remeshing technique automatically embedded in the computation of the
dynamics of two-fluid flow problems is presented. To this end, a criterion aimed at assessing
the distortion degree of the interface mesh is included and, accordingly, a new marker
distribution fulfilling the restrictions imposed by boundary conditions and front curvatures is
obtained. Some aspects related to the choice of the new number of markers during the
analysis are illustrated in the numerical example.

2 THE IMPROVED MOVING LAGRANGIAN INTERFACE TECHNIQUE

The base moving interface formulation defines the material front with a set of points that
serve as markers'”. The main operations involved are: identification of the elements that host
the interface points, evaluation of the markers’ natural coordinates, calculation of their
velocities, updating the front position and redefinition of the material properties in the whole
domain. The velocity of the interface points is computed by interpolating the nodal velocity
values of the elements where the markers are located. Then, using this velocity, the interface
is updated by applying a direct path-particle Lagrangian scheme. Following that, the
properties are reassigned at the element integration points according to the updated interface
position. Due to the simple algebraic nature of the algorithm, the computer time required to
perform a complete interface update is negligible compared to the time required by the fluid
dynamics solver. More recently, the Moving Lagrangian Interface Technique (MLIT) was
developed®?. This MLIT includes two relevant aspects: a sub-element integration technique,
which is applied to the field equations (the Navier-Stokes equations in this case) and a global
mass-corrector algorithm.

An assessment of the moving Lagrangian technique with enhanced integration and global
mass conservation has been presented in [22-23], including computations with different sets
of properties, several finite element meshes and interface discretizations, and how these
enhancements improve the solution accuracy. The accuracy of the method was compared to
those obtained with Eulerian-Lagrangian techniques, and a very good performance has been
observed in representing a water-air interface. Nevertheless, distortions of the marker
distribution have been observed during the analysis of some problems.
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In this work, the interface mesh distortion is overcome using a remeshing technique
embedded in the coupled computation of the unsteady two-fluid flow. When an updated
position of the interface is computed using the MLIT, two tasks need to be automatically
done. They are detailed below.

The first one is to check if there are markers outside the domain. In such a case, two
strategies can be used to correct the marker position. A possible option is to select a new time
step that avoids the motion of markers outside the domain. Note that the applicability of this
approach is rather limited to the number of points to be re-positioned. An alternative option
can be used if the distance from the marker to the boundary domain is small enough
(according to a geometric tolerance). Then, the new position of the marker can be adopted as
the intersection point between the boundary and the segment determined by the old and
updated positions of the marker. The chosen tolerance needs to guarantee mass conservation.
This out-of-domain marker controller is active in the implementation we are presenting.

The second task consists in the redefinition of the distribution of markers. To this end, a
remeshing technique based on a diffuse approximation that preserves the curvatures is used
together with a set of definitions to properly include some requirements of two-fluid flow
applications. Figure 1.a illustrates the updated position of an interface front at initial times of
the simulation reported in Section 3 that has been taken here as example. After remeshing the
full line between the two end markers, the obtained interface front is sketched in Figure 1.b.
The well-known fact that diffuse approximation of curvatures smoothes corners is apparent.
When the geometry to be approximated is previously known, such fact is easily taken into
account by splitting the line between sharp corners. In the case of updated interfaces, the line
to be remeshed is not previously known and, therefore, in the present work we propose to
split the interface by parts between markers belonging to the boundary domain (remeshing
criterion type 1). In addition, to avoid highly distorted interfaces a certain number of new
markers are added along the longer interface elements (the interface element is defined
between consecutive markers in 2D). In the present work, the remeshing criterion that checks
the longer elements is called type 2. As an assumption, the length of a shorter element is set
as 0.05 of the length of the part while the length of a longer element is 5 times the shorter one.
Moreover, the number of new markers by parts need to be determined in order to avoid
unreasonable increasing (or decreasing) number of new markers. This number can be either
fixed arbitrarily during the whole analysis or can proportionally vary to the number of
longer/shorter elements. A criterion based on this geometric aspect is used in this work to add
or remove markers. Finally, Figure 1.c schematically shows the case when a out-of domain
marker controller is applied.

The complete algorithm is summarized in the following steps:

1) Update the interface using the MLIT***.

2) Check for markers outside the domain. If it is the case, correct their positions.
3) Apply global mass conservation algorithm***.

4) Repeat step 2).

5) Split the interface by parts considering the remeshing criteria type 1 or 2.
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6) Define the number of new markers of each part.

7) Redefine the interface applying the remeshing technique for each part.
8) Repeat step 2).

Some aspects of this proposed formulation are evaluated in the next section.
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Figure 1: a) Volume preserving updated interface position, b) remeshed interface position without conditions
and c) markers position when correction of out-of-domain points is active.

3 FILLING OF A STEP MOULD

Filling of step moulds (lower and upper steps) has been reported in [9]. The problem
geometry and fluid properties, shown in Figure 2, are those used in [9,23,26]. Slip boundary
conditions are assumed on the walls. The filling material enters through the inflow boundary
with a uniform velocity of 0.1m/s, displacing the air that is initially at rest. Traction-free
conditions are imposed at the outflow boundary. The inflow velocity (0.1m/s) is low enough
to give the interface the chance to spread under the influence of gravity. The mesh is uniform
and consists of approximately 700 four-noded elements, and the time step size is 0.01 s.
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Figure 2: Problem layout.

Time-evolutions of the interface computed with the two remeshing criteria presented
above (types 1 and 2) are shown in Figure 3. It is seen that longer elements are not split when
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remeshing type 1 is used. Although relatively small discrepancies between both predictions
are appreciated, the results corresponding to the remeshing type 2 more properly describe the
front curvatures.

Figure 4 shows the results obtained using the same initial number of markers but with
different spatial distributions. The remeshing type 2 is applied, 1.e., the interface is split
according to the boundary and the longer elements are subdivided. The number of new
markers varies for each time step according to the quality of the interface mesh that can be
described in terms of longer/shorter number of elements. Very similar numerical results are
obtained in this case.

The results obtained with different number of initial equally distributed markers are
presented in Figure 5. The remeshing solution strategy is the same as that described above.
The predictions of the interface position using both discretizations practically coincide.

Finally, Figure 6 shows the evolution in time of the number of new markers using different
number of initial markers. The initial number of markers is found to practically not influence
the automatically set number of markers during the analysis.
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Figure 3: Interface front position at different instants of the analysis (uniform initial distribution with 16
markers): = remeshing considering boundaries only (type 1) and = full remeshing strategy (type 2).
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Figure 4: Interface front position at different instants of the analysis (full remeshing strategy, type 2) initial
number of markers: 16 with = uniform initial distribution and = non-uniform initial distribution.

4 CONCLUSIONS

In this work a remeshing technique based on diffuse approximation of curvatures is
presented to redefine the marker distribution in the Moving Lagrangian Interface Technique.
The remeshing scheme is embedded in the two-fluid dynamic computation. The capabilities
of the resulting algorithm are the splitting of the interface according to geometrical aspects:
restrictions imposed by the boundary domain and quality of the interface mesh measured
through the lengths of their elements. The splitting in parts to be remeshed as well as the
number of new markers to be adopted has been both automatically determined. The numerical
predictions of the interface position during time have been found to be nearly independent of
the number of initial markers and distribution. The splitting of longer elements and a selective
criterion to determine the number of new markers according to the mesh quality seem to be
adequate to describe the proposed interface remeshing problem.
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Figure 5: Interface front position at different instants of the analysis (full remeshing strategy, type 2) initial
uniform distribution with: = 16 and = 42 initial number of markers.
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Figure 6: Variation in the number of new markers during the analysis when full remeshing strategy (type 2) is
used with uniform distribution of: = 16 and = 42 initial number of markers.
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