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Abstract. The present work describes the numerical simulations of transient flows in two dimensional 
geometries with shock waves involving multiple shocks and reflections of shockwaves, and their 
interactions. The numerical formulations solve the fully compressible Navier Stokes equations set 
using explicit Mac Cormack method. The numerical simulated results are compared against well 
validated solutions based on different implementations and methods. In this work the primary 
intention is investigate the no-slip boundary condition behavior. The numerical simulated results were 
compared with high resolution TVD numerical results and good agreements were obtained. These 
numerical simulations have also revealed that the NS formulation is very sensible to the mesh used 
and its solution becomes unstable as a function of mesh density and quality.  
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1 INTRODUCTION 

In order to simulate the compressible Navier Stokes governing equations, a 2D solver has 
been developed and implemented for transient flows in various Mach number and also 
different geometries. The Navier Stokes governing equations are solved by an explicit second 
order accurate finite volume spatial discretization as discussed by MacCormack (1969), 
MacCormack and Baldwin (1975), Jameson et al. (1981), Furst and Kozel (2001) and Dick 
(1990). The solver is designed in order to simulate the Euler equations as well as the Navier 
Stokes. In the present work, the effective converged solution is analyzed under the application 
of the no-slip boundary condition as well as the influence of the mesh used in the simulations. 
The simulations has shown that once the mesh is calibrated the solution converge to the 
expected steady state.  

2 GOVERNING EQUATIONS 

The two-dimensional continuity, x and y momentum and energy equations describing the 
non-turbulent flow of a compressible fluid expressed in strong conservation form in the 
cartesian coordinate system are written as following 
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Where q represents the conserved variables. F and G are the overall fluxes in (x, y) 

directions respectively and are given by: 
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Where ρ is the density, (u, v) the velocity vector, E the total energy per unit 

volume 2/)( 22 vueE ++= , Tce v= the internal energy, µ the viscosity coefficient, and k is 
the heat conductivity, p is the pressure, γ is the heat adiabatic coefficient, and the components 

of the stress tensor τ are given in vv GF  and . The 2D Euler equations are obtained from the 
Navier Stokes equations by setting µ = k = 0. 
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2.1 Boundary Conditions 

The flow simulation requires defining the boundary conditions on the solid walls. Mainly 
two types of closed boundary conditions can be imposed on the wall in the simulation: no-slip 
boundary (velocity vector equal to zero) and free-slip (slip) boundary implying that only 
normal to the wall direction component of velocity reduced to zero guaranteeing the velocity 
tangency condition. In the second case, the tangential component can be different from zero. 
However, its derivative in the direction normal to the wall equals zero. For the Euler equations 
is specified only the normal component of the velocity (for example, to be zero at a stationary 
solid wall). The solution of the Euler equation can lead to a slip velocity at the wall. However, 
for the NS equations, which are of one order higher, it is need to specify the tangential 
component also. Note that there is no need for it to be zero to solve the equations but its 
precise description is required. More detailed discussion is found in Arakeri and Shankar 
(2000). The influence of the boundary condition type on numerical results of 2D channel flow 
computation is investigated in the paper. The computations obtained using both boundary 
condition types are compared to numerical simulation. In order to cover a large variety of 
possible flow situations it is assumed four types of boundary conditions for the equations set 
given by eq(1) as follow Furst and Kozel (2001): 

 
a) Inlet: At the inlet it is prescribed the direction of the velocity. The stagnation density ρ0 

and the stagnation pressure p0. Extrapolation of the static pressure p from inside is carried out 
and computes the other required quantities using the following relations between the 
stagnation and the static quantities: 

)1/(2
0 )2/)1(1( −−+= γγγ Mpp and

)1/(12
0 )2/)1(1( −−+= γγρρ M , where M is the local Mach 

number defined by avuM /22 +=  where the local speed of sound is ργ /pa = . For the 

Navier Stokes equations it is assumed 0/ =∂∂ nT
r

 and ∞q  given. 
b) Outlet: At the outlet it is prescribed the value of the static pressure p and extrapolates the 

values of the density ρ and of the velocity vector from the flow field. For the viscous flows we 
assume again 0/ =∂∂ nT

r

. 

c) Solid wall: It is prescribed the tangential condition 0. =nV
r

r

for the inviscid flow or no-
slip boundary condition 0=V

r

 for the viscous flows. It is also assumed the adiabatic walls (i.e. 
0/ =∂∂ nT

r

 where T is the temperature). 
d) Periodicity: It is prescribed the periodical condition for all components of the vector of 

unknowns q. This boundary condition is implemented as cycled as: niinii wwww ==−== == 211 , , 
where w is unknown q. This is a classical procedure for channel flow. 

 
The discretization is carried out based on a cell-vertex formulation, and the flow variables 

are stored at cell vertices. Studies elsewhere have been done as given by Dick (1990), 
Martinelli (1987), Swanson and Radespiel (1991) showing that cell-vertex formulation has 
some advantages over the cell-centered. As for example, having a uniform mesh, there is no 
difference between the cell-centered and cell-vertex formulation. The cell-vertex scheme does 
not require extrapolation to the solid boundary to obtain the wall static pressure since it is 
already there calculated. 

  
Schemes based on central-difference generate oscillations near a discontinuity. However, 

such schemes can be stabilized by introducing a small amount of artificial viscosity. The 
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artificial viscosity used in the present work, is that proposed by Jameson et al. (1981) 
modified to fit the cell-vertex formulation. This is a blend of second and fourth-order terms 
with a pressure switch to detect changes in pressure gradient. The time integration is done by 
means of an explicit two-stage time stepping scheme, MacCormack (1969). Explicit methods 
have been seem with caution because they have a limitation on the maximum size of the time 
step which can used without the appearance of random disturbances increasing boundlessly. 
As consequence the numerical simulation must often proceed slowly. However, now days, the 
speed of a desktop computer might offset this limitation on the time step making an explicit 
scheme a practical scheme. 

3 COORDENATE TRANSFORMATION OF THE GOVERNING EQUATION  

Following the coordinate transformation )),(),,((),( yxyxyx ηξ→ Anderson et al. (1984) is 
possible to rewrite the set of equations as given by eq (1) as follow: 
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The MacCormack (1969) method written for this transformed domain is: 
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The artificial diffusion terms 
υυ ''
,

''
, , jiji GF

 added Jameson et al. (1981), Furst and Kozel (2001) 
have the same construction for each of the four dependent variables. For the density variable 
can be established by: 
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Then 
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Where typical values of the constants 
)2(k  and 

)4(k  are 

256

1
    ;

4

1 )4()2( == kk
   

 
The dissipation terms of the remaining components are obtained by substituting 

Evu  and   , ρρ  for ρ in the eq (8) and eq (9). In depth studies Jameson et al. (1981) reveled 
that in smooth regions of the flow field, the MacCormack method with dissipation is not 
sufficiently dissipative unless the fourth differences are included. Consequently the 
calculations will generally not converge to a completely steady state solution. Instead, after 
they have reached an almost steady state, oscillations of very low amplitude continue 
indefinitely being observed in the residual history graphic. The cause of this seems to be 
induced by pressure waves reflections from the boundaries of the computational domain. Near 
shock waves it has been found that the fourth differences tend to induce overshoots, and 

therefore they are switched off by subtracting 
)2(ε from 

)4(ε  in eq (11). In the present Euler 
NS solver this has been verified. 

 

4 SOLVER VALIDADTION 

 
In order to ensure the validity of the solver, seeks for its ability to capture shocks, contact 

discontinuity and shocks interactions at same time being able to produce the correct pressure, 
density and speed profiles for the steady state. The approach used is the validation of the Euler 
solver against a numerical solution from a well established code capable of dealing strong 
shock waves based on the TVD scheme discussed by Lobão (1992). The compared solution is 
done using a benchmark case. The test case chosen is the transonic flow through the two-
dimensional test channel with a bump of 4.2% of thickness, i.e. the so-called Ron-Ho-Ni 
channel. This is a well-known test case and it was solved by many researchers Rizzi and 
Vivand (1981). The grid size is 99x41, M=0.85, p=1.01e5Pascal, T=273K, R=287.05Nm/kgK, 
µ=1.7153e-5kg/s.m, k=3.4306e-6cal/cm.s.K and the CFL=0.4 has been used for both 
simulation, Euler and NS. In fig.1 is shown the grid used for this simulation. Notice the 
stretching Anderson et al. (1984) used close to both solid walls in the channel. 
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Fig. 1 Grid with double stretching function 
 
In the fig.2 is shown the Cp value comparison on the lower wall for Euler, NS and TVD 

formulation. The shock is captured in the right position as the discontinuity jump through at 
most on three cells. 

 
 

 
Fig. 2 Cp on the lower wall 

 
The Mac Cormack method yields before the bump some oscillation in the Cp curve not 

present for the TVD scheme. Other results have shown that for less dense grids the NS solver 
won’t converge.  The next simulation is a double ramp channel with 10.1012º of elevation. 
The grid size of 120x40 and M=1.5. This geometry at this Mach number will reveal 
interesting flow structures as shock and it reflection on the upper solid wall. In fig. 3 is shown 
the mesh used. The fig. 4 shows the pressure field for NS simulation. As the mesh is highly 
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dense for this domain no stretching was considered. 

 
 
 
 
 
 
 
 

Fig. 3 Ramp mesh size 120x40 
 

 
Fig. 4 Pressure filed for NS simulation 

 
The next figure shows the Cp value from the lower surface precisely locating the shock at 

the ramp corner. 
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Fig. 5 Cp on the lower wall for Euler and NS 

 
The next simulation will test the solver ability to capture a detached bow shock as well as 

the shock reflection from the main shock. The Mach number M=1.5 and the mesh size is 
120x80 with double stretching near the walls and is shown in the fig. 6. 

 
Fig. 6 Mesh with double stretching for NS 

 
The fig. 7 shows the Mach number field for this simulation where is possible to observe the 

complex flow field before the ramp showing subsonic, transonic and supersonic regions. O the 
upper wall the incident shock wave reflects towards the lower wall. 
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Fig. 7 Mach number flow field 

 
The fig. 8 shows the pressure field where the shock reflection from the upper wall is better 

seen. 

 
Fig. 8 Pressure filed for NS solution 

 
Trying the NS solution for M=2.5 in the same mesh wasn’t possible reach convergence in 

two situations: with and without stretching. However, that simulation for Euler the situation 
turned out to be successful. A more complex structure appears when M=2.5 is simulated for 
Euler solver. The development of a “Y” shock structure starts as the steady state is reached in 
4200 iterations. The pressure flow field is shown in the fig. 9 as follow below. 
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Fig. 9 Pressure field for M=2.5 showing the “Y” shock 
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6 CONCLUSIONS 

The paper described the use of the Navier Stokes solver developed, implemented, and 
tested for simulation of flow in different velocity regimes. The solver has been applied to 
several case situations related to Mach number and geometries. The agreement with the 
analyzed solution is very good for same cases which proved the validity of the basic numerical 
scheme developed. However, it is shown that the NS solver introduce too much dissipation in 
other situations causing drastic failure of the solver. In general, the no-slip boundary condition 
implemented requiring stretching close the wall proved to be the correct one to those 
successful cases as discussed before. 
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