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Abstract. The present work describes the numerical simaratof transient flows in two dimensional
geometries with shock waves involving multiple dto@nd reflections of shockwaves, and their
interactions. The numerical formulations solve thly compressible Navier Stokes equations set
using explicit Mac Cormack method. The numericahidated results are compared against well
validated solutions based on different implemeateti and methods. In this work the primary
intention is investigate the no-slip boundary ctiodi behavior. The numerical simulated results were
compared with high resolution TVD numerical reswdtsd good agreements were obtained. These
numerical simulations have also revealed that tBefdfmulation is very sensible to the mesh used
and its solution becomes unstable as a functionesth density and quality.

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



3602 D. LOBAO

1 INTRODUCTION

In order to simulate the compressible Navier Stak@gerning equations, a 2D solver has
been developed and implemented for transient flowwarious Mach number and also
different geometries. The Navier Stokes governiggagions are solved by an explicit second
order accurate finite volume spatial discretizatias discussed by MacCormack (1969),
MacCormack and Baldwin (1975), Jameson et al. (,98drst and Kozel (2001) and Dick
(1990). The solver is designed in order to simuthgeEuler equations as well as the Navier
Stokes. In the present work, the effective conwigggution is analyzed under the application
of the no-slip boundary condition as well as thituence of the mesh used in the simulations.
The simulations has shown that once the mesh ibratd the solution converge to the
expected steady state.

2 GOVERNING EQUATIONS

The two-dimensional continuity, x and y momentund &mergy equations describing the
non-turbulent flow of a compressible fluid expreksa strong conservation form in the
cartesian coordinate system are written as follgwin

1)
Where q represents the conserved variablesand G are the overall fluxes in (X, y)
directions respectively and are given by:
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Where p is the density, (u, v) the velocity vectoE the total energy per unit

volumeE = e+ (u” +V2)/2, €=CT the internal energy, the viscosity coefficient, and k is
the heat conductivityp is the pressure, is the heat adiabatic coefficient, and the comptse

of the stress tensarare given iro ande' The 2D Euler equations are obtained from the
Navier Stokes equations by setting k = 0.
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2.1 Boundary Conditions

The flow simulation requires defining the boundaonditions on the solid walls. Mainly
two types of closed boundary conditions can be sedmn the wall in the simulation: no-slip
boundary (velocity vector equal to zero) and frige-éslip) boundary implying that only
normal to the wall direction component of velodigguced to zero guaranteeing the velocity
tangency condition. In the second case, the tarmye@mponent can be different from zero.
However, its derivative in the direction normathe wall equals zero. For the Euler equations
is specified only the normal component of the vi&yodor example, to be zero at a stationary
solid wall). The solution of the Euler equation d¢aad to a slip velocity at the wall. However,
for the NS equations, which are of one order higlters need to specify the tangential
component also. Note that there is no need foo ibé zero to solve the equations but its
precise description is required. More detailed uBs@n is found in Arakeri and Shankar
(2000). The influence of the boundary conditionetgm numerical results of 2D channel flow
computation is investigated in the paper. The cdatmns obtained using both boundary
condition types are compared to numerical simutatio order to cover a large variety of
possible flow situations it is assumed four typebaundary conditions for the equations set
given by eq(1) as follow Furst and Kozel (2001):

a) Inlet: At the inlet it is prescribed the dirextiof the velocity. The stagnation dengity
and the stagnation pressure p0. Extrapolationeoftatic pressure p from inside is carried out
and computes the other required quantities usirgy ftllowing relations between the
stagnation and the static quantities:
Po= P+ (y-D/2M )" gngoo = pA+ (¥ -DI2M ™ yhere M is the local Mach

number defined byM = vu®+v*/a where the local speed of sound sV/*/7 . For the

Navier Stokes equations it is assun®dd 91 =0 and % given.

b) Outlet: At the outlet it is prescribed the vabfahe static pressupeand extrapolates the
values of the density and of the velocity vector from the flow field. FRe viscous flows we
assume agafhl /00 =0

c) Solid wall: It is prescribed the tangential citiosh V-0 =Ofor the inviscid flow or no-
slip boundary conditioN = 0 for the viscous flows. It is also assumed the lzatia walls (i.e.
0T /on =0 whereT is the temperature).

d) Periodicity: It is prescribed the periodical ddion for all components of the vector of

unknownsq. This boundary condition is implemented as cycaedwizl = Wiz Wiz = Wi

wherew is unknowng. This is a classical procedure for channel flow.

The discretization is carried out based on a aaftex formulation, and the flow variables
are stored at cell vertices. Studies elsewhere Hepen done as given by Dick (1990),
Martinelli (1987), Swanson and Radespiel (1991)wshg that cell-vertex formulation has
some advantages over the cell-centered. As for pbearhaving a uniform mesh, there is no
difference between the cell-centered and cell-xeidemulation. The cell-vertex scheme does
not require extrapolation to the solid boundaryobtain the wall static pressure since it is
already there calculated.

Schemes based on central-difference generateatsmit near a discontinuity. However,
such schemes can be stabilized by introducing dl sameount of artificial viscosity. The

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar



3604 D. LOBAO

artificial viscosity used in the present work, st proposed by Jameson et al. (1981)
modified to fit the cell-vertex formulation. This & blend of second and fourth-order terms
with a pressure switch to detect changes in presgadient. The time integration is done by
means of an explicit two-stage time stepping scheviaCormack (1969). Explicit methods

have been seem with caution because they haveatation on the maximum size of the time

step which can used without the appearance of randisturbances increasing boundlessly.
As consequence the numerical simulation must gfteneed slowly. However, now days, the
speed of a desktop computer might offset this &tron on the time step making an explicit
scheme a practical scheme.

3 COORDENATE TRANSFORMATION OF THE GOVERNING EQUATION

Following the coordinate transformatid¢® ¥) = € (% ¥).7(X¥)) aAnderson et al. (1984) is
possible to rewrite the set of equations as giweady(1) as follow:

AL F LKL
& & (@)
q =30, J=XY, "%,V
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G =-y,F+x,G=J(n,F +1n,G) -G

()
The MacCormack (1969) method written for this tfansed domain is:
1° step — Predictor
a; = a’; - JA,tJ [Foa, - F+ -]
2" step - Corrector
qrt = %{(qiﬁj +q;,) - %[( = Fo)+ (G - Gi”,*J—l)]} ©

The artificial diffusion terms 1 °Gi added Jameson et al. (1981), Furst and Kozel {2001
have the same construction for each of the fouexdgnt variables. For the density variable
can be established by:

FV =05, —d_;);G" =05d, , —d )

(7)
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Then

2 —_ 2 "
6%, =kPv, (U] + ),

&%, =maxQ,(k“ -2, ))(‘U"‘ +C)iu

(11)
Where typical values of the constaffts andk™ are
o=l po_ 1
4’ 25¢€

The dissipation terms of the remaining components abtained by substituting

pu, v andE ¢4 Pin the eq (8) and eq (9). In depth studies Jamesa. (1981) reveled
that in smooth regions of the flow field, the Mae@ack method with dissipation is not
sufficiently dissipative unless the fourth diffeces are included. Consequently the
calculations will generally not converge to a coetply steady state solution. Instead, after
they have reached an almost steady state, osmiatof very low amplitude continue
indefinitely being observed in the residual histgmnaphic. The cause of this seems to be
induced by pressure waves reflections from the baties of the computational domain. Near
shock waves it has been found that the fourth mhiffees tend to induce overshoots, and

therefore they are switched off by subtractiﬁ(é) from € “in eq (11). In the present Euler
NS solver this has been verified.

4 SOLVER VALIDADTION

In order to ensure the validity of the solver, se@k its ability to capture shocks, contact
discontinuity and shocks interactions at same twgiag able to produce the correct pressure,
density and speed profiles for the steady state.afiproach used is the validation of the Euler
solver against a numerical solution from a wellabBshed code capable of dealing strong
shock waves based on the TVD scheme discussedid@#ol(@992). The compared solution is
done using a benchmark case. The test case ch®gba transonic flow through the two-
dimensional test channel with a bump of 4.2% otkhess, i.e. the so-called Ron-Ho-Ni
channel. This is a well-known test case and it s@sed by many researchers Rizzi and
Vivand (1981). The grid size is 99x4¥=0.85,p=1.01e5Pascal=273K, R=287.05Nm/kgK,
u=1.7153e-5kg/s.m, k=3.4306e-6cal/cm.s.K and @EL=0.4 has been used for both
simulation, Euler and NS. In fig.1 is shown thedgused for this simulation. Notice the
stretching Anderson et al. (1984) used close th bolid walls in the channel.
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Elliptic Mesh - 2D Bump Gemometry

25

0.5 u|

Fig. 1 Grid with double stretching function

In the fig.2 is shown the Cp value comparison anltdwer wall for Euler, NS and TVD
formulation. The shock is captured in the rightipos as the discontinuity jump through at
most on three cells.

Cp(Euler x NS)
0.8 T T T

T
—©— Euler

-0.6 I I I I I I I I I

Fig. 2 Cp on the lower wall

The Mac Cormack method yields before the bump sosadlation in the Cp curve not
present for the TVD scheme. Other results have shbat for less dense grids the NS solver
won't converge. The next simulation is a doublmpachannel with 10.1012° of elevation.
The grid size of 120x40 an®1=1.5. This geometry at this Mach number will reveal
interesting flow structures as shock and it reftecon the upper solid wall. In fig. 3 is shown
the mesh used. The fig. 4 shows the pressure fieltlS simulation. As the mesh is highly
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Fig. 3 Ramp mesh size 120x40

Pressure filed Mach = 1.5 lteration = 2200
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Fig. 4 Pressure filed for NS simulation

The next figure shows the Cp value from the loweafaxe precisely locating the shock at

the ramp corner.
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Cp(Euler x NS)
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Fig. 5 Cp on the lower wall for Euler and NS

The next simulation will test the solver ability ¢apture a detached bow shock as well as
the shock reflection from the main shock. The Macimber M=1.5 and the mesh size is
120x80 with double stretching near the walls arnshiswn in the fig. 6.

Mesh - 2D
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30 i
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Fig. 6 Mesh with double stretching for NS
The fig. 7 shows the Mach number field for this giation where is possible to observe the

complex flow field before the ramp showing subsptr@nsonic and supersonic regions. O the
upper wall the incident shock wave reflects towdhdslower wall.
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Mach = 1.5 Iteration = 1200

0.5

Fig. 7 Mach number flow field

The fig. 8 shows the pressure field where the sheft&ction from the upper wall is better
seen.

Pressure field Mach = 1.5 Iteration = 1200

525

Fig. 8 Pressure filed for NS solution

Trying the NS solution for M=2.5 in the same mesdsmit possible reach convergence in
two situations: with and without stretching. Howgwvimat simulation for Euler the situation
turned out to be successful. A more complex strectyppears when M=2.5 is simulated for
Euler solver. The development of a “Y” shock stuuetstarts as the steady state is reached in
4200 iterations. The pressure flow field is showihie fig. 9 as follow below.
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Pressure field Mach = 2.5 Iteration = 4200

Fig. 9 Pressure field for M=2.5 showing the “Y” sko
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6 CONCLUSIONS

The paper described the use of the Navier Stokkersdeveloped, implemented, and
tested for simulation of flow in different velocitggimes. The solver has been applied to
several case situations related to Mach number giaminetries. The agreement with the
analyzed solution is very good for same cases wriclied the validity of the basic numerical
scheme developed. However, it is shown that thes®l®er introduce too much dissipation in
other situations causing drastic failure of thevenlIn general, the no-slip boundary condition
implemented requiring stretching close the wallveb to be the correct one to those
successful cases as discussed before.
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