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Abstract. A submerged cylinder in a uniform stream flow is approximated by a horizontal doublet,
following Lamb’s classical method. Surface tension effects and a dipole are included in a fully nonlinear,
unsteady, non-periodic, boundary-integral solver. Nonlinear effects are modelled by considering a flat
free surface or a linear stationary solution as an initial condition for the fully nonlinear irrotational flow
program. Long run computations show that these unsteady flows approach a steady solution for some
parameters after waves have radiated away. In other cases the flow does not approach a steady solution.
Interesting features at the free surface are found such as the appearance of “parasitic capillaries” near the
crest of gravity waves and the formation of capillary-gravity waves upstream the cylinder.
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1 INTRODUCTION

The study of gravity waves formed at a free surface by the flow of a uniform stream inter-
acting with a submerged cylinder has attracted the interest of researchers since the early 20th
century. Kelvin was perhaps the first to suggest that problem in 1905, followed by Lamb who
analysed it formally in the light of linear water wave theory in 1913 (for a more accessible ver-
sion of this paper see Lamb 1932, § 247). Lamb’s method consisted in replacing the cylinder
by the equivalent doublet at its centre and then finding the fluid motion due to this doublet.
Supposing a steady irrotational potential flow with a linearised free surface boundary condition,
he found the appearance of a local disturbance immediately above the obstacle followed by a
train of stationary, sinusoidal, gravity waves on the downstream side (see Fig. 1). This solution
is applicable when the cylinder is of small radius compared with the depth of its axis; then the
disturbance to the free stream due to the presence of the cylinder causes small amplitude waves
that can be approximated by linear theory.

Figure 1: Stationary linear waves due to the presence of a cylinder of radius a and depth of submergence d on a
uniform stream flow U , with surface tension effects neglected. a/d = 1/4, U = −1.

For large scale surface disturbances (of length greater than 10cm) this approximation is ade-
quate; gravity is dominant and in the absence of wind the pressure exerted on the surface by the
atmosphere can be considered constant. At a small scale, however, the surface pressure can be
modified by surface tension. Capillary phenomena may arise when the surface possesses con-
siderable curvature or when surface tension gradients appear on that surface. In both cases, the
presence of these forces changes the nature of the free surface flow or induces motion originally
absent (for full details see Moreira & Peregrine 2010). The present work reports an investiga-
tion of the effects of nonlinearity and surface tension at the free surface when a steady stream
flow interacts with a submerged cylinder.

2 GOVERNING EQUATIONS

2.1 Unsteady nonlinear model

To model fully nonlinear effects at a free surface in a spatially non-periodic domain, the
boundary-integral scheme described by Tanaka et al. (1987) is used as its starting point. An
extension of the method which includes the modelling of unsteady free surface flows with sur-
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face tension implemented by Jervis (1996) is used to investigate the effects of surface tension.
Following Lamb’s classical method, the numerical scheme is adapted in order to include a hori-
zontal doublet in a uniform stream flow defined by U = (U, 0). The fluid flow is assumed to be
inviscid and incompressible with the single doublet located below the free surface at a depth of
submergence d. It is also assumed that the flow is irrotational outside the singular core and away
from the free surface. The irrotational velocity field u(x, y, t) is then given by the gradient of
a velocity potential Φ(x, y, t) which satisfies Laplace’s equation in the fluid domain, excluding
the singular point. All the interior properties of the fluid are then determined by its properties at
the boundaries alone. The entire motion can be modelled by considering a point discretisation
of the surface. The solution method is based on solving an integral equation that arises from
Cauchy’s integral theorem for functions of a complex variable.

In order to apply Cauchy’s integral theorem to the problem, the potential Φ must be known
on all the boundaries. The kinematic and dynamic boundary conditions are applied at the free
surface such that,
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= ∇Φ,

DΦ
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where r = (x, y, t), y is the elevation of the free surface above the undisturbed water level, g is
the acceleration due to gravity and ρ is the fluid density. In the presence of surface tension, the
pressure p exerted at the free surface is given by,
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]− 3
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where τ is the surface tension coefficient. p0 is the pressure on the exterior side of the surface
and can be chosen to approximate the effects of wind or a localised pressure on the surface,
though it is not used in the calculations. The last term in (2) refers to the contribution of surface
tension effects to the pressure p which depends on the curvature of the free surface, defined by
y = η(x, t).

The fluid domain must be of finite extent in x for the purpose of computing a numerical
solution. We approximate the desired “infinite” domain by assuming a finite extension in x that
goes from, namely −X∞ to X∞, which satisfies the following criterion,

|∇Φ(±X∞, y, t) − U| < ε, (3)

valid for −∞ < y ≤ 0 and t > 0. ε is a specified small “precision” parameter, while
∇Φ(±X∞, y, t) is evaluated as explained in Dold (1992). For any time t, ±X∞ are then deter-
mined iteratively by the numerical scheme; 10 equally spaced points are added to the far ends of
the free surface until the criterion (3) is fully satisfied. Thus the distance between −X∞ to X∞
is expected to increase with time due to the propagation of disturbances to the far field. It is also
assumed that the water is deep, satisfying the condition∇Φ → (U, 0) as y → −∞. To complete
the model, an initial condition for the free surface is required such that η(x, t) = η0(x, 0) and
Φ(x, η, t) = Φ0(x, η0, 0). The numerical computations consider a flat free surface or the linear
steady free surface profile derived in the following section as the initial condition for the fully
nonlinear unsteady problem.

The introduction of a horizontal doublet in our model is done by decomposing our velocity
potential Φ into a regular part φw (due to surface waves) and a singular part φs (due to the sin-
gularity) such that Φ = φw + φs (for more details see Moreira 2001). The velocity potential φs
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is then given by the real part of the complex potential for an irrotational flow due to an approx-
imately circular cylinder held in a stream with uniform velocity U far from the cylinder (see
Batchelor 1967, p.424). To apply Cauchy’s integral theorem to the non-periodic free surface
flow problem in deep water, the complex potential ω includes for convenience the reflection of
the cylinder in the free surface,

ω(z) = U

(
z − z0 +

a2

z − z0

+
a2

z − z0

)
, (4)

where z = x + iy, z0(= x0 + iy0) is the position of the centre of the cylinder, z0 its complex
conjugate and a the radius of the cylinder.

2.2 Linear theory

From the theory of linear water waves and supposing that the surface waves propagate in
deep water, surface tension effects are included in the dispersion relation such that the phase
speed c satisfies,

c(k) =

(
g

k
+

τ

ρ
k

) 1
2

, (5)

where k is the wavenumber. (For the purpose of calculations, we suppose g = 980.6cm/s2,
τ = 74.0g/s2 and ρ = 1.0g/cm3.) The group velocity cg of the surface waves are related to k by,

cg(k) =
c

2

(
ρg + 3τk2

ρg + τk2

)
. (6)

The linear dispersion relation represented by (5) has a minimum value at,

k = km =
(ρg

τ

) 1
2
, c = cm =

(
4gτ

ρ

) 1
4

, (7)

while the minimum group velocity is attained at k = kgm = 0.40km and cg = cgm = 0.77cm.
Here we define kgm and cgm as the wavenumber and speed at the minimum group velocity. For
convenience expressions (5) and (6) are non-dimensionalised in terms of km and cm reducing
to,
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]
. (8)

The graphs of c and cg against k in units of cm and km are shown in figure 2.
The waves produced by an obstacle on a uniform stream flow U may be viewed as the waves

produced by the same obstacle moving with speed −U . In this frame of reference, supposing
a two-dimensional problem, the only stationary waves that can keep up with the obstacle must
satisfy the relation,

c(k) = U. (9)

Therefore, if U > cm, two solutions are possible, one coming from the gravity branch, namely
kg, and the other from the capillary branch, kτ , such that kg < kτ . These solutions can be
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κg κτ

k/km

U > cm

U = cm

U < cm

Figure 2: Phase speed and group velocity of capillary-gravity waves in deep water as a function of wavenumber,
in units of cm and km.

associated to the group velocity through expression (8) such that,

cg(kg) < c(kg), cg(kτ ) > c(kτ ). (10)

Since c(kg) = c(kτ ) = U , the capillary waves have a group velocity bigger than the stream ve-
locity and therefore must appear ahead of the obstacle. The gravity waves must be downstream
since their group velocity is slower than U .

When the stream velocity U is close to the minimum phase velocity cm, the group velocity
cg is very close to U and the energy can move away from the pressure source only very slowly.
As we approach cm, a significant increase in wave steepness is associated to the linear solution
and nonlinear effects start to become important. (Expressions for the linear wave amplitude
and steepness are obtained and discussed in the next section.) The difference between c and
cg decreases until it completely vanishes as the two roots coalesce at cm. At this point expres-
sions for the linear wave amplitude and steepness become singular and the linear approximation
breaks down. Based on the dispersion relation (5), if U < cm, there are no solutions satisfying
equation (9) and no wave can remain stationary on the stream. In this case there may exist
local disturbances dying out away from the obstacle but no contribution to the asymptotic wave
pattern. The disturbance level is then confined to a region about the pressure source represented
by the obstacle and decays rapidly to zero with distance from it. For the critical case, viscosity
becomes important and waves are damped very rapidly by it (for full details see Lamb (1932),
§271).

For relatively deep water, two dimensionless parameters are defined for subsequent analysis
– the Bond and the Froude numbers,

B =
τ

ρg(d − a)2
, F r =

U√
g(d − a)

. (11)
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3 FULLY NONLINEAR RESULTS

The numerical results here presented are obtained by applying the fully nonlinear, unsteady,
boundary-integral scheme described in Dold (1992). When running the code the input data
is set up such that (d − a) corresponds to the characteristic length scale of the problem. The
corresponding parameters that define the underlying flow i.e. the stream velocity U , the depth of
submergence d and the radius of cylinder a, are also provided. The dipole is supposed to be at a
fixed position in time. The initial conditions employed in the calculations are a flat free surface
or the linear steady solutions derived in the previous section. Small disturbances associated to
the impulsive motion of the problem may appear in the nonlinear results. In these cases long
run computations are used aiming to obtain quasi-steady profiles. All the presented numerical
simulations were computed on a Sun Ultra 2/200.

With the introduction of surface tension the linear dispersion relation has a minimum phase
speed cm which defines a region where waves do appear i.e. U > cm. Two real roots then
exist and, for a/d � 1, linear theory determines accurately the wave properties of the problem.
However, if the ratio a/d increases, nonlinear effects may become important. If that is the case
then the free surface profile is distorted and wave breaking may occur. For a constant d, as a/d
assumes larger values, B also increases and thus surface tension effects may postpone wave
breaking. Nonlinearity may also affect the free surface profile for values of U < cm. Figure
3 shows the location of the nonlinear cases studied in this section with respect to the phase
and group velocity of capillary-gravity waves. The fully nonlinear, unsteady, boundary-integral
method is here employed taking into account the effects of surface tension. Special attention is
directed to cases where U < cm i.e. B > Fr4/4, with the ratio a/d assuming values sufficiently
large for nonlinear effects to take place.

c/cmcg/cm

k/km

Figure 3: Location of the fully nonlinear results with respect to the phase and group velocity of capillary-gravity
waves. The dashed-dotted line represents the group velocity of pure gravity waves. km = B−1/2; cm = (4B)1/4.
U , k, km, c, cm and cg are dimensionless quantities.

Figures 4a and 4b compares quasi-steady nonlinear results with linear steady solutions for
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cases (1) (B = 0.0754) and (2) (B = 0.2218) respectively, where U > cm (see figure 3). In
these cases a flat free surface was used as the initial condition of the boundary value problem.
Note that in both cases a/d = 1/10 and a vertical exaggeration of 10 : 1 was used. As expected
a good agreement was observed between the linear and nonlinear results, with “gravity-like”
waves being formed downstream the cylinder and “capillary-like” waves ahead of it, which are
visible only in case (2) where surface tension effects become more prominent (B = 0.2218).
In both cases the nonlinear wave amplitudes give accurate linear solutions. When the ratio a/d
is increased to 1/3, keeping U/cm and B with the same values, nonlinear effects take over and
wave breaking occurs in both cases within very short times.

(a) Case (1): B = 0.0754

a = 0.1111cm

(b) Case (2): B = 0.2218

a = 0.0648cm

Figure 4: Comparison between quasi-steady nonlinear results (——) and linear stationary solutions (– – –). (a)
U/cm = 1.3494, (d−a) = 1cm; (b) U/cm = 1.0301, (d−a) = 0.583cm. In the cases presented here a/d = 1/10,
U = −1, Fr = 0.75 and cm = (4B)1/4. U and cm are dimensionless quantities. Vertical exaggeration 10 : 1.

According to linear theory, if the value of U/cm decreases, such that U < cm, no real steady
solution with waves exists for the phase speed, with only a local disturbance being predicted.
However two roots exist for the group velocity if cm > U > cgm , which may be associated
to unsteady waves. Indeed the unsteady nonlinear computed cases (3) and (4) show that wave
breaking occurs in this region. In fact case (3) has the calculations stopped at a shorter time
(tbreaking = 4.0), supposing B = 0.00302, a/d = 1/3 and U/cm = 0.9052 (see figure 5a for
details). Figure 5b illustrates case (4), for which B = 0.00582, a/d = 1/3 and U/cm = 0.7681.
The time at which breaking occurs has now increased to 10.8. Since B is very small in both
cases, surface tension effects are less prominent. The initial condition here used corresponds
to the linear steady solution obtained in section 3. Due to the impulsive starting motion some
capillary-gravity waves are visible propagating in the −x direction. Waves are also formed
ahead of the cylinder but these are “trapped” by the adverse stream flow U , with energy building
up there until wave breaking occurs. Note that for case (4), U is very close to cgm .

For U < cgm wave breaking was no longer observed in the unsteady nonlinear computations
for constants a/d (= 1/3) and U (= −0.3). In fact, as B increases, U/cm decreases and
the capillary-gravity waves generated ahead of the cylinder are no longer “trapped” by the
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Case (3): B = 0.00302; a = 2.5cm.

Case (4): B = 0.00582; a = 1.8cm.

Figure 5: Fully nonlinear results for a uniform stream flow interacting with a submerged cylinder. (a) U/cm =
0.9052, (d − a) = 5.0cm, tbreaking = 4.0; (b) U/cm = 0.7681, (d − a) = 3.6cm, tbreaking = 10.8. In this
case a/d = 1/3, U = −0.3, Fr = 0.7 and cm = (4B)1/4. U and cm are dimensionless quantities. Vertical
exaggeration 25 : 1.

adverse current and now radiate upstream of the cylinder. This feature was observed in cases
(5) to (7) for long computational runs (see figure 6), where B = 0.00838, 0.01885 and 0.0754,
respectively. As B increases, surface tension effects become more important. Indeed capillary-
gravity waves are formed as the underlying motion is switched on at time t = 0, generating
unsteady waves that propagate in the −x and +x direction. The group velocity of the waves
formed downstream of the cylinder is augmented by the following current and radiates away. On
the other hand the group velocity of the capillary-gravity waves formed ahead of the cylinder is
reduced by the adverse stream flow. As U/cm keeps decreasing (since B increases), the stream
velocity has less effect on the capillary-gravity waves generated until they are totally radiated
away in both x directions, as shows figure 6.

Comparisons between the linear and nonlinear wave profiles for cases (6) and (7) are pre-
sented in figures 7a and 7b. A vertical exaggeration of 10 : 1 was employed at the free surface
elevation in these cases. The linear steady solution behaves as a local disturbance, decaying
rapidly to zero with distance from the cylinder, and thus it is used as the initial condition of the
fully nonlinear problem. A good agreement was found between the linear and nonlinear results.
Note also that the radius a is now not very different from the wavelength of the minimum group
velocity λgm = 1.329cm. As a increases, the free surface becomes more disturbed until wave
breaking occurs (see figures 5 and 6).

Short capillary waves with wavelengths of several millimetres can often be seen near the
crests of steep gravity waves with lengths between 5 and 25cm. This phenomenon was also
observed in the unsteady nonlinear computations. Figure 8 shows the formation of “parasitic”
capillary waves near the crest of gravity waves formed downstream the cylinder. In this case
B = 0.00378, a/d = 1/5 and U/cm = 1.4023. Due to the high curvature at the crest of
the gravity wave, surface tension effects become locally important in this case, even though B
assumes a small value. The capillary waves formed upstream the cylinder have a very small
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Case (5): B = 0.00838; a = 1.5cm.

Figure 6: Fully nonlinear results for a uniform stream flow (U = −0.3) interacting with a submerged cylinder
(a/d = 1/3, Fr = 0.7). U/cm = 0.7012, (d−a) = 3cm. cm = (4B)1/4. U and cm are dimensionless quantities.
Vertical exaggeration 25 : 1.

amplitude and cannot be noticed in figure 8. Note that the appearance of capillary waves down-
stream the cylinder is essentially a nonlinear phenomenon which is not predicted from group
velocity concepts. The time at which breaking occurs is equal to 14.2.

4 CONCLUSIONS

The interaction between a free surface flow with surface tension and an approximately circu-
lar, horizontal cylinder is investigated. A fully nonlinear model which includes surface tension
and a dipole in a stream flow was developed aiming to understand the behaviour of the free sur-
face flow. A linear steady solution including surface tension effects was derived and employed
as the initial condition of the nonlinear model in some of the computed cases.

For sufficiently small values of a/d, a good agreement between the quasi-steady nonlinear
numerical results and the linear steady solutions is obtained for both pure gravity and capillary-
gravity waves. However, as the ratio a/d increases, nonlinearity starts to play an important
role. For pure gravity waves, the fully nonlinear results show that waves become “steeper”,
with sharper crests and shorter wavelengths, with wave breaking occurring when larger values
of a/d are imposed.

With the introduction of surface tension, the numerical simulations have shown that wave
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(a) Case (6): B = 0.01885

a = 1.0cm

(b) Case (7): B = 0.0754

a = 0.5cm

Figure 7: Comparison between nonlinear (——) and linear results (– – –). (a) U/cm = 0.5725, (d − a) = 2cm;
(b) U/cm = 0.4048, (d − a) = 1cm. For all cases a/d = 1/3, U = −0.3, Fr = 0.67 and cm = (4B)1/4. U and
cm are dimensionless quantities. Disturbances are vertically exaggerated 10 times.

Case (0): B = 0.00378; a = 0.75cm.

Figure 8: Fully nonlinear results for a uniform stream flow interacting with a submerged cylinder. U/cm = 1.4023,
(d− a) = 3.0cm. In this case a/d = 1/5, U = −0.6, Fr = 0.44 and cm = (4B)1/4. U and cm are dimensionless
quantities. tbreaking = 14.2. Vertical exaggeration 10 : 1.
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breaking also occurs for sufficiently large values of a/d, but now this also depends on the Bond
number B. As B increases, surface tension effects become more prominent; capillarity can
then significantly reduce the steepness of the free surface disturbances when it precludes the
formation of steady waves. For U > cgm wave breaking was observed in all the computed
cases when the inequality a/d � 1 was not satisfied. For U < cgm , an interesting feature was
found: capillary-gravity waves are formed upstream the cylinder. According to linear theory,
only a local disturbance which decays rapidly to zero with distance from the centre of the
cylinder should happen in this case. However in an initial value problem waves can radiate
away. As U/cm decreases, with values smaller than the minimum group velocity cgm , waves
of all frequencies are radiated upstream and downstream. Then the nonlinear result approaches
the linear steady solution of a local disturbance at the free surface.
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