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Abstract.
This work presents an example from a methodology for building mathematical expressions, who

describe the behaviors of the dispersion of pollutants in the surf zone. This methodology is based in
calibration of analytical solutions from the diffusion-advection equation. Simple cases of dispersion
were defined mathematically, then solved by classical mathematical methods, such integral transforms
and similarity solutions. Then the analytical solutions were calibrated by an optimization technique, to
fit the results of a more complex dispersion case, that was solved numerically in other work.
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1 INTRODUCTION

In the coast of Paraná, the environmental problems of an inadequate human occupation, has
already been observed from a long time. The paper (Angulo, 1984) deals with the erosion
and pollution of coastal waters of Paraná. In the last years the pollution of coastal waters of
Paraná by pathogens reached a critical level. An example of this situation was the results of the
balneability analysis of the coastal waters of Paraná in the season of 2008/2009 in which only
nine of forty-three points were considered suitable for bathing.

In the state of Paraná the policy of balneability is based on the resolution 274/2000 of
CONAMA (Conselho Nacional do Meio Ambiente) and works as follows: water samples are
collected in the critical zones, the samples are analyzed for the presence of pathogens. If the
presence of pathogens is below the maximum permissible concentration in eighty percent of
the samples, then the area are suitable for swimming. Otherwise the area is interdicted in a
neighborhood of 200 meters centered in the sample point.

The estimation of the size of banned area around a point of contamination is the initial
motivation of this work. Besides the size of banned area, another practical issue is the necessity
of make decisions in a short time. To deal with those issues the proposal of this work is to
present a methodology for building mathematical expressions that are able to replicate some
results of complex dispersion problems in the surf zone, modeled numerically

2 ANALITYCAL SOLUTIONS FOR DISPERSION PROBLEMS WITH FIRST OR-
DER DECAY

In this section will be build some analytical solutions to the problem of transport of scalar.
Particular cases of these solutions will be calibrated to simulate the behavior of the dispersion
of more complex cases.

2.1 Pollution load entering a clean system

The problem considered below represents the behavior of the mean concentration (in the
water column) of a scalar such that your diffusivity coefficient is isotropic and is denoted by
D. The mean concentration is denoted by C. In the initial time there is no concentration of the
scalar in the medium i.e C(x, y, 0) = 0 . The fluid that compose the medium is subject to a flow
defined by the homogeneous velocities U and V . The scalar have a first order decay of intensity
K. By physical considerations it is appropriate that the concentration tends to zero in regions
far from the pollution load. The problem is put mathematically as

∂C

∂t
+ V

∂C

∂y
+ U

∂C

∂x
= D∇2C −KC +Q(x, y, t) (x, y) ∈ ℝ2, t ∈ (0,∞); (1)

lim
∣x∣→∞

C(x, y, t) = 0; (2)

lim
∣y∣→∞

C(x, y, t) = 0; (3)

C(x, y, 0) = 0 (4)
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By the conditions (2) and (3) and imposing restrictions on the forcing term Q(x, y, t) is
reasonable to assume that

∫ ∞

−∞

∫ ∞

−∞
∣ C(x, y, t) ∣ dxdy < ∞. (5)

By (5) it is possible to apply the double Fourier transform in (1). Because the condition (4),
there are the possibility of apply the Laplace transform in in (1). Putting together the Fourier
and Laplace transforms we define the composite transform

T {f(x, y, t)} =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
exp[−st− i!1x− i!2y]f(x, y, t)dxdydt. (6)

Applying T in (1) and considering T {Q(x, y, t)} = Q̂(!1, !2, s), ℒ{f(t)} = f(s)
and T {C(x, y, t)} = Ψ(!1, !2, s) we get the follow expression

sΨ− Ĉ(!1, !2, 0) + i!1UΨ+ i!2VΨ = D(−!2
1 − !2

2)Ψ−KΨ+ Q̂(!1, !2, s), (7)

where,

Ĉ(!1, !2, t) =

∫ ∞

−∞

∫ ∞

−∞
exp[−i!1x− i!2y]C(x, y, t)dxdy. (8)

By (4) it is possible to express (7) as

Ψ(!1, !2, s) =
1

(s+ i!1U + i!2V +D!2
1 +D!2

2 +K)
Q̂(!1, !2, s). (9)

To get the solution of the problem, now we must apply the inverse transform T −1 on (9). It
is possible to demonstrate that

T −1 = ℒ−1 ∘ ℱ−1
x ∘ ℱ−1

y , (10)

where, ∘ represents the operation of composition, ℒ−1 is the inverse Laplace transform, ℱ−1
x is

the inverse Fourier transform in x and ℱ−1
y is the inverse Fourier transform in y.

Applying ℒ−1 on (9)and considering the Laplace’s convolution and translation properties we
have

ℒ−1 {Ψ} =

∫ t

0

exp [−A(t− ¿)] Q̂(!1, !2, ¿)d¿, (11)

where A = (Ui!1 + V i!2 + D(!2
2 + !2

1) + K). Applying the inverse Fourier transform
in x in the equation (11), by the convolution theorem and by the Fubini’s theorem (Figueiredo,
1977) we have

ℱ−1
x

{ℒ−1 {Ψ}} =

∫ t

0

ℱ−1 {exp [−A(t− ¿)]} ∗ ℱ−1
{
Q̂(!1, !2, ¿)

}
d¿. (12)
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Solving the inverse Fourier transform in (12) we have

ℱ−1
x

{ℒ−1 {Ψ}} =

∫ t

0

∫ ∞

−∞
Q̂(», !2, ¿) exp[B]×

×
exp

[
−(x−»−U(t−¿))2

4D(t−¿)

]

2
√

D¼(t− ¿)
d»d¿

(13)

where B = V i!2 −D!2
2(t− ¿)−K(t− ¿). Applying the inverse Fourier transform in y in

the expression (13) we have

C(x, y, t) =

∫ t

0

∫ ∞

−∞
ℱ−1

y

{
Q̂(», !2, ¿) exp[−V i!2 −D!2

2(t− ¿)−K(t− ¿)]
}
×

×
exp

[
−(x−»−U(t−¿))2

4D(t−¿)

]

2
√

D¼(t− ¿)
d»d¿

(14)

Repeatedly using the convolution theorem, the linearity of the inverse fourier transform and
the Fubini’s theorem we have

C(x, y, t) =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞
Q(», ¸, ¿)

exp
[
−K(t− ¿)− (y−¸−V (t−¿))2

4D(t−¿)

]

2
√

D¼(t− ¿)
×

×
exp

[
−(x−»−U(t−¿))2

4D(t−¿)

]

2
√

D¼(t− ¿)
d¸d»d¿

(15)

Finally, the solution is given by

C(x, y, t) =

∫ t

0

∫ ∞

−∞

∫ ∞

−∞

Q(», ¸, ¿)

4D¼(t− ¿)
exp

[
−K(t− ¿)− (y − ¸− V (t− ¿))2

4D(t− ¿)

]
×

× exp

[
−(x− » − U(t− ¿))2

4D(t− ¿)

]
d¸d»d¿

(16)

2.2 Pollutants in a region with a physical barrier

This problem is similar to the problem presented on the last section, but in this case there is a
barrier in the x = 0 axis. The mathematical formulation of this problem is intended to describe
the behavior of the scalar dispersion in a medium with a physical barrier. The problem is given
by

∂C

∂t
+ V

∂C

∂y
= D∇2C −KC +Q(x, y, t) (x, t) ∈ (0,∞), y ∈ (−∞,∞); (17)

and the conditions

lim
y→∞

C(x, y, t) = 0; (18)
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lim
x→∞

C(x, y, t) = 0; (19)

C(x, y, 0) = 0; (20)

∂C(0, y, t)

∂x
= 0. (21)

To deal with the condition (21) the image method can be used. First we must to analyze the
solution when we extend the domain to the (−∞,∞) in x axis. In the extended domain the
equation is decomposed in two parts, the even and odd parts relative to the x = 0 axis. When
we extend the solution we also need to extend the forcing term Q(x, y, t). So the solution have
the form

C(x, y, t) = S(x, y, t) + A(x, y, t), (22)

where

S(x,−y, t) = S(x, y, t); (23)

A(x,−y, t) = −A(x, y, t). (24)

Applying (22) in (17), we have

∂(S + A)

∂t
+ U

∂(S + A)

∂x
= D∇2(S + A)−K(S + A) +Qext(x, y, t). (25)

Let E1 and E2, be even functions and O1 and O2, be odd functions, then

E1 +O1 = E2 +O2 → E1 = E2 and O1 = O2 (26)

Using the relation (26) we can separate the expression (25) and the initial an boundary con-
ditions in the even and odd parts. Like the solution, the forcing term is also separated in the
even and odd parts, who is denoted respectively by: sQext(x, y, t) and aQext(x, y, t). With that
we can separate the problem in two parts. The even problem:

∂S

∂t
+ V

∂S

∂y
= D∇2S −KS + sQext(x, y, t) (x, y) ∈ ℝ2, t ∈ (0,∞); (27)

lim
∣x∣→∞

S(x, y, t) = 0; (28)

lim
∣y∣→∞

S(x, y, t) = 0; (29)

S(x, y, 0) = 0. (30)

And the odd problem:

∂A

∂t
+ V

∂A

∂y
= D∇2A−KA+ aQext(x, y, t) (x, y) ∈ ℝ2, t ∈ (0,∞); (31)
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lim
∣x∣→∞

A(x, y, t) = 0; (32)

lim
∣y∣→∞

A(x, y, t) = 0; (33)

A(x, y, 0) = 0. (34)

When we extend the problem about the x = 0 axis, it is possible to extend the forcing term
arbitrarily. If the forcing term is symmetrical to the x = 0 axis, then aQext(x, y, t) = 0 and
the anti-symmetric problem only have the trivial solution. As consequence the solution to the
original problem have the form C(x, y, t) = S(x, y, t) and consequently the condition (21) will
be met. Making Qext symmetric, we have the problem in the extended domain

∂C

∂t
+ V

∂C

∂y
= D∇2C −KC +Qext(x, y, t) (x, y) ∈ ℝ2, t ∈ (0,∞); (35)

lim
∣x∣→∞

C(x, y, t) = 0; (36)

lim
∣y∣→∞

C(x, y, t) = 0; (37)

C(x, y, 0) = 0. (38)

The solution to the problem (32)-(35) is identical to the problem (1)-(4), but in this case we
have U = 0. Its is possible to demonstrate that the solution for the problem (35)-(38) restricted
to the original domain, meets all the boundary conditions and the differential equation of the
original problem.

2.3 Evolution of a concentration prescribed on the boundary

In this case the domain is semi-infinite in x and y. The concentration C is prescribed on the
boundary y = 0. On the boundary x = 0 there is a physical barrier. The fluid have only v
velocity. The problem is given by

∂C

∂t
+ V

∂C

∂y
= D∇2C −KC (y, x) ∈ (0,∞), 0 < t < ∞); (39)

lim
x→∞

C(x, y, t) = 0; (40)

lim
y→∞

C(x, y, t) = 0; (41)

C(x, 0, t) = C0(x, t); (42)

C(x, y, 0) = 0; (43)

∂C(0, y, t)

∂x
= 0. (44)
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To deal with the condition (44) we can use the image method. It is possible to check that
the extended problem in the x = 0 axis, together with the function C0ext being symmetric to
the x = 0 axis, in the original domain meets all the conditions of the original problem. The
extended problem is defined by

∂C

∂t
+ V

∂C

∂y
= D∇2C −KC (y, t) ∈ (0,∞),−∞ < x < ∞); (45)

lim
∣x∣→∞

C(x, y, t) = 0; (46)

lim
y→∞

C(x, y, t) = 0; (47)

C(x, 0, t) = C0ext(x, t); (48)

C(x, y, 0) = 0; (49)

To solve this problem, we use the compose of the Laplace and Fourier transform, the trans-
form is given by

T {f(x, t)} =

∫ ∞

0

∫ ∞

−∞
exp[−st− i!x]f(x, t)dxdt = f̂(!, s). (50)

Applying T in (45), we have

sĈ − Ĉ(x, !, 0) + V
∂Ĉ

∂y
−D

∂2Ĉ

∂2y
+ AĈ = 0. (51)

Where A = !2D +K. Due the condition (49), the expression (51 can by written as

∂2Ĉ

∂2y
− V

D

∂Ĉ

∂y
− (s− A)

D
Ĉ = 0. (52)

The general solution from the equation (52) is given by

Ĉ(!, y, s) = C1 exp

[Ã
V

D
+

√
V 2

D2
+

4(s+ A)

D

)
y

2

]
+

+C2 exp

[Ã
V

D
−

√
V 2

D2
+

4(s+ A)

D

)
y

2

] (53)

Applying T in the conditions (47) and (48) we have

lim
y→∞

Ĉ(!, y, s) = 0; (54)

Ĉ(!, 0, s) = Ĉ0ext(!, s). (55)
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By (54) and (55) the expression (53) can by written as

Ĉ = Ĉ0ext(!, s) exp

[Ã
V

D
−

√
V 2

D2
+

4(s+ A)

D

)
y

2

]
. (56)

After performing algebraic manipulations, the equation (56) can by written as

Ĉ = exp

[
V y

2D

]
Ĉ0ext(!, s) exp

[
−y√
D

√
(
V 2

4D
+ A+ s)

]
. (57)

To obtain the solution we must turn back to the original variables by the inverse transform.
It is possible to check that T −1 = ℒ−1 ∘ ℱ−1

x . The solution is given by

C(x, y, t) = T −1

{
exp

[
V y

2D

]
Ĉ0ext(!, s) exp

[
−y√
D

√
(
V 2

4D
+ A+ s)

]}
(58)

Applying the inverse laplace transform in (57), by the convolution theorem we have

Ĉ(!, y, t) = exp

[
V y

2D

]
Ĉ0ext(!, t) ∗ ℒ−1

{
exp

[
−y√
D

√
(
V 2

4D
+ A+ s)

]}
. (59)

Knowing that

ℒ
⎧
⎨
⎩
l exp

[
−l2

4t

]

2
√
¼t3

⎫
⎬
⎭ = exp−l

√
s (60)

it is possible to use the translation theorem to find the inverse from the right side of the
equation (59).

ℒ−1

{
exp

[
−y√
D

√
(
V 2

4D
+ A+ s)

]}
=

y exp
[
−
(

V 2

4D
+ A

)
t+ −y2

4Dt

]

2
√
D¼t3

(61)

Putting (61) in (59)

Ĉ(!, y, t) = exp

[
V y

2D

] ∫ t

0

Ĉ0ext(!, t)
y exp

[
−
(

V 2

4D
+ A

)
(t− ¿) + −y2

4D(t−¿)

]

2
√

D¼(t− ¿)3
d¿. (62)

By the properties of the inverse Fourier transform and by the Fubini’s theorem, we have the
following relation:

C(x, y, t) = exp

[
V y

2D

] ∫ t

0

ℱ−1

⎧
⎨
⎩Ĉ0ext(!, t)

y exp
[
−
(

V 2

4D
+ A

)
(t− ¿) + −y2

4D(t−¿)

]

2
√

D¼(t− ¿)3

⎫
⎬
⎭ d¿.

(63)
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For simplify the notation, we call Φ the argument from the inverse transform in (63). By
convolution theorem we have

ℱ−1(Φ) = C0(x, t)ext ∗ ℱ−1

⎧
⎨
⎩
y exp

[
−
(

V 2

4D
+ A

)
(t− ¿) + −y2

4D(t−¿)

]

2
√

D¼(t− ¿)3

⎫
⎬
⎭ (64)

It follows that

ℱ−1

⎧
⎨
⎩
y exp

[
−
(

V 2

4D
+ A

)
(t− ¿) + −y2

4D(t−¿)

]

2
√

D¼(t− ¿)3

⎫
⎬
⎭ =

=
y exp

[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)

]

2
√

D¼(t− ¿)3
ℱ−1 {exp−A(t− ¿)}

(65)

Putting A in (65):

ℱ−1 {exp [−A(t− ¿)]} = ℱ−1
{
exp

[−(!2D + k)(t− ¿)
]}

; (66)

ℱ−1
{
exp

[−(!2D + k)(t− ¿)
]}

= exp [−k(t− ¿)]ℱ−1
{
exp

[−!2D(t− ¿)
]}

; (67)

ℱ−1
{
exp

[−(!2D)(t− ¿)
]}

=
exp

[
−x2

4(t−¿)D

]

2
√

(t− ¿)D¼
. (68)

Putting (64)-(68) in (63) we finally have the solution

C(x, y, t) = exp

[
V y

2D

] ∫ t

0

∫ +∞

−∞
C0ext(», ¿)×

×
y exp

[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
+ −(x−»)2

4(t−¿)D
−K(t− ¿)

]

4D¼(t− ¿)2
d»d¿

(69)

3 PARTICULAR CASES AND IMPOSITION OF CALIBRATION PARAMETERS

With the solutions presented in the last section it is possible to construct mathematical ex-
pressions through particular cases. These expressions have calibration parameters, who will be
used to approximate the behavior of scalar dispersion of more complex cases, solved numeri-
cally.

3.1 Constant concentration in a line parallel to the coast

Is this section we want to begin with the solution given by the expression (69) and through
simplification, obtain a simple expression who will be easy to calibrate posteriorly.

By physical considerations it is reasonable to presume that, if

∂C0(x, t)

∂x
= 0 ∀x ∈ (0,∞), (70)
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then

∂C(x, y, t)

∂x
= 0. (71)

So, with we put C0(x, t) = C0 constant, it’s expected that the final solution don’t depend on
x. Putting C0(x, t) = C0 in (69) we have

C(x, y, t) = exp

[
V y

2D

] ∫ t

0

∫ +∞

−∞
C0×

×
y exp

[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
+ −(x−»)2

4(t−¿)D
−K(t− ¿)

]

4D¼(t− ¿)2
d»d¿

(72)

Assuming that the function under the integration sign, respect the conditions given by the
Fubini’s theorem, then (72) may be written as

C(x, y, t) = exp

[
V y

2D

] ∫ t

0

C0

y exp
[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
−K(t− ¿)

]

4D¼(t− ¿)2
×

×
∫ +∞

−∞
exp

[−(x− »)2

4(t− ¿)D

]
d»d¿

(73)

The expression (73) may be written as

C(x, y, t) = exp

[
V y

2D

] ∫ t

0

C0

y exp
[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
−K(t− ¿)

]

4D¼(t− ¿)2
×

×2
√

D(t− ¿)¼d¿

(74)

The expression (73) may be written as

C(x, y, t) = yC0 exp

[
V y

2D

] ∫ t

0

exp
[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
−K(t− ¿)

]

2
√

D¼(t− ¿)3
d¿ (75)

To obtain an even simpler expression, we can compute the solution of the permanent prob-
lem. For this, it’s necessary to solve the integral (75) with the time tending to infinity.

C(x, y, t) = yC0 exp

[
V y

2D

] ∫ ∞

0

exp
[
−
(

V 2

4D

)
(t− ¿) + −y2

4D(t−¿)
−K(t− ¿)

]

2
√

D¼(t− ¿)3
d¿ (76)

The integral (76) have the follow solution depending on y:

C(y) = C0 exp

[
V y

D
−

√
V 2

D2
+

4K

D
y

]
. (77)
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4 NUMERICAL MODELING FOR DISPERSION OF COLIFORMS IN MATINHOS
BEACH

This section briefly presents the results for dispersion of coliforms, given by a numerical
model. The model simulate the entrance of a polluted effluent in a beach. As an example we
use the characterists of the mouth of Matinhos River in the coast of Paraná.

The numerical model uses the finite difference technique for solve the diffusion-advection
equation. The hydrodynamic data used in the model were generated by a Boussinesq wave
model. For more details about the numerical model and the Boussinesq wave model used in
this work, see Solheid (2010), Wei et al. (1995), Kennedy et al. (2000) e Chen et al. (2000).

To characterize the Matinhos River mouth, the wave model used as input:a bathymetry simi-
lar to the region and the wave characteristics of the region (have height, frequency and angle of
incidence with the coast).

The figures (1)-(6) shows the concentration of coliforms given in 1000NMP(100ml)−1, cal-
culated through the numerical model. In all the figures "longshore" represents the axis parallel
to the coast, and "crosshore" represents the axis normal to the coast. The surf zone begins
approximately in 300 m.

Figure 1: Numerical Simulation t=10min Figure 2: Numerical Simulation t=30min

Figure 3: Numerical Simulation t=60min Figure 4: Numerical Simulation t=120min

At different times a profile of mean concentration as calculated on the surf zone along the
coast. The interval used to calculate the mean values was 300 to 400 meters along the crossshore
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Figure 5: Numerical Simulation t=310min Figure 6: Numerical Simulation t=560min

axis. The figures (7) and (8) shows the profile of the mean concentration in 1000NMP(100ml)−1

along the coast (longshore axis) considering that the beginning of the y axis, is the point of the
river mouth.
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Figure 7: Mean concentration of coliform on the
surf zone along the coast in t=10 min, t=30 min e
t=60 min
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Figure 8: Mean concentration of coliform on the
surf zone along the coast in t=120 min, t=240 min
,t=480 min e t=600min

Along the coast the maximum concentration in the surf zone was calculated. The interval
used to calculate the maximum values was 300 to 400 meters along the crossshore axis. The pic-
tures (9) and (10) shows the profiles of maximum concentration in 1000NMP(100ml)−1,considering
that the beginning of the y axis, is the point of the river mouth.

It was observed that the profiles of mean and maximum concentration, after some time do
not change with time. The picture (11) shows the the behavior of concentration profiles given
by the numerical model, for different times. In the picture (11) it is possible to see that the
different profiles have a small variation, so the concentration reached a "almost steady" state.

The steady state profile it will be simulated by adjustments in analytical solutions presented
on section 3. The solution are calibrated using an optimization algorithm.

The first step is to find a more convenient function to use in the algorithm. Imposing particu-
lar solutions in the solutions presented on section 2, we can construct expressions que describe
diffusion-advection problems. The integral (16) have analytical solutions for a small number
of cases. Besides, the analytical solutions generally are composed by expressions that are too
"heavy" to run in the optimization algorithm. To deal with problems of computational time, we
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Figure 9: Maximum concentration of coliform on
the surf zone along the coast in t=10 min, t=30 min
and t=60 min
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Figure 10: Maximum concentration of coliform on
the surf zone along the coast in t=120 min, t=240
min ,t=480 min and t=600min
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Figure 11: Steady state profile from the mean concentration

choose to use the expression (77).

5 CALIBRATION AND VALIDATION OF AN ANALYTICAL SOLUTION

The function (77) have the follow calibration parameters: C0, D, V e K. Using the optimiza-
tion algorithm it is possible to adjust the four parameters to minimize the difference between
the steady state profile and the profile given by (77). The optimization algorithm used was the
Sequential Quadratic Programming (SQP), that is described in details by Nocedal and Wright
(1999) and Arora (2004). The function (77) was adjusted to fit the mean and maximum steady
state profile in the surf zone. In both cases the initial values for the parameters D, V and K,
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were the mean values calculated in the surf zone.

5.1 Adjustment for the steady state profile of the mean concentration of coliform in the
surf zone

The table (1) shows the initial values and the intervals used for the calibration parameters in
the optimization algorithm.

C0-NMP(100ml)−1 D-m2s−1 V-ms−1 K-s−1

Valor inicial 529000 0,02 0,2 0,0002
Limite superior 600000 2 5 0,1
Limite inferior 0 0 0 0

Table 1: Initial values and the intervals used for the calibration parameters to fit the mean concentration

The values calculated by the algorithm were: V = 0, 6546 ms−1, D = 2, 5442 m2s−1,
C0 = 5742837 NMP(100ml)−1 e K = 0, 0070 s−1. The error from the analytical solution in
respect to the concentration given by numerical simulation is 2, 3%. The figure (12) shows the
comparison between the numerical an analytical profiles.
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Figure 12: Comparison between the numerical and analytical profiles from the mean concentration of coliform in
the surf zone

According to the policies of bathing of Paraná state, concentrations of coliform above
1000NMP(100ml)−1 represents a water unfit to bathing. With this, a way to validate the cal-
ibrated functions is the capacite to predict the distance that the concentration reaches values
above the critical limit. The analytical solution predicts that in 420 m the mean concentration
would be below the critical limit. The numerical solution predicts 296 m to the same situation.
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To obtain more accurate predictions by the analytical solution, we choose to disregard in
the minimization, the regions close to the river mouth. So the algorithm only need to fit the
numerical solution about 88 m from the river mouth. The values found were: V = 0, 6543
ms−1, D = 2, 5143 m2s−1, C0 = 98922 NMP(100ml)−1 and K = 0, 0067 s−1. The error
from the calibrated expression is 1, 23 percent. At this time, the analytical solutions predicts
that in 320 m the mean concentration reaches the secure level. The error with respect to the
numerical prediction is 24 meters. The figure (13)shows the comparison between the numerical
and analytical profiles, starting in 88 meters from the river mouth.

100 150 200 250 300
0

10

20

30

40

50

60

70

80

90

100

y(m)

1
0

0
0

N
M

P
/1

0
0

m
l

 

 
Perfil Numérico
Perfil Analítico

Figure 13: Comparison between the numerical and analytical partial profiles from the mean concentration of
coliform in the surf zone

5.2 Adjustment for the steady state profile of the maximum concentration of coliform in
the surf zone

For the adjustment of the analytical solution to the maximum concentration profile, the initial
values used in to algorithm are described in table (1). The optimal values are: V = 0, 6582
ms−1, D = 2, 5290 m2s−1, C0 = 851048 NMP(100ml)−1 and K = 0, 0045 s−1. The error from
the analytical solution with respect to the numerical profile is 3, 05%. The figure (14) shows the
comparison between the numerical an analytical profiles of maximum concentration.

The analytical solution predicts that in 350 m the maximum concentration would be below
the critical limit. The numerical solution predicts 336 m to the same situation. So the error for
the prediction made by the analytical solution is 14 m.
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Figure 14: Comparison between the numerical and analytical profiles from the maximum concentration of coliform
in the surf zone

6 CONCLUSION

It was possible to find a simple expression that had a low percentage of error, when it fits the
behavior of coliform dispersion calculated by a numerical model with complex physical inputs.

The approach of using an optimization algorithm to calibrate the analytical function is sat-
isfactory. But this approach becomes impracticable with the approximation function is too
complex.

It was possible to find a simple analytical solution. The solutions presented in this paper are
natural extensions of classical one-dimensional problems and they can by build using a good
integral transform table. So the solutions presented in this paper has a good didactic potencial.

For an extension of this work it’s possible to find more complex analytical solutions, as
example: non-homogeneous velocity field and diffusion coefficient.
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