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Abstract. In this article a new methodology for developing DGCL (for Discrete Geometric Conser-
vation Law) compliant formulations is presented. It is carried out in the context of the Finite Ele-
ment Method (FEM) for general advective-diffusive systems on moving domains using an Arbitrary
Lagrangian Eulerian (ALE) scheme.

There is an extensive literature about the impact of DGCL compliance on the stability and precision of
time integration methods. In those articles it has been proved that satisfying the DGCL is a necessary and
sufficient condition for any ALE scheme to maintain on moving grids the nonlinear stability properties of
its fixed-grid counterpart. However, only a few works propose a methodology for obtaining a compliant
scheme.

In this work, a DGCL compliant scheme based on an Averaged ALE Jacobians Formulation (AJF) is
obtained. This new formulation is applied to the theta-family of time integration methods. In addition,
an extension to the three-point Backward Difference Formula (BDF) is given. With the aim to validate
the AJF formulation a set of numerical tests are performed. These tests include 2D and 3D diffusion
problems with different mesh movements, and the 2D Euler flow over a pitching NACA0012 airfoil.
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1 INTRODUCTION

When dealing with partial differential equations that need to be solved on moving domains,
like problems in the Fluid-Structure Interaction area (FSI) (Storti et al., 2009; Garelli et al.,
2010), one of the most used technique is the so-called Arbitrary Lagrangian Eulerian (ALE).
The idea behind the ALE formulation is the introduction of a computational mesh which moves
with a velocity independent of the speed of the material particles. The ALE method was first
proposed in the context of finite differences (Noh, 1964; Hirt et al., 1974), then it was extended
to finite elements (Donea, 1983; Hughes et al., 1978) and to finite volumes (Trepanier et al.,
1991).

When an ALE formulation is used, the governing equations must be rewritten and additional
terms related to the mesh velocity and position, are introduced. The reformulated equations
must be integrated in time. The common way to proceed is to use a classical time advancing
scheme like the θ-family or the BDF’s family. In this context the DGCL arises and it is di-
rectly related to the evolution of the mesh velocity and the elements volume change. This law
was introduced by Thomas and Lombard (1979) and it is a consistency criterion in which the
numerical method must be able to reproduce exactly a constant solution on a moving domain.

As noted by Étienne et al. (2009) the effect of the DGCL on the stability of ALE schemes
is still unclear and somewhat contradictory. In the work by Guillard and Farhat (2000), it has
been observed that the movement of the domain can degrade the accuracy and stability of the
numerical scheme with respect to their counterpart on fixed domains. In this direction, many
researchers have been working with the aim of linking the accuracy and the stability of numer-
ical schemes on an ALE framework with the discrete version of the Geometric Conservation
Law (Guillard and Farhat, 2000; Boffi and Gastaldi, 2004; Formaggia and Nobile, 2004; Éti-
enne et al., 2009). In the article by Geuzaine et al. (2003) it has been shown that satisfying the
DGCL is neither necessary nor sufficient condition for an ALE scheme to preserve on mov-
ing grids its time-accuracy established on fixed grids. In the work presented by Farhat et al.
(2001) it was proved that for nonlinear scalar problems the DGCL requirement is a necessary
and sufficient condition for an ALE time-integrator to preserve the nonlinear stability properties
of its fixed-grid counterpart. Meanwhile, Boffi and Gastaldi (2004) and Formaggia and Nobile
(2004) have shown that it is neither necessary nor sufficient condition for stability, except for
the Backward Euler scheme. While the impact of the DGCL on the stability and precision of
the time integration methods is controversial, there is a general consensus in the development
of schemes that satisfy the DGCL, in particular for FSI problems (Ahn and Kallinderis, 2006;
Lesoinne and C.Farhat, 1996; Nobile, 2001; Mavriplis and Yang, 2005).

A straightforward way to satisfy the DGCL is to use a time integration rule with degree of
precision nd · s− 1, where nd is the spatial dimension and s is the order of the polynomial used
to represent the time evolution of the nodal displacement within each time step. For example,
in 3D problems with a linear in time reconstruction a rule with degree of precision 2 should
be used. Alternatively, the methodology proposed by Farhat and Geuzaine (2004) to obtain an
ALE extension for a given time-integrator in fixed meshes, could be used.

In this work a new methodology, which is based on averaged ALE Jacobians is proposed
to obtain DGCL compliant FEM formulations. It is applied to the θ-family of time integration
methods in general nonlinear advective-diffusive problems. In addition, an extension to the
three-point Backward Difference Formula (BDF) is given.

In previous work (Farhat and Geuzaine, 2004) averaged coefficients are obtained by starting
with a general integration scheme with a series of unknown parameters, which are then adjusted
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in order to preserve DGCL compliance, and the temporal accuracy of the fixed mesh counter-
part. In contrast, in this work the geometric coefficients are obtained by averaging them over
the time step. So that, precision is preserved and the DGCL is satisfied in a natural way.

Finally, to validate the Averaged Jacobians Formulation (AJF) a set of numerical tests are
performed. This includes 2D/3D diffusion problems on moving meshes and 2D Euler equations
for a pitching NACA0012 airfoil.

2 VARIATIONAL FORMULATION FOR ADVECTIVE DIFFUSIVE SYSTEM FOR
MOVING MESHES USING ALE

Let us start with the derivation of the ALE formulation for a general advective-diffusive
system (Donea, 1983; Lesoinne and C.Farhat, 1996). The governing equation is

∂Uj
∂t

+
(
F cjk(U)−Fdjk(U,∇U)

)
,k

= 0, in Ωt (1)

where 1 ≤ k ≤ nd, nd is the number of spatial dimensions, 1 ≤ j ≤ m, m is the dimension of
the state vector (e.g. m = nd + 2 for compressible flow), t is time, ( ),j denotes derivative with
respect to the j-th spatial dimension, U ∈ IRn is the state vector, and F c,djk ∈ IRn×nd are the
convective and diffusive fluxes, respectively. Appropriate Dirichlet and Neumann conditions
are imposed at the boundary.

As the problem is posed in a time-dependent domain Ωt, it can not be solved with standard
fixed-domain methods, so that it is assumed that there is an inversible and continuously differ-
entiable map x = χ(ξ, t) between the current domain Ωt and a reference domain Ωξ, which can
be for instance the initial domain Ωξ = Ωt=0, and ξ is the coordinate in the reference domain.
The Jacobian of the transformation is

J =

∣∣∣∣∂xj∂ξk

∣∣∣∣ , (2)

and satisfies the following volume balance equation

∂J

∂t

∣∣∣∣
ξ

= J
∂v∗k
∂xk

, (3)

where

v∗k =
∂xk
∂t

∣∣∣∣
ξ

, (4)

are the components of the mesh velocity.
The variational formulation of (1) is obtained multiplying with a weighting functionw(x, t) =

w(χ(x, t)) and integrating over the current domain Ωt∫
Ωt
w
∂Uj
∂t

dΩt +

∫
Ωt

[
F cjk −Fdjk

]
,k
w dΩt = 0. (5)

The integrals are brought to the reference domain Ωξ∫
Ωξ
w
∂Uj
∂t

J dΩξ +

∫
Ωξ

[
F cjk −Fdjk

]
,k
wJ dΩξ = 0, (6)
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and the temporal derivative term can be converted to the reference mesh by noting that the
partial derivative of Uj is in fact a partial derivative at x = constant, and then can be converted
to a partial derivative at ξ = constant with the relation

∂Uj
∂t

∣∣∣∣
x

=
∂Uj
∂t

∣∣∣∣
ξ

− v∗k
∂Uj
∂xk

. (7)

So the temporal derivative term in (6) can be transformed, using (3), as follows

J
∂Uj
∂t

∣∣∣∣
x

= J
∂Uj
∂t

∣∣∣∣
ξ

− Jv∗k
∂Uj
∂xk

,

=
∂(JUj)

∂t

∣∣∣∣
ξ

− JUj
∂v∗k
∂xk
− Jv∗k

∂Uj
∂xk

,

=
∂(JUj)

∂t

∣∣∣∣
ξ

− J ∂(Ujv
∗
k)

∂xk
.

(8)

Replacing (8) in (6),∫
Ωξ
w(ξ)

∂

∂t
(JUj)

∣∣∣∣
ξ

dΩξ +

∫
Ωξ

(
F cjk − v∗kUj −Fdjk

)
,k
w(ξ)J dΩξ = 0. (9)

The temporal derivative can be commuted with the integral and the weighting function since
both do not depend on time, so that

d

dt

(∫
Ωξ
w JUj dΩξ

)
+

∫
Ωξ

(
F cjk − v∗kUj −Fdjk

)
,k
wJ dΩξ = 0, (10)

and the integrals can be brought back to the Ωt domain

d

dt

(∫
Ωt
wUj dΩt

)
+

∫
Ωt

(
F cjk − v∗kUj −Fdjk

)
,k
w dΩt = 0. (11)

The variational formulation can be obtained by integrating by parts, so that

d

dt
(H(w,U)) + F (w,U) = 0, (12)

where
H(w,U) =

∫
Ωt
wUj dΩt,

F (w,U) = A(w,U) +B(w,U) + S(w,U),

A(w,U) = −
∫

Ωt

(
F cjk − v∗kUj −Fdjk

)
w,k dΩt,

B(w,U) =

∫
Γt

(
F cjk − v∗kUj −Fdjk

)
nkw dΓ,

(13)

Γt is the boundary of Ωt, and nk is its unit normal vector pointing to the exterior of Ω. Also,
a consistent stabilization term S(w,U) is included in order to avoid numerical problems for
advection dominated problems (Franca et al., 1992).
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Finally (11) is discretized in time with the trapezoidal rule (application to the Backward
Differentiation Formula (BDF) will be described later)

H(w,Un+1)−H(w,Un) = −
∫ tn+1

tn
F (w,U t′) dt′,

≈ −∆t F (w,Un+θ).

(14)

with 0 ≤ θ ≤ 1. During the time step it is assumed that the nodal points move with constant
velocity, i.e.

v∗k(ξ) =
xk(ξ, t

n+1)− xk(ξ, tn)

∆t
,

xk(ξ, t) = xk(ξ, t
n) + (t− tn)v∗k(ξ),

 , for tn ≤ t ≤ tn+1. (15)

2.1 The Discrete Geometric Conservation Law Condition

A discrete formulation is said to satisfy the DGCL condition if it solves exactly a constant
state regime, i.e. not depending on space or time, for a general mesh movement x(ξ, t). As was
mentioned in §1 the effect of the DGCL in the precision and numerical stability of the scheme
is an open discussion, but in several works (Guillard and Farhat, 2000; Formaggia and Nobile,
2004) it is recommended to employ numerical schemes that satisfy the DGCL. This may help
in improve the precision and the stability.

By replacing Uj = constant and after some manipulations it can be shown that the DGCL is
satisfied if ∫

Ωn+1

w dΩ−
∫

Ωn
w dΩ = ∆t

∫
Ωn+θ

v∗k w,k dΩ. (16)

A similar restriction holds for the boundary term. The stabilization term S(w,U) normally
satisfies automatically the DGCL since it involves gradients of the state, and then it is null for a
constant state.

Note that this previous equation holds if the right hand side is evaluated as an integral instead
of being evaluated at tn+θ, i.e. the DGCL error comes from the approximation that was made
in (14), i.e. it is always true that∫

Ωn+1

w dΩ−
∫

Ωn
w dΩ =

∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt. (17)

Consider the integrand in the right hand side. Transforming to the reference domain Ωξ we
obtain ∫ tn+1

tn

{∫
Ωt
v∗k w,k dΩ

}
dt =

∫ tn+1

tn

{∫
Ωξ
v∗k
∂w

∂ξl

∂ξl
∂xk

J dΩξ

}
dt,

=

∫
Ωξ
v∗k
∂w

∂ξl

∫ tn+1

tn

(
∂ξl
∂xk

J

)t
dt dΩξ,

=

∫
Ωξ
v∗kg

n+θ
k Jn+θ dΩξ.

=

∫
Ωn+θ

v∗kg
n+θ
k dΩ,

(18)
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where gk is an averaged interpolation function gradient

gn+θ
k = (Jn+θ)−1Q̄

n+1/2
lk

∂w

∂ξl
,

Q̄
n+1/2
lk =

∫ tn+1

tn
Qt
lk dt,

Qt
lk =

(
J
∂ξl
∂xk

)t
.

(19)

The proposed scheme is then to replace the A(w,Un+θ) operator in (14) by

AGCL(w,Un+θ) = −
∫

Ωn+θ

[
F cjk − v∗kUj −Fdjk

]∣∣
tn+θ g

n+θ
k dΩ, (20)

A similar modification must be introduced in the boundary term B(w,U), this will be ex-
plained later in Section §2.3 . It is easy to check that with this modification the scheme is DGCL
compliant for all θ.

2.2 Evaluation of the average interpolation function gradient

Due to (15) each component xk is a linear function of time inside the time step, then the
spatial derivatives (∂xk/∂ξl) are also linear functions, and the determinant J is a polynomial of
degree nd. Also, the components of the inverse transformation ξ → x can be determined from
the inverse of the direct transformation x→ ξ as

∂ξl
∂xk

=

(
∂x

∂ξ

)−1

lk

,

J
∂ξl
∂xk

= (−1)k+l minor

(
∂x

∂ξ

)
kl

,

(21)

where minor(A)ij is the determinant of the submatrix of A when row i and column j have been
eliminated. Then, the minors are polynomials of order nd−1 and so are the entries of J ∂ξl

∂xk
that

are the integrands in (19).
As a check, well known results about the compliance of the DGCL with the trapezoidal rule

will be verified. The DGCL is satisfied if the integration rule used to approximate the time
integral in (19) is exact, for instance θ = 1/2 satisfies the DGCL in 2D, since the integrand is
linear and the trapezoidal rule reduces to the midpoint rule. In addition, DGCL is satisfied in
1D for any 0 ≤ θ ≤ 1, and for none in 3D. The point is that using θ = 1/2 (Crank-Nicolson) is
restrictive, and there is no θ that satisfies the DGCL in 3D, so that the method proposed here
uses a higher order time integration for (19) so that the DGCL is satisfied for an arbitrary θ in
any dimension. The method can be extended easily to other temporal integration schemes (see
section §2.4).

For instance, the Gauss integration method can be used. Normally the Jacobians and deter-
minants are known at tn and tn+1 since they are needed for the computation of the temporal
term (the right hand side in (14)), so perhaps it is better to use the Gauss-Lobatto version which
includes the extremes of the interval. The Gauss-Lobatto method integrates exactly polynomi-
als of up to degree 2n− 3 where n is the number of integration points, so that it suffices to use
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the extreme points for simplices in nd = 2 and to add a point at the center of the interval for
nd = 3, i.e.

gn+θ
k =


∆t

2Jn+θ

[
Qn
lk +Qn+1

lk

] ∂w
∂ξl

, in 2D,

∆t

6Jn+θ

[
Qn
lk + 4Q

n+1/2
lk +Qn+1

lk

] ∂w

∂ξl
, in 3D,

(22)

being Qt
lk defined in (19).

2.3 The boundary term

The boundary term in (13) can be brought to the reference domain as follows

B(w,U) =

∫
∂Γt

[
F cjk − v∗kUj −Fdjk

]
wnk dΓ,

=

∫
∂Γξ

[
F cjk − v∗kUj −Fdjk

]
wnkJΓ dΓξ,

(23)

where JΓ is the Jacobian of the transformation between a surface element in Γt and Γξ. The
DGCL is satisfied if the averaged normal vector is used, i.e.

BGCL(w,U) =

∫
∂Γt

[
F cjk − v∗kUj −Fdjk

]
wn̄k dΓ,

n̄k =
1

JθΓ
ηk,

ηk =
1

∆t

∫ tn+1

tn
nkJΓ dt.

(24)

Regarding the evaluation of the integral for computing ηk, the considerations are very similar
to those given in §2.2. The components of nkJΓ are also polynomials of degree nd − 1 in time.
For instance in 3D, if x1,x2,x3 are the nodes at the vertices of a triangle element (ordered
counter-clockwise when viewed from the exterior of the fluid) on the surface Γt, then

nJΓ =
(x2 − x1)× (x3 − x1)

2|Γξ|
, (25)

where× denotes the vector cross product and |Γξ| is the area of the triangle in the reference co-
ordinates. As the coordinates of the nodes are linear in time and |Γξ| is constant, the components
of nkJΓ are quadratic polynomials.

Then, the considerations about the number of points for the Gauss-Lobatto integration are
the same as discussed before, i.e. two integration points are enough to compute the integral in
(24), and three are needed in 3D.

2.4 Application to the BDF

The Backward Differentiation Formula is another popular method for the integration of the
system of ordinary differential equations. Applied to (12) gives

1

∆t

(
3/2H

n+1 − 2Hn + 1/2H
n−1
)

= F (w,Un+1). (26)
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In order to apply the Averaged Jacobian Formulation, the right hand side of (26) must be
rewritten as an integral over time. For this, note that, for any differentiable function X(t) we
have

3/2X
n+1 − 2Xn + 1/2X

n−1 = 3/2(X
n+1 −Xn)− 1/2(X

n −Xn−1),

= 3/2

∫ tn+1

tn
Ẋ dt− 1/2

∫ tn

tn−1

Ẋ dt.
(27)

If this relation is applied with the semidiscrete equations (12) with X = H and Ẋ = F , then
the following relation is obtained

3/2H
n+1 − 2Hn + 1/2H

n−1 = −3/2

∫ tn+1

tn
F (w,U t′) dt′ + 1/2

∫ tn

tn−1

F (w,U t′) dt′. (28)

The BDF integration method is obtained if the right hand side in (28) is replaced by the value
of the integrand at tn+1. The proposed method in order to satisfy the DGCL is to assume that
the state in (28) remains constant but the geometric quantities v∗k and w,k not, so that

3/2H
n+1 − 2Hn + 1/2H

n−1 = −∆tFBDF(w,U tn+1

), (29)

where
FBDF(w,Un+1) = ABDF(w,Un+1) +BBDF(w,Un+1) + S(w,Un+1),

ABDF(w,Un+1) = −
∫

Ωn+1

[
(F cjk −Fdjk)n+1gn+1

k − Un+1
j rn+1

]
dΩ,

BBDF(w,Un+1) =

∫
∂Γt

[
(F cjk −Fdjk)βn+1

k − Un+1
j sn+1

]
w dΓ,

(30)

and gk, r, βk, and s are time averaged geometric quantities given by

gn+1
k =

1

Jn+1

(
3/2Q

n+1/2
lk − 1/2Q

n−1/2
lk

) ∂w
∂ξl

,

rn+1 =
1

Jn+1

(
3/2Q

n+1/2
lk v∗k

n+1/2 − 1/2Q
n−1/2
lk v∗k

n−1/2
) ∂w
∂ξl

,

βn+1
k =

1

Jn+1
Γ

(3/2η
n+1/2
k − 1/2η

n−1/2
k ),

sn+1 =
1

Jn+1
Γ

(3/2η
n+1/2
k v∗k

n+1/2 − 1/2η
n−1/2
k v∗k

n−1/2),

η
n+1/2
k =

1

∆t

∫ tn+1

tn
nkJΓ dt,

(31)

and v∗k
n+1/2 is the (constant) velocity in time step [tn, tn+1]. Regarding the computation of the

averaged Jacobians Qn+1/2
lk and ηn+1/2

k the rules are the same as before, since their entries are
polynomials of degree nd − 1 within the time interval.

3 NUMERICAL TESTS

In this section a set of numerical tests are performed in order to validate the Averaged Jaco-
bian Formulation (AJF) proposed in section (§2).
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3.1 DGCL validation for 2D scalar diffusion problem with internal node movement

For the sake of clarity, let us consider, the scalar diffusion version of the equation (1).

∂u

∂t
− µ∆u = 0 for x ∈ Ωt, t ∈ (0,T]

u = u0 for x ∈ Ω0, t = 0

u = uD for x ∈ ∂Ωt, t ∈ [0,T]

(32)

where µ is the constant diffusivity and ∆ is the Laplacian operator.
To carry out the DGCL compliance test, the problem (32) is solved on an unit square domain

with µ = 0.01, so that

ut − 0.01∆u = 0 for x ∈ Ωt, t ∈ (0,T],

u0 = 1 for x ∈ Ω0, t = 0,

u = 1 for x ∈ ∂Ωt, t ∈ [0,T],

(33)

being the mesh deformed according to the following rule

χ1(ξ, t) = x = ξ + 0.125 sin(π t) sin(2π ξ).

χ2(η, t) = y = η + 0.125 sin(π t) sin(2π η).
(34)

Figure (1) shows the reference domain and the deformed mesh for t = 0.5 [s] where the
maximum deformation occurs.

Figure 1: Reference and deformed mesh.

The problem is solved using piecewise linear triangles for the spatial discretization, a piece-
wise linear interpolation of the mesh movement and for the time integration the Backward Eu-
ler (θ = 1), Crank-Nicolson (θ = 0.5) and Galerkin (θ = 2/3) schemes are considered with
∆t ={0.15, 0.1, 0.05, 0.025}. Figure (2) reports the error ||uh − u||L2(Ωn) for three periods of
oscillation, which must be null to machine precision over time for a DGCL compliant scheme.

An error is introduced when using the Backward Euler or Garlerkin scheme due to lack in
DGCL compliance. In Figure (3) the solution for times t = {0.1, 2.4, 5.4} [s] is shown for the
three different integration schemes. The error related to the constant solution is located in the
zones of the domain where the element deformation is higher, as in the center and the corners.
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Figure 2: ||uh − u||L2(Ωn) for Garlerkin (GA) and Backward Euler (BE) schemes compared with Crank-Nicolson
(CN).

Figure 3: Solution for the Backward Euler (BE), Galerkin (GA) and Crank-Nicolson (CN) schemes.

Now, if the Averaged Jacobian Formulation is used, the scheme is DGCL compliant for all
the time integration schemes and no error is introduced.

In Figure (4) it is shown that using the Averaged Jacobian Formulation all these three time
integration schemes are DGCL compliant.
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Figure 4: Errors for Averaged Jacobian Formulation (AJF) and No-Averaged Jacobian Formulation.

3.2 DGCL validation for 2D scalar diffusion problem with a periodic expansion and
contraction of the domain

In this test case the problem (32) is solved in an unit square domain with µ = 0.1, so that

ut − 0.1∆u = 0 for x ∈ Ωt, t ∈ (0,T],

u0 = 1 for x ∈ Ω0, t = 0,

u = 1 for x ∈ ∂Ωt, t ∈ [0,T],

(35)

being the domain deformed according to the following rule

χ(ξ, t) = (2− cos(20πt))ξ. (36)

Figure 5: Deformed domain.

Figure (5) shows the deformed domain for t = {0, 0.03, 0.05} [s].
As in the previous case an error is introduced when using the Backward Euler or Garlerkin
scheme due to lack in DGCL compliance, but when the Averaged Jacobian Formulation is used
all the time integration schemes are DGCL compliant.

In Figure (6) the error ||uh − u||L2(Ωn) in the solution is reported.
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Figure 6: ||uh − u||L2(Ωn) for Backward Euler (BE), Galerkin (GA) and Crank-Nicolson (CN) schemes.

3.3 DGCL validation for 3D scalar diffusion problem with a periodic expansion and
contraction of the domain

In this section the Averaged Jacobian Formulation is validated for 3D problems. The initial
test is the extension to 3D of the problem (35) and the mesh moving rule (36). It is solved using
piecewise linear tetrahedra for the spatial discretization, a piecewise linear interpolation of the
mesh movement and for the time integration the Backward Euler (θ = 1), Crank-Nicolson
(θ = 0.5) and Garlerkin (θ = 2/3) schemes.

Figure (7) shows the deformed domain for t = {0, 0.03, 0.05} [s] and Figure (8) reports
the error ||uh − u||L2(Ωn) for four periods of oscillation, which must remain null to machine
precision over time for a DGCL compliant scheme.

Figure 7: Deformed domain.
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Figure 8: Errors for Averaged Jacobian Formulation (AJF) and No-Averaged Jacobian Formulation.

3.4 DGCL validation for 3D scalar diffusion problem with internal node movement

This test is the extension to 3D of the problem (33) and the deformation rule (34). It is solved
using piecewise linear tetrahedra for the spatial discretization, a piecewise linear interpolation
of the mesh movement and for the time integration the Backward Euler (θ = 1), Crank-Nicolson
(θ = 0.5) and Garlerkin (θ = 2/3) schemes.

Figure (9) shows the deformed mesh for t = {0, 0.5, 1.5} [s] and Figure (10) reports the error
||uh − u||L2(Ωn).

Figure 9: Deformed mesh.

An error is introduced when using any of the θ-family scheme in 3D problems due to lack
in GCL compliance. In Figure (11) the solution for times t = {0.1, 2.4, 5.4} [s] is shown for
the Backward Euler scheme. The error with respect to the constant solution are localized in the
zones of the domain where the element deformation is higher, as in the center.
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Figure 10: ||uh − u||L2(Ωn) for Backward Euler (BE), Galerkin (GA) and Crank-Nicolson (CN) schemes.

Figure 11: Solution for the Backward Euler (BE) scheme.

3.5 Transonic flow over a pitching airfoil.

In the following problem the 2D Euler equations are solved for a pitching NACA0012 airfoil
around an axis passing through its quarter-chord point. The angle of attack is prescribed using
a sinusoidal function of time.

α(t) = αm + α0 · sin(ωt) (37)

The freestream Mach number for this case is 0.755, the mean incidence αm = 0.016◦ and
the amplitude α0 = 2.51◦. The reduced frequency for the airfoil motion is f ·c

u
= 0.1628, where

f is the frequency of oscillation, c is the airfoil chord, and u is the freestream flow velocity. The
gas properties for this test case are, γ = 1.4 and R = 287 [J/kg K].

The problem is solved using a two-dimensional unstructured mesh with 9165 nodes and
17802 triangles (Fig.(12)).
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Figure 12: Two-dimensional unstructured mesh.

The nodes on the airfoil skin are moved as a rigid body while the nodes on the boundary of
the mesh remanin fixed.

The movement of the interior nodes is performed using a node relocation, keeping the topol-
ogy unchanged. This is done by using an elastic-like movement strategy (Johnson and Tezduyar,
1994), which is an extra problem solved at each time step.

The problem is solved using piecewise linear triangles for the spatial discretization, piece-
wise linear interpolation of the mesh movement and for the time integration the Backward Euler
and Crank-Nicolson schemes are considered with ∆t ={0.1, 0.05}.

In Figures (13) and (14) the lift coefficient is plotted as a function of the angle of attack for
this periodic motion. Note that for two-dimensional problems the Crank-Nicolson scheme is
DGCL compliant while the Backward Euler is not. But, if the Averaged Jacobian Formulation
is used both schemes are DGCL compliant.

Figure 13: Lift coefficient as a function of the angle of attack for ∆t = 0.1[s].

The obtained solution is compared with a reference solution from Mavriplis and Yang (2005)
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Figure 14: Lift coefficient as a function of the angle of attack for ∆t = 0.05[s].

and with an experimental solution from NATO (1982). When the Averaged Jacobian Formula-
tion is used the solution obtained with Backward Euler is similar to that obtained with Crank-
Nicolson. While if the Averaged Jacobian Formulation is not used the solution obtained with
Backward Euler shows a clear difference with the Crank-Nicolson. This means that for this
conditions the main source of error for BE is the lack of DGCL compliance, rather than the low
(first order) precision of the algorithm.

In Figure (15) the comparison of isobars between a DGCL compliant Backward Euler scheme
and a non DGCL Backward Euler compliant scheme for α = 2.51◦ are shown. There is a dif-
ference in the pressure around the airfoil, which is translated in a different lift coefficient.

Figure 15: Comparison of isobars for α = 2.51◦.
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4 CONCLUSIONS

The proposed methodology guarantees compliance with the DGCL criterion in the context
of the ALE solutions of general advective-diffusive systems using classical temporal integra-
tion schemes and simplicial finite elements in 2D and 3D. Detailed expressions for the com-
putation of the averaged Jacobians and its application to the θ-family and the three point BDF
schemes were given. Also, in order to validate the AJF a set of typical numerical tests for linear
scalar advective-diffusive and Euler models were performed Unlike to previous work, this new
methodology is not based on proposing a new temporal integration scheme and computing a set
of unknown numerical coefficients in order to achieve compliancy with the DGCL, but rather by
averaging some geometrical quantities. These averages are computed exactly using the Gauss-
Lobatto numerical quadrature. The averaging process of the Jacobian must be introduced in the
volume terms as well as in the boundary terms. The added cost is negligible and only involves
a few changes at the elemental routine level.
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