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Abstract.  The modified Rayleigh-Ritz method (pb-2) is applied to obtain solutions for moderately 
thick plates under transverse constant load. Using Mindlin’s plate theory, a semi-analytical approach is 
used to generate displacement solutions for several boundary conditions. A convergence study is 
presented to validate the results, which are discussed and compared with similar solutions from 
literature. The method can be used to generate new benchmark solutions for validation and practical 
applications. 
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1. INTRODUCTION 
 
Several tools to solve differential equations numerically by approximating the 

exact/analytical solution have been developed in the recent years. This is a response for the 
crescent improvement in computers hardware. Consequently, many research which were 
unfeasible before have become attractive, directing resources of R&D for those areas. 
Advances have been obtained in merging efficient numerical tools and powerful 
computational resources. However, some approximate solutions provided by these numerical 
methodologies no longer explain certain phenomena. Thus, the study of analytical solutions of 
the differential equations which govern these phenomena is important to calibrate new 
numerical tools and verify the numerical results already obtained. 

Among the structural theories that describe the behavior of two-dimensional plane 
problems, bending of plates considering the transverse shear strain (also called thick plates 
theories) are the ones which most lack analytical solutions. Considering that, designers may 
compare their numerical results to other structural theories, like three-dimensional elasticity, 
whenever possible. This can lead to significant errors because the differential equations are 
different and the boundary conditions are incompatible. Therefore, analytical solutions for the 
theories that describe the plate behavior are important for the development of benchmarks, as 
well as calibration of numerical tools and results.  

The derivation of analytical solutions for general cases is, however, a very complex 
subject. Depending on the differential equations and the boundary conditions, these solutions 
may not exist. Thus these solutions are restricted to simply cases and/or academic problems. 
For the cases where the solution is nonexistent or very difficult to obtain, semi-analytical 
solutions are an interesting alternative. Their formulation considers some types of variables 
approximation and numerical integration. However, differently from numerical results, these 
solutions are functions of initial parameters and fully satisfy the boundary conditions.  

Many researches published papers with numerical and analytical solutions for thick plate 
theories. Salerno and Goldberg (1960) were the first to obtain solutions for thick plates. Using 
Reissner’s plate theory, they derived analytical solutions for Lévy plates under constant 
transversal load. Using the finite difference method, Craig (1987) obtained numerical 
solutions for Reissner’s plate theory. The researcher explored the case in which a concentrated 
load is applied on the center of the plate and shows that the out-plane shear strain can be 
significant even when the plate is thin. Kant and Hinton (1983) used the Segmentation 
Method to obtain numerical results for Mindlin plates. The boundary conditions were based in 
Lévy plates. More recently, Lee et. al. (2002) obtained analytical solutions for Lévy plates 
using relationships between classical and Mindlin plates theories. Their solutions were based 
on series expansion of hyperbolic and trigonometric functions. Therefore, due a characteristic 
of Lévy solution and the nature of trigonometric functions, these solutions did not show full 
symmetry in cases with symmetric loads and boundary conditions. Following the same way, 
Wang et. al. (2001) related Mindlin’s plate theory with Reissner’s plate theory getting 
analytical solutions for the last. Again, the authors used the same type of interpolation series 
and the fully symmetry of the solution can not be achieved. 

The aim of this paper is obtain semi-analytical solutions for thick plates with several 
boundary conditions. A modified Rayleigh-Ritz method, called pb-2, is used to derive the 
differential equations of Mindlin’s plate theory. The modification of the method simplifies the 
application of the boundary conditions in the interpolation functions. These are the same in 
both directions to avoid non-symmetric solutions, as verified in Lee et. al. (2002) and Wang 
et. al. (2001). A convergence study is performed and the obtained solutions are discussed and 
compared with the available literature. 
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The pb-2 method has been used previously in several plate problems. Kitipornchai et. al. 
(1994) applied this method to obtain the dynamic solution for thick trapezoidal plates under 
several boundary conditions. Wang et. al. (1997) used the method to obtain stress resultants 
on corner supported rectangular plates. Singh and Elaghabash (2003) used this methodology 
to get numerical solutions for finite displacement on thin plates. Similar ideas will be used 
herein. 

 
2. MATHEMATICAL MODEL 

 
The displacement field of Mindlin’s plate theory, described by Mindlin (1951), can be 

shown as: 
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where αU , 3U  and 3u  are the longitudinal, transverse and out-plane displacements, 

respectively. αφ  are the rotations normal to the coordinate axis. Greek indices vary from 1 to 

2 and repeated indices denote summation unless otherwise noted.  As shown on the equation 
(1), in-plane displacements will be not considerate. The material behavior is assumed to be 
isotropic and linear.  

The infinitesimal strain tensor ( )ε  can be described as: 
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where the αβε  are the in-plane strain,3αε  are the out-plane strain, or transverse shear strain, 

and the comma in the subscript denotes differentiation. The Cauchy stress tensor ( )σ  can be 
obtained using the generalized Hooke’s law and the equation (2) resulting in: 
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where G  is the transverse elastic modulus, ν  is the Poisson coefficient , αβδ  is the Kronecker 

delta function and 2κ  is the conventional transverse shear correction. 
The resultant stress can be obtained integrating the Cauchy stress tensor through the 

thickness, resulting in: 
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where αβN  are the normal ( )βα =  and in-plane shear resultant stress ( )βα ≠ , αβM  are the 

bending ( )βα =  and twisting ( )βα ≠  moments and αQ  are the out-plane shear resultant 

stress. The bending stiffness, known as Sophie-German constant, is given by 
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( )ν−= 163GhD . Disregarding the in-plane displacement, expressed in equation (1), the 
normal and in-plane shear resultant stress are null, as shown in equation (4). 

The Rayleigh-Ritz method (RR) is based on the Minimal Potential Energy Principle 
(MPEP). This principle shows that the equilibrium of the structure from all possible 
equilibrium positions is that one which corresponds to the minimum state of energy. 
Mathematically: 

( )eVU −=Π δδ      (5) 

where U  is the total strain energy, eV  is the external work and Π is the potential energy 

functional. 
The interpolation functions that approximate the displacement field shown in the equation 

(1) will be constructed in the following way: 
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where the circumflex upper script denotes approximation, 3c  , 4c  and 5c  are the weights of 

the interpolation functions (3θ , 4θ  and 5θ ).The dot product between the vectors represents 

the linear combination of the interpolation functions. The scalars3g , 3g  and 3g  obey the 

relationship shown as: 

( )∏
=

−=
n

k
ccji

ccxxg
1

δ      (7) 

where ccx  is the position of the boundary condition in function of the coordinate axis jx , ccδ  

is the type of boundary condition applied and n  is the number of boundary conditions in 
respect of the coordinate axis considered (subscript j).  

 

ccδ  value 3u  nφ  tφ  

Clamped 1 1 1 
Simply supported 1 1 0 
Free 0 0 0 

Table 1: value for each boundary condition 
 
Equation (7) is the aforementioned modification of the RR method. It will be shown that 

equation inserts zeros in the interpolation functions where the kinematic boundary conditions 
must be satisfied. Therefore the interpolation functions (3θ , 4θ and 5θ ) do not need to be 

kinematically admissible from the outset, which is a requirement and a difficulty in the 
original RR method. The difference ( )ccj xx −  represents the equation of boundary lines of the 

plate. The exponent ccδ  can assume two values, associated to the type of boundary condition: 

0 for free and 1 for fixed edges, where fixed means no displacement and/or rotation, 
depending on the degree of freedom (DOF). It is clear that when ccδ  is equal to 1, a zero is 

inserted in the interpolation functions at the position of ccj xx = . The composition of the 
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values of ccδ  for each DOF constructs a complete boundary condition. Table 1 shows the type 

of the boundary condition with respect to the ccδ  value for each DOF. 

The interpolation space chosen is a polynomial one. This is due the fact that the equation 
(7) belongs to this space andintegrations can be done exactly with Gaussian Quadrature.Then, 
the functions that will be interpolated the displacement field can be described as: 

ingim
j xx −= 21θ       (8) 

where ng  is the degree of the primary polynomial (degree of the interpolation functions 
before the imposition of the boundary conditions) and 

( )( )
i

ngng
m −++=

2

21
     (9) 

where the superscript m identifies the position of the function in the vector of the 
interpolation functions. The subscript j  denotes the DOF. As shown in the equation (8), the 
interpolation functions are equal for each approximated variables.  

Therefore, the final number of constants for each interpolation depends uniquely on the 
degree of the primary polynomial ( )ng  and it can be calculated as: 

( )( )
2

21 ++= ngng
nc       (10) 

 
3. MATRIX FORMULATION 

 
To evaluate the energy functional expressed in equation (5), the strain energy and the 

external work need to be calculated. The first one is estimated by the integral of the internal 
product between the Cauchy stress tensor and the infinitesimal strain tensor in the plate’s 
volume. The second one is evaluated by the integral of the dot product between the load and 
the displacement vector over the middle surface area of the plate. Thus, the strain energy is 
given by: 
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and Ω  is the plate volume. The vector Ε can be decomposed as: 

HξΕ =      (13) 
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where 
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The vector expressed in the first equation of (14) can be written in terms of displacement 
and rotations applying a linear operator described as: 
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Then, the first equation of (14) can be expressed by: 

∆Dξ L=      (16) 

where { }Tu 213 φφ=∆ . With the interpolation described in equation (6), that expression 

can be written as: 
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Therefore: 
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After all modifications, the equation (11) can be rewritten as: 

∫
Ω

Ω= dU L
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The external work is calculated as: 

∫∫ ==
A

TT

A

T
e dAdAV ΛPNλP∆     (20) 

where { }210 mmq=P , 0q  is the transverse load, 1m  and 2m  are the distributed moments 

applied on the plate’s middle surface. 
The first variation of total potential energy can be written, in function of vector λ  as: 
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Through the equations (19) – (20), the right part of the equation (21) is derived resulting in: 
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Af ter the matrix products and the integration are carried out, the vector λ  can be obtained. 
Thus, the equation (22) is rewritten as: 
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4. PARAMETERIZATION 

 
Several system variables were parameterized to simplify the comparisons and to improve 

numerical stability.  
The load vector P  was parameterized as: 

4

4
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1 Gh
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q =       (25) 

As can be seen, the matrix LR  expressed in the second part of equation (24) depends 

linearly on G . Thus, it is simple to understand why 1q  depends inversely on G : the response 
of the linear system, described in equation (23), using this parameterization, is independent to 
transverse shear modulus. 

The geometry of the plate was parameterized like the four-node finite element. The linear 
system expressed in equation (23), with these parameterizations, is modified as: 
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and GLL RR =
(

, 1s  and 2s  are the natural coordinates of the parameterized plate and J  is 

the determinant of the Jacobian matrix of the coordinate transformation. The integrals are 
carried out with the Gaussian Quadrature. 

The out-plane displacement, 3u , have two dimensionless parameters: 

cw
ww

aq
wDw

1
2

4
0

1

=

=
      (28) 

where w  is the central transverse displacement and cw  is a convergence value. 

 
5. RESULTS 

 
Before show the semi-analytical solutions, numerical results are presented to verify the 

methodology convergence. Four types of boundary conditions were analyzed and seven 
different thicknesses were tested. Thus, three aspect ratio ( )ba/  were utilized. Varying these 
three parameters, the convergence was tested in 84 different cases.  

The boundary conditions utilized in this work were SSSS, CCCC, SCSC and SFSF where 
S, C and F denote simply supported, clamped and free edge, respectively. The tested 
thicknesses were 0.001, 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25. Both thick and thin plates were 
analyzed, considering these values. The three aspect ratio used were 1, 2 and 5. 

The convergence study was accomplished in order to estimate the value of ng which could 
deliver accurate results. From this study was observed that SSSS, SFSF and SCSC plates need 
only odd values of ng. Even values produced similar results for all variables like 
displacement/rotations and stress resultants than the odd immediately below. In case of CCCC 
plates, the convergence was incremented only for even values of ng. Therefore, only even 
values of ng were used for CCCC plates and odd values of ng for the other boundary 
conditions. 

To exemplify the methodology convergence, two cases are plotted in Figure 1, differing in 
boundary conditions. Figure 2 shows the convergence of SSSS plates with different aspect 
ratios. It is noted, in both figures, that the aspect ratio and the thickness affects the 
convergence. It is observed is all boundary conditions. 

The center displacement values obtained for SSSS plates using this methodology is 
presented in Table 2. These results were compared to other solutions found in the literature 
and a good agreement was achieved. Although the interpolation methods usually show a 
significant degradation in stress values when compared to displacement/rotation values, in this 
type of boundary conditions the numerical results of moment and transverse shear stress 
resultant were also in a good agreement with the solutions in literature, as shown in Table 3. 

Differing from classical plate theory, the displacement is dependent of the plate’s 
thickness. However, the center of the plate when the thickness tends to zero corresponds to the 
solution of the classical plate theory. Another interesting point is the results obtained by Lee 
et. al. (2002) and Wang et. al. (2001). As shown in Table 3, the solution of these authors have 
a clear lack of symmetry 1Q  and 2Q . This is due the fact that the interpolation functions 
utilized by these authors symmetric, demanding a huge number of terms to achieve the fully 
symmetry of the stress resultants. The results obtained in the present methodology were fully 
symmetric as shown in Table 3. 
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    (a)      (b) 

Figure 1 - Convergence curves of square plates: (a) SFSF (b) CCCC 
  

  
    (a)     (b) 

 
(c) 

Figure 2 - Convergence curves for SSSS plates with aspect ratio: (a) 1 (b) 2 and (c) 5 
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η  1=ab  2=ab  5=ab  

Present 
Work 

Lee et. 
al. 

(2002) 

Salerno 
& 

Goldberg 
(1960) 

Present 
Work 

Lee et. 
al. 

(2002) 

Salerno 
& 

Goldberg 
(1960) 

Present 
Work 

Lee et. 
al. 

(2002) 

Salerno 
& 

Goldberg 
(1960) 

0.001 0.0040624 - - 0.010129 - - 0.012971 - - 
0.010 0.0040625 0.00406 0.00406 0.010132 0.01013 0.01013 0.012974 0.01297 0.01297 
0.050 0.0041149 0.00411 0.00411 0.010210 0.01021 0.01020 0.013060 0.01306 0.01305 
0.100 0.0042728 0.00427 0.00424 0.010454 0.01045 0.01041 0.013328 0.01333 0.01327 
0.150 0.0045360 0.00454 0.00446 0.010861 0.01086 0.01075 0.013774 0.01377 0.01365 
0.200 0.0049040 0.00490 0.00478 0.011430 0.01143 0.01123 0.014398 0.01440 0.01418 
0.250 0.0053778 - - 0.012162 - - 0.015201 - - 

Table 2 - Center displacement of SSSS plates 
 

η  ( )0,0 2111 == ssM  ( )0,0 2122 == ssM  ( )0,0 2112 == ssM  

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 
CPT 0.0479 0.0479 0.0325 
0.001 0.0478 0.0479 0.0479 0.0478 0.0479 0.0479 0.0324 0.0325 0.0325 
0.010 0.0478 0.0479 0.0479 0.0478 0.0479 0.0479 0.0324 0.0325 0.0325 
0.050 0.0478 0.0479 0.0480 0.0478 0.0479 0.0480 0.0324 0.0325 0.0322 
0.100 0.0478 0.0479 0.0482 0.0478 0.0479 0.0482 0.0324 0.0325 0.0316 
0.150 0.0478 0.0479 0.0485 0.0478 0.0479 0.0485 0.0324 0.0325 0.0304 
0.200 0.0478 0.0479 0.0491 0.0478 0.0479 0.0491 0.0324 0.0325 0.0288 
0.250 0.0478 - - 0.0478 - - 0.0324 - - 

 
η  ( )0,1 211 =−= ssQ  ( )1,0 212 −== ssQ  

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 
CPT 0.333 0.0479 
0.001 0.33 0.333 0.333 0.33 0.338 0.338 
0.010 0.33 0.333 0.333 0.33 0.338 0.338 
0.050 0.33 0.333 0.333 0.33 0.338 0.338 
0.100 0.34 0.333 0.333 0.34 0.338 0.338 
0.150 0.34 0.333 0.333 0.34 0.338 0.338 
0.200 0.34 0.333 0.333 0.34 0.338 0.338 
0.250 0.34 - - 0.34 - - 

Table 3 - Stress resultants of square SSSS plates 
 
In case of SCSC plates, the results for center displacement show a good agreement when 

compared to other author, as shown in Table 4. 
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η  1=ab  2=ab  5=ab  

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang 
et. al. 
(2001) 

0.001 0.0019172 - - 0.0084451 - - 0.012931 - - 
0.010 0.0019202 0.00192 0.00192 0.0084492 0.00845 0.00845 0.012935 0.1293 0.01293 
0.050 0.0019918 0.00199 0.00199 0.0085481 0.00855 0.00854 0.013021 0.01302 0.01311 
0.100 0.0022087 0.00221 0.00202 0.0088500 0.00885 0.00882 0.01329 0.01329 0.01338 
0.150 0.0025558 0.00256 0.00254 0.0093379 0.00934 0.00926 0.01374 0.01374 0.01382 
0.200 0.0030211 0.00302 0.00298 0.010000 0.01000 0.00986 0.01436 0.01436 0.01445 
0.250 0.0035957 - - 0.010827 - - 0.01517 - - 

Table 4 - Center displacement of SCSC plates 
 
Analytical solutions for fully clamped plate (CCCC) are notable rare than the other type of 

boundary conditions. The results obtained with the present methodology were compared with 
the excellent work of Taylor and Govindjee (2002) for thin fully clamped plates, in Table 5. 
In order to obtain 10 accurate digits, Taylor and Govindjee (2002) solved a matrix system 
with 2000x2000. The values obtained by the present method were generated from a system of 
315x315, using ng equal to 13. Interestingly, the results for thin plates 001.0=η  point out for 
an error in the third digit of the classical solution of Timoshenko and Woinowski-Krieger. 

 
η  1=ab  2=ab  

Present 
Work 

Taylor & 
Govindjee (2002) 

Present 
Work 

Taylor & 
Govindjee (2002) 

0.001 0.0012654 0.001265319036 0.0025330 0.002532955769 
0.010 0.0012678 - 0.002608 - 
0.100 0.0015046 - 0.002962 - 
0.250 0.0026580 - 0.004837 - 

Table 5 - Center displacement of CCCC plates 
 
For SFSF plates, the Table 6 shows the results of center displacement and at the middle of 

the free edge for square plates. It is noted that the both results corresponds to the values found 
in the literature. The Figure 2 illustrates a contour plot of the normalized transverse 
displacement and the normalized bending moment for a plate with 5=ab and are plotted in 
normalized space. This aspect ratio is used to evidence the anti-clasticcurvature which appears 
in this type of boundary conditions. It can be noted that the methodology presented here 
captures this effect. 

 
η  Center of the plate Middle of the free edge 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 

Present 
Work 

Lee et. 
al. 

(2002) 

Wang et. 
al. 

(2001) 
0.001 0.013094 - - 0.015011 - - 
0.010 0.013097 - - 0.015023 - - 
0.050 0.013187 - - 0.015214 - - 
0.100 0.013459 0.01346 0.01341 0.015600 0.01560 0.01557 
0.150 0.013910 0.01391 0.01379 0.016161 0.01616 0.01609 
0.200 0.014539 0.01454 0.01433 0.016898 0.01690 0.01678 
0.250 0.015347 0.01536 0.01502 0.017809 0.01781 0.01762 

Table 6 - Displacement on the center and in the middle of the free edge in SFSF square plates 
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   (a)      (b) 

Figure 3 - (a) 1w  and (b) 11M  in SFSF plates in normalized coordinates 

 
6. PARAMETRIC SOLUTIONS FOR BENCHMARK 

 
A study on the influence of the plate’s thickness over the displacement was carried out 

using the presented methodology. This is not necessary in the CPT since the differential 
equations are insensitive to thickness. On other hand, in analysis of thick plates, this influence 
is significant because it is the parameter which controls the transverse shear deformation. Due 
the high memory requirements to deal with symbolic expressions, the degree of the primary 
polynomial ( )ng  used is 5 for SSSS, SFSF and SCSC and 6 for CCCC boundary conditions. 
The central displacement field was approximated with a polynomial expression of fifth 
degree: 

 

∑
=

−=
6

1

1
4

0

i

i
ia

D

aq
w η      (29) 

 
andthe independent constants are expressed by the Table 7.  

 

 r  1a  2a  3a  4a  5a  6a  

SSSS 

1.00 0.004061 0 0.02110 0 0 0 

1.35 0.006742 0 0.02698 0 0 0 
1.65 0.008573 0 0.03020 0 0 0 
2.00 0.010110 0 0.03260 0 0 0 

CCCC 

1.00 0.00126 0.00008 0.02431 -0.00949 -0.01561 0.06569 

1.35 0.00199 0.00033 0.02666 0.03017 -0.10755 0.27689 
1.65 0.00233 0.00077 0.02344 0.07749 -0.31589 0.44471 
2.00 0.00249 0.00131 0.02069 0.09141 -0.29759 0.35772 

SFSF 

1.00 0.01310 -0.00060 0.04480 -0.04402 0.07339 0 
1.35 0.04436 -0.00111 0.09605 -0.21213 0.70352 -0.91537 
1.65 0.10038 -0.00126 0.14654 -0.29543 0.86315 -1.01987 
2.00 0.21942 -0.00159 0.22572 -0.44526 1.13023 -1.15651 
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SCSC 

1.00 0.00193 -0.00069 0.04341 -0.12023 0.39030 -0.53692 
1.35 0.00426 -0.00040 0.04790 -0.09195 0.27263 -0.37795 
1.65 0.00635 0.00015 0.04267 -0.04086 0.11663 -0.19000 
2.00 0.00842 0.00081 0.03791 -0.03482 0.18575 -0.35542 

Table 7 - Coefficients of the equation (29) for each aspect ratio and boundary conditions 
 

 
   (a)      (b) 

 
   (c)      (d) 

Figure 4 - Semi-analytical solutions for thick plates: (a) SSSS 1=ba , (b) SSSS 2=ba , (c) SFSF 1=ba  

and (d) SCSC 2=ba  

 
In the Table 8, it can be show that the methodology reduces to the CPT results when the 

thickness tends to zero. By the equation (29), the resultant term when the plate is thin is: 

1

4
0 a
D

aq
w =       (30) 

The solutions obtained with the present methodology can be compared with results found 
in the literature. The Figure 4 shows four comparisons between the equation (30), the work of 
Lee et. al. (2002) and the results of the CPT taken from Timoshenko and Woinowski-Krieger 
(1959). A good agreement between the solutions presented was achieved in thick plate 
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solutions, listed in Lee et. al. work, and in thin plate solution, found in Timoshenko and 
Woinowski-Krieger (1959).  

 
SSSS CCCC 

1=ba  2=ba  1=ba  2=ba  

1a  TCP § 1a  TCP § 1a  TCP § 1a  TCP § 

0.004061 0.00406 0.010110 0.01013 0.00126 0.00126 0.00249 0.00254 

SFSF SCSC 

1=ba  2=ba  1=ba  2=ba  

1a  TCP § 1a  TCP § 1a  TCP § 1a  TCP § 

0.01310 0.01309 0.21942 - 0.00193 0.00192 0.00842 0.00844 

  §[Timoshenko andWionowski-Krieger (1959)] 

Table 8 – Degeneration of the present results to CPT results. 
 

7. CONCLUSION 
 
The pb-2 Rayleigh-Ritz method was developed and applied for the solution of rectangular 

shear deformable plates under transverse loading. Since the method enforces the boundary 
conditions through special functions which multiply the displacement interpolation functions, 
one can use general polynomial spaces to generate admissible solution spaces. Several cases 
of geometry and boundary conditions were analyzed, showing good agreement with reference 
solutions. The method shows a fast convergence, and is particularly suitable for benchmarking 
purposes. Parametric solutions for rectangular plates were generated in semi-analytic form, 
including the influence of the thickness. 
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