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Abstract. The modified Rayleigh-Ritz methogl-2) is applied to obtain solutions for moderately

thick plates under transverse constant load. Using Mindlin’s plate theory, a semi-analytical approach is
used to generate displacement solutions for several boundary conditions. A convergence study is
presented to validate the results, which are discussed and compared with similar solutions from
literature. The method can be used to generate new benchmark solutions for validation and practical

applications.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar



4362 T. LISBOA, R. MARCZAK

1. INTRODUCTION

Several tools to solve differential equations numerically by approximating the
exact/analytical solution have been developed in the recent years. This is a response for the
crescent improvement in computers hardware. Consequently, many research which were
unfeasible before have become attractive, directing resources of R&D for those areas.
Advances have been obtained in merging efficient numerical tools and powerful
computational resources. However, some approximate solutions provided by these numerical
methodologies no longer explain certain phenomena. Thus, the study of analytical solutions of
the differential equations which govern these phenomena is important to calibrate new
numerical tools and verify the numerical results already obtained.

Among the structural theories that describe the behavior of two-dimensional plane
problems, bending of plates considering the transverse shear strain (also called thick plates
theories) are the ones which most lack analytical solutions. Considering that, designers may
compare their numerical results to other structural theories, like three-dimensional elasticity,
whenever possible. This can lead to significant errors because the differential equations are
different and the boundary conditions are incompatible. Therefore, analytical solutions for the
theories that describe the plate behavior are important for the development of benchmarks, as
well as calibration of numerical tools and results.

The derivation of analytical solutions for general cases is, however, a very complex
subject. Depending on the differential equations and the boundary conditions, these solutions
may not exist. Thus these solutions are restricted to simply cases and/or academic problems.
For the cases where the solution is nonexistent or very difficult to obtain, semi-analytical
solutions are an interesting alternative. Their formulation considers some types of variables
approximation and numerical integration. However, differently from numerical results, these
solutions are functions of initial parameters and fully satisfy the boundary conditions.

Many researches published papers with numerical and analytical solutions for thick plate
theories. Salerno and Goldberg (1960) were the first to obtain solutions for thick plates. Using
Reissner’s plate theory, they derived analytical solutions for Lévy plates under constant
transversal load. Using the finite difference method, Craig (1987) obtained numerical
solutions for Reissner’s plate theory. The researcher explored the case in which a concentrated
load is applied on the center of the plate and shows that the out-plane shear strain can be
significant even when the plate is thin. Kant and Hinton (1983) used the Segmentation
Method to obtain numerical results for Mindlin plates. The boundary conditions were based in
Lévy plates. More recently, Lee et. al. (2002) obtained analytical solutions for Lévy plates
using relationships between classical and Mindlin plates theories. Their solutions were based
on series expansion of hyperbolic and trigopnometric functions. Therefore, due a characteristic
of Lévy solution and the nature of trigonometric functions, these solutions did not show full
symmetry in cases with symmetric loads and boundary conditions. Following the same way,
Wang et. al. (2001) related Mindlin’s plate theory with Reissner’'s plate theory getting
analytical solutions for the last. Again, the authors used the same type of interpolation series
and the fully symmetry of the solution can not be achieved.

The aim of this paper is obtain semi-analytical solutions for thick plates with several
boundary conditions. A modified Rayleigh-Ritz method, caldd2, is used to derive the
differential equations of Mindlin’s plate theory. The modification of the method simplifies the
application of the boundary conditions in the interpolation functions. These are the same in
both directions to avoid non-symmetric solutions, as verified in Lee et. al. (2002) and Wang
et. al. (2001). A convergence study is performed and the obtained solutions are discussed and
compared with the available literature.
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The pb-2 method has been used previously in several plate problems. Kitipornchai et. al.
(1994) applied this method to obtain the dynamic solution for thick trapezoidal plates under
several boundary conditions. Wang et. al. (1997) used the method to obtain stress resultants
on corner supported rectangular plates. Singh and Elaghabash (2003) used this methodology
to get numerical solutions for finite displacement on thin plates. Similar ideas will be used
herein.

2. MATHEMATICAL MODEL

The displacement field of Mindlin’s plate theory, described by Mindlin (1951), can be
shown as:

U (% %, %) = =xg, (%, %,)
US( Xl’ X2’ XS) = U3(X1, XZ)
where U,, U, and u, are the longitudinal, transverse and out-plane displacements,

respectively.g, are the rotations normal to the coordinate axis. Greek indices vary from 1 to

2 and repeated indices denote summation unless otherwise noted. As shown on the equation
(1), in-plane displacements will be not considerate. The material behavior is assumed to be
isotropic and linear.

The infinitesimal strain tensc(e) can be described as:

1)

2£aﬁ = _X3(¢a,,8 + ¢ﬁ,a)
2£a3 = u3,a - %

(2)

where theg,, are the in-plane straia,, are the out-plane strain, or transverse shear strain,

ap
and the comma in the subscript denotes differentiation. The Cauchy stress(«h&)nsm be
obtained using the generalized Hooke’s law and the equation (2) resulting in:

Vv
Uaﬂ = _X3G|:¢a,/3’ + qoﬁ,a + mq”y,ydaﬁ}

Ou3 = KZG(UM - (aa)

3)

where G is the transverse elastic modulusis the Poisson coefficientd,, is the Kronecker

delta function andc¢? is the conventional transverse shear correction.
The resultant stress can be obtained integrating the Cauchy stress tensor through the
thickness, resulting in:

Ny =0

Maﬁ = _D(l_v){%,ﬁ +¢ﬁ,a +ﬁ¢y,ydaﬁj| (4)

Q =K*GHus, )

where N, are the norma(a = ) and in-plane shear resultant strégsz ), M, are the

ap
bending (a:,G) and twisting(aiﬁ) moments andQ, are the out-plane shear resultant

stress. The bending stiffness, known as Sophie-German constant, is given by
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D=Gh3/6(1—|/). Disregarding the in-plane displacement, expressed in equation (1), the
normal and in-plane shear resultant stress are null, as shown in equation (4).

The Rayleigh-Ritz method (RR) is based on the Minimal Potential Energy Principle
(MPEP). This principle shows that the equilibrium of the structure from all possible
equilibrium positions is that one which corresponds to the minimum state of energy.
Mathematically:

a1 =o6U-Vv.) (5)

where U is the total strain energy/, is the external work andllis the potential energy

functional.
The interpolation functions that approximate the displacement field shown in the equation
(2) will be constructed in the following way:

u, JU,=9., 0,

@ D&_ =9,c,00, (6)

9,09, = 9. [0,
where the circumflex upper script denotes approximatign, c, and c, are the weights of
the interpolation functionsé;, 6, and 6.).The dot product between the vectors represents
the linear combination of the interpolation functions. The scaarsg, and g, obey the
relationship shown as:

n

9 =[] (% = %)™ (7)

where X is the position of the boundary condition in function of the coordinatexgxi®,.

is the type of boundary condition applied andis the number of boundary conditions in
respect of the coordinate axis considered (subggript

o, value u,; @ @
Clamped 1 1 1
Simply supporteq1 1 O
Free 0O 0 O

Table 1: value for each boundary condition

Equdion (7) is the aforementioned modification of the RR method. It will be shown that
eqguation inserts zeros in the interpolation functions where the kinematic boundary conditions

must be satisfied. Therefore the interpolation functiobs @,and 6.,) do not need to be
kinematically admissible from the outset, which is a requirement and a difficulty in the
original RR method. The diﬁerenc(exj - XCC) represents the equation of boundary lines of the
plate. The exponend,, can assume two values, associated to the type of boundary condition:
0 for free and 1 for fixed edges, where fixed means no displacement and/or rotation,
depending on the degree of freedom (DOF). It is clear that whers equal to 1, a zero is
inserted in the interpolation functions at the positionxpf= x... The composition of the
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values ofd,, for each DOF constructs a complete boundary condition. Table 1 shows the type
of the boundary condition with respect to e value for each DOF.

The interpolation space chosen is a polynomial one. This is due the fact that the equation
(7) belongs to this space andintegrations can be done exactly with Gaussian Quadrature.Then,
the functions that will be interpolated the displacement field can be described as:

o = x> ®)

where ng is the degree of the primary polynomial (degree of the interpolation functions
before the imposition of the boundary conditions) and

(ng+3ng+2) _,
2

where the superscriptn identifies the position of the function in the vector of the
interpolation functions. The subscript denotes the DOF. As shown in the equation (8), the
interpolation functions are equal for each approximated variables.

Therefore, the final number of constants for each interpolation depends uniquely on the
degree of the primary polynomiémg) and it can be calculated as:

(ng+ 1)§ng +2) (10)

(9)

nc=

3. MATRIX FORMULATION

To evaluate the energy functional expressed in equation (5), the strain energy and the
external work need to be calculated. The first one is estimated by the integral of the internal
product between the Cauchy stress tensor and the infinitesimal strain tensor in the plate’s
volume. The second one is evaluated by the integral of the dot product between the load and
the displacement vector over the middle surface area of the plate. Thus, the strain energy is
given by:

U :leTCE dQo (11)
20

where

T

E= {_ XP1 —XPop —X (¢ 12F ¢2,J) Ui =@ Ug — ﬂ}

2G 26 0 o 0

1-v 1-v

2G 2G 0 0o 0 (12)
C=|1-v 1-v

0 0O G O 0
0 0 0 kG O
0 0 0 0 K°G

and Q is the plate volume. The vect@rcan be decomposed as:
E = Hg (13)
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where

T

2;:{(0 1 Pop P2t Py Uy =@ Ug, _@}
H = diag - %; = X~ %3 ,11)

The vector expressed in the first equation of (14) can be written in terms of displacement
and rotations applying a linear operator described as:

0 a/%fxl 0
0 0 0/%()(2
I R (15)
% 1 o
Y o

Then, the first equation of (14) can be expressed by:
E=DA (16)

(14)

where A={u, @ @]}". With the interpolation described in equation (6), that expression
can be written as:

a g, 0 0]e] 0 0]fc,
@+=/0 g, 0 0 6 0fc,t=ANr (17)

@] |0 0 g, 0 0 0]lc

w

>
1

Therefore:

A= dia@( Qs 94’95>

0 0 O
N=| 0 0, O (18)
0O 0 o

A :{CS C4 CS}T

After all modifications, the equation (11) can be rewritten as:
U :%ijNTAD{HTCHDLANde (19)
Q
The external work is calculated as:
vV, :jATPdA:ijNTAPdA (20)
A A
whereP={q, m m,}, q, is the transverse loadn, and m, are the distributed moments

apgdied on the plate’s middle surface.
The first variation of total potential energy can be written, in function of vectas:
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)= du _dv.

a=5U-v, (21)
d. di
Through the equations (19) — (20), the right part of the equation (21) is derived resulting in:
[NTADHTCHD, ANdAJ - [NTAPdA=0 (22)
A A

After the matrix products and the integration are carried out, the viectan be obtained.
Thus, the equation (22) is rewritten as:

[BIR B dAL = [NTAPdA (23)
A A
where:
B, =D, AN
— ; ]
Gh Gh o 0 0
q1-v) 61-v)
3 3
,h vGh vGh 0 0

HTCHdx, = q1-v) 61-v) (24)

2
- :_Ih 0 S
2 12
0 0 0 Gkh O
0 0 0 0 Gkh

4. PARAMETERIZATION

Several system variables were parameterized to simplify the comparisons and to improve
numerical stability.
The load vectoP was parameterized as:

_ Qa"
Gh*
As can be seen, the matrRR, expressed in the second part of equation (24) depends

linearly onG. Thus, it is simple to understand wiy depends inversely 06 : the response

of the linear system, described in equation (23), using this parameterization, is independent to
transverse shear modulus.

The geometry of the plate was parameterized like the four-node finite element. The linear
system expressed in equation (23), with these parameterizations, is modified as:

G (25)

1

11 11
»=qn*| [[BIR B I dsds, | [[NTAPJ|dsds, (26)
-1-1 -1-1
where:
_h
77 @
P={1 0 0
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andR, =R, /G, s, ands, are the natural coordinates of the parameterized plat¢Jpisl

the determinant of the Jacobian matrix of the coordinate transformation. The integrals are
carried out with the Gaussian Quadrature.
The out-plane displacement,, have two dimensionless parameters:

w=vo,
"=

where w is the central transverse displacement @pds a convergence value.

(28)

5. RESULTS

Before show the semi-analytical solutions, numerical results are presented to verify the
methodology convergence. Four types of boundary conditions were analyzed and seven
different thicknesses were tested. Thus, three aspect(edtix) were utilized. Varying these

three parameters, the convergence was tested in 84 different cases.

The boundary conditions utilized in this work were SSSS, CCCC, SCSC and SFSF where
S, C and F denote simply supported, clamped and free edge, respectively. The tested
thicknesses were 0.001, 0.01, 0.05, 0.1, 0.15, 0.2 and 0.25. Both thick and thin plates were
analyzed, considering these values. The three aspect ratio used were 1, 2 and 5.

The convergence study was accomplished in order to estimate the valpeluth could
deliver accurate results. From this study was observed that SSSS, SFSF and SCSC plates need
only odd values ofng. Even values produced similar results for all variables like
displacement/rotations and stress resultants than the odd immediately below. In case of CCCC
plates, the convergence was incremented only for even valuag @herefore, only even
values ofng were used for CCCC plates and odd valuesgffor the other boundary
conditions.

To exemplify the methodology convergence, two cases are plotted in Figure 1, differing in
boundary conditions. Figure 2 shows the convergence of SSSS plates with different aspect
ratios. It is noted, in both figures, that the aspect ratio and the thickness affects the
convergence. It is observed is all boundary conditions.

The center displacement values obtained for SSSS plates using this methodology is
presented in Table 2. These results were compared to other solutions found in the literature
and a good agreement was achieved. Although the interpolation methods usually show a
significant degradation in stress values when compared to displacement/rotation values, in this
type of boundary conditions the numerical results of moment and transverse shear stress
resultant were also in a good agreement with the solutions in literature, as shown in Table 3.

Differing from classical plate theory, the displacement is dependent of the plate’s
thickness. However, the center of the plate when the thickness tends to zero corresponds to the
solution of the classical plate theory. Another interesting point is the results obtained by Lee
et. al. (2002) and Wang et. al. (2001). As shown in Table 3, the solution of these authors have
a clear lack of symmetry, and Q,. This is due the fact that the interpolation functions

utilized by these authors symmetric, demanding a huge number of terms to achieve the fully
symmetry of the stress resultants. The results obtained in the present methodology were fully
symmetric as shown in Table 3.
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Figure 1 - Convergence curves of square plates: (a) SFSF (b) CCCC
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Figure 2 - Convergence curves for SSSS plates with aspect ratio: (a) 1 (b) 2 and (c) 5
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n b/a=1 b/a=2 b/a=5
Present Leeet. Salerno| Present Leeet. Salerno| Present Leeet. Salerno
Work al. & Work al. & Work al. &
(2002) Goldberg (2002) Goldberg (2002) Goldberg
(1960) (1960) (1960)
0.001| 0.0040624 - - 0.010129 - - 0.012971 - -
0.010| 0.0040625 0.00406 0.00406 0.010132 0.01013 0.01013 0.012974 0.01297 0.01297
0.050| 0.0041149 0.00411 0.00411 0.010210 0.01021 0.01020 0.013060 0.01306 0.01305
0.100| 0.0042728 0.00427 0.00424 0.010454 0.01045 0.01041 0.013328 0.01333 0.01327
0.150| 0.0045360 0.00454 0.00446 0.010861 0.01086 0.01075 0.013774 0.01377 0.01365
0.200| 0.0049040 0.00490 0.004718 0.011430 0.01143 0.01123 0.014398 0.01440 0.01418
0.250| 0.0053778 - - 0.012162 - - 0.015201 - -
Table 2 - Center displacement of SSSS plates
1 My(s = 0,s, =0) M,,(s = 0.s, =0) M, (s = 0,s, =0)
Present Leeet. Wanget.| Present Leeet. Wanget.| Present Leeet. Wang et.
Work al. al. Work al. al. Work al. al.
(2002) (2001) (2002) (2001) (2002) (2001)
CPT 0.0479 0.0479 0.0325
0.001 0.0478 0.0479 0.0479 0.0478 0.0479 0.0479 0.0324 0.0325 0.0325
0.010 0.0478 0.0479 0.0479 0.0478 0.0479 0.0479 0.0324 0.0325 0.0325
0.050 0.0478 0.0479 0.048( 0.0478 0.0479 0.0480 0.0324 0.0325 0.0322
0.100 0.0478 0.0479 0.0487 0.0478 0.0479 0.0482 0.0324 0.0325 0.0316
0.150 0.0478 0.0479 0.0485 0.0478 0.0479 0.0485 0.0324 0.0325 0.0304
0.200 0.0478 0.0479 0.0491 0.0478 0.0479 0.0491 0.0324 0.0325 0.0288
0.250 0.0478 - - 0.0478 - - 0.0324 - -
T Qs =-1s,=0) Q(s=0s,=-1)
Present Leeet. Wanget.| Present Leeet. Wang et.
Work al. al. Work al. al.
(2002) (2001) (2002) (2001)
CPT 0.333 0.0479
0.001 0.33 0.333 0.333 0.33 0.338 0.338
0.010 0.33 0.333 0.333 0.33 0.338 0.338
0.050 0.33 0.333 0.333 0.33 0.338 0.338
0.100 0.34 0.333 0.333 0.34 0.338 0.338
0.150 0.34 0.333 0.333 0.34 0.338 0.338
0.200 0.34 0.333 0.333 0.34 0.338 0.338
0.250 0.34 - - 0.34 - -

In case of SCSC plates, the results for center displacement show a good agreement when

Table 3 - Stress resultants of square SSSS plates

compared to other author, as shown in Table 4.
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Y ba=1 b/a=2 b/a=5
Present Leeet. Wanget.| Present Leeet. Wanget.| Present Leeet. Wang
Work al. al. Work al. al. Work al. et. al.
(2002)  (2001) (2002)  (2001) (2002) (2001)
0.001| 0.0019172 - - 0.0084451 - - 0.012931 - -
0.010| 0.0019202 0.00192 0.00192 0.0084492 0.00845 0.00845 0.012935 0.1293 0.01293
0.050| 0.0019918 0.00199 0.00199 0.0085481 0.00855 0.0p854 0.013021 0.01302 0.01311
0.100| 0.0022087 0.00221 0.00202 0.0088500 0.00885 0.0p882 0.01329 0.01329 0.01338
0.150| 0.0025558 0.00256 0.00254 0.0093379 0.00934 0.00926 0.01374 0.01374 0.01382
0.200| 0.0030211 0.00302 0.00298 0.010000 0.01000 0.00986 0.01436 0.01436 0.01445
0.250| 0.0035957 - - 0.010827 - - 0.01517 - -

Table 4 - Center displacement of SCSC plates

Analytical solutions for fully clamped plate (CCCC) are notable rare than the other type of
boundary conditions. The results obtained with the present methodology were compared with
the excellent work of Taylor and Govindjee (2002) for thin fully clamped plates, in Table 5.

In order to obtain 10 accurate digits, Taylor and Govindjee (2002) solved a matrix system
with 2000x2000. The values obtained by the present method were generated from a system of
315x315, usingng equal to 13. Interestingly, the results for thin plates 0001 point out for

an error in the third digit of the classical solution of Timoshenko and Woinowski-Krieger.

¢ b/a=1 b/a=2
Present Taylor & Present Taylor &
Work Govindjee (2002) Work Govindjee (2002)
0.001| 0.0012654 0.001265319036 0.0025330 0.002532955769
0.010| 0.0012678 - 0.002608 -
0.100| 0.0015046 - 0.002962 -
0.250| 0.0026580 - 0.004837 -

Table 5 - Center displacement of CCCC plates

For SFSF plates, the Table 6 shows the results of center displacement and at the middle of
the free edge for square plates. It is noted that the both results corresponds to the values found
in the literature. The Figure 2 illustrates a contour plot of the normalized transverse
displacement and the normalized bending moment for a platebAdth 5and are plotted in
normalized space. This aspect ratio is used to evidence the anti-clasticcurvature which appears
in this type of boundary conditions. It can be noted that the methodology presented here
captures this effect.

n Center of the plate Middle of the free edge
Present Leeet. Wanget.| Present Leeet. Wang et.
Work al. al. Work al. al.
(2002)  (2001) (2002)  (2001)
0.001| 0.013094 - - 0.015011 - -
0.010| 0.013097 - - 0.015023 - -
0.050| 0.013187 - - 0.015214 - -
0.100| 0.013459 0.01346 0.01341 0.015600 0.01560 0.01557
0.150| 0.013910 0.01391 0.01379 0.016161 0.01616 0.01609
0.200| 0.014539 0.01454 0.01433 0.016898 0.01690 0.01678
0.250| 0.015347 0.01536 0.01502 0.017809 0.01781 0.01762

Table 6 - Displacement on the center and in the middle of the free edge in SFSF square plates
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-1 a8 06 0.4 -02 a 02 04 a6

(b)

Figure 3 - (a)¥; and (b)M,, in SFSF plates in normalized coordinates

6. PARAMETRIC SOLUTIONS FOR BENCHMARK

A study on the influence of the plate’s thickness over the displacement was carried out
using the presented methodology. This is not necessary in the CPT since the differential
equations are insensitive to thickness. On other hand, in analysis of thick plates, this influence
is significant because it is the parameter which controls the transverse shear deformation. Due
the high memory requirements to deal with symbolic expressions, the degree of the primary
polynomial (ng) usal is 5 for SSSS, SFSF and SCSC and 6 for CCCC boundary conditions.

The central displacement field was approximated with a polynomial expression of fifth
degree:

at&
w=253 g (29)
i=1

andthe independent constants are expressed by the Table 7.

r a a, a, a, as a,
1.00 | 0.004061 0 0.02110 0 0 0
ssss | 1-35 | 0.006742 0 0.02698 0 0 0
1.65 | 0.008573 0 0.03020 0 0 0
2.00 | 0.010110 0 0.03260 0 0 0
1.00 | 0.00126 0.00008 0.02431 -0.00949 -0.01561  0.06569
ccce | 1:35] 000199 000033  0.02666 0.03017 -0.10755  0.27689
1.65| 000233 0.00077 0.02344 0.07749 -0.31589  0.44471
2.00 | 0.00249 0.00131 0.02069  0.09141 -0.29759  0.35772
1.00 | 001310 -0.00060 0.04480 -0.04402  0.07339 0
cpsp | 135 004436 000111 009605 -0.21213 0.70352  -0.91537
1.65 | 010038 -0.00126 0.14654 -0.29543 0.86315 -1.01987
2.00 | 0.21942 -0.00159 0.22572 -0.44526 1.13023 -1.15651
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1.00 | 0.00193 -0.00069 0.04341 -0.12023 0.39030 -0.53692
1.35] 0.00426 -0.00040 0.04790 -0.09195 0.27263 -0.37795
1.65| 0.00635 0.00015 0.04267 -0.04086 0.11663 -0.19000
2.00 ] 0.00842 0.00081 0.03791 -0.03482 0.18575 -0.35542

SCSC

Table 7 - Coefficients of the equation (29) for each aspect ratio and boundary conditions
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Figure 4 - Semi-analytical solutions for thick plates: (a) S&@i$ =1, (b) SSSSa/b = 2, (c) SFSFa/b =1
and (d) SCsCa/b =2

In the Table 8, it can be show that the methodology reduces to the CPT results when the
thickness tends to zero. By the equation (29), the resultant term when the plate is thin is:

Y
D

The solutions obtained with the present methodology can be compared with results found
in the literature. The Figure 4 shows four comparisons between the equation (30), the work of
Lee et. al. (2002) and the results of the CPT taken from Timoshenko and Woinowski-Krieger
(1959). A good agreement between the solutions presented was achieved in thick plate

W=

a (30)
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solutions, listed in Lee et. al. work, and in thin plate solution, found in Timoshenko and
Woinowski-Krieger (1959).

SSSS ccce
alb=1 a/b=2 alb=1 a/b=2
a, TCPS | a TCP§| a  TCP§| a  TCPS§
0.004061 0.00406 0.010110 0.01013 0.00126 0.00126 0.00249 0.00254

SFSF sCsC
a/b=1 a/b=2 a/b=1 a/b=2
a TCP§| a  TCP8| @ TCPS| a  TCPS
001310 001309 021942 - | 0.00193 0.00192 0.00842 0.00844

§[Timoshenko andWionowski-Krieger (1959)]

Table 8 — Degeneration of the present results to CPT results.

7. CONCLUSION

The pb-2 Rayleigh-Ritz method was developed and applied for the solution of rectangular
shear deformable plates under transverse loading. Since the method enforces the boundary
conditions through special functions which multiply the displacement interpolation functions,
one can use general polynomial spaces to generate admissible solution spaces. Several cases
of geometry and boundary conditions were analyzed, showing good agreement with reference
solutions. The method shows a fast convergence, and is particularly suitable for benchmarking
purposes. Parametric solutions for rectangular plates were generated in semi-analytic form,
including the influence of the thickness.
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