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Abstract. This paper presents the dynamic positional nealingeometric formulation for
tridimensional problems. The positional formulatiam an alternative approach for non linear
problems, since it considers nodal positions adalbbes of the nonlinear system instead of
displacements as usual in literature. In ordervimchlocking, tetrahedral third-order isoparametric
finite element (20 nodes) is implemented for ba#plhcement and stress field. Regarding to dynamic
forces, it is considered the consistent mass matrikdamping effects proportional to the body mass.
The well-known Newmark algorithm for time integrtiis applied. Some simple numerical examples
are presented in order to show the accuracy gbrityeosed formulation.
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1 INTRODUCTION

Most structural elements that may suffer large ldisgments generally have one of the
three dimensions much smaller than the others.eftwe, it is very common to find in the
literature of nonlinear geometric problems invotyithree-dimensional solid in its purest
form, i.e., without any kinematic assumption toresent structures like shells, plates, or even
space frame.

Moreover, with the growing progress of the studybadmechanics, it is necessary to
consider problems with three-dimensional solidscalbee the structural components,
represented by muscles and internal organs of hdoody such as the heart, arteries and even
the ocular globe, may suffer sometimes large dedtions and displacements. For example,
the work of Haussy and Ganghoffer (2005) analykesiristability of thick wall shells, that
can simulates an artery aneurysm with use of anogppte constitutive law concerning the
nature of the deformed structure (large displaceésnand large deformations). In Hron and
Madlik (2006), a fluid-structure coupling formulati applied to problems in biomechanics is
shown with solid tetrahedral elements of 10 nodesdratic approximation of variables).

In addition, formulations employing cylindrical aainates and polar rather than Cartesian
coordinates are employed to solve problems invglvires. It is presented in Danielson and
Ahmed (1997) that developed a formulation for flhe ¢ontact with pavement using a 4-node
hexahedrical cylindrical element. The same typ®ohulation in cylindrical coordinates can
also be found in Bourdais et al. (2003) and Costd €.996).

With regard to the variables approximation in s®lid represent large displacements and
deformations, there are many works that developmuhdlations using linear element
approximation, and to overcome the locking effexised by low-order polynomial approach,
strategies for improving the stress and straim feee commonly employed. That is the case of
works such as Simo et al (1993), Simo and ArmeB92), Armero and Garikipati (1996),
Moita and Crisfield (1996) and Reese et al (1998} tised a strategy to improve the strain
field called enhanced strains fieldn Kozar and Ibrahimbega¥i(1995) and in Simo and
Armero (1992) , in order to alleviate locking, tibleompatible modes technique is applied,
and it means to assume that the gradient of displants is optimized by adding another
incompatible gradient, i.e., which is discontinuauser the element, but consistent in the
variational aspect.

Despite the papers described above have focusddwsorder elements, in Rank et al
(1998) and Duster et al (2003) conclude that elat@nlocking problems, it is enough to
employ high order elements. The authors sharepthiisophy, so the solid element used here
is the 20-node tetrahedral, creating a cubic appration of variables and fields without the
use optimized strain or tension field.

The static positional formulation for solids haseally been presented in Maciel and Coda
(2009). Thus, herein is showed the positional fdation regarding dynamic problems.
Classical examples found in literature are presknte

2 POSITIONAL DYNAMIC FORMULATION

2.1 Energetic Approach

The positional formulation starts with the energetpproach, that is, the total potencial
energy concept is applied for total lagrangian dpson and given by:
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MN=U,+K,+K_,-P (1)

Where U, and P are the elastic potential energy and pelegrtiergy of the external forces
respectively.K is the kinetic energy of the body ard, is the energy loss due to damping
effects. The elastic potential enery is:

U= J' udv, 2)
VO

where u, is specific elastic energy and is the total volume of the body in the reference

configutarion (total lagrangian). Moreover, for tkigetic energy, one can write:

K, = [ po=tdV, (3)

where p, is the specific mass of the body ardis the vetorial velocity of a generic point,
given by:
d(x)
X=—"= 4
” (4)
andx is the position vector of the generic point.
The potential energy of the external forces cawiiten as:
P=F'X (5)

whereF is the vector of the external forces axidthe respective position vector.
Regarding to the energy loss due to damping effeais can write:

oK ok
&= | —2dV, = | cp.XxdV, 6

wherec,, is the damping coefficient.
By replacing Eq. (2), Eq.(3), Eq.(5) and Eq.(6) Hqj.(1), the total potential energy
becomes:
M =Iuedvo+jpo?dvo— FX,+K, @)
Vo A
In order achieve equilibrium in current time st&pt1” (time “S” is the former time step),
the energy functional must be a minimum, that is:
X, X OEX.
G_I'I :jauedvo_,.ji(poxkxkjdvo_ i J.,.%:o (8)
0Xilg,y v, 0% v, 0% 2 ox  0x
Taking into account Eq. (6), Eq.(8) becomes:
ar ou X, X, ,
—] = £ dv,-F+ | c p,xdV,=0 (9
axi \'/[axi (po 2 j 0 i \'/[ mpO i 0 ( )

When the body or structure is discretized in firllements, its variables, in this case
positions, velocities, accelerations and stresldl fdong a generic finite element, can be
expressed by assuming shape functions, as shown:

X; = ® X/ (10)

dVo + J-i
o1 Vo 0X.
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X, =X (11)

X, =®X/ (12)
where X,, X, e X, are respectively nodal values for positions, vilex and accelerations,
and @, the shape functions. By considering, however, @gprated variables through shape
functions given by Eq.(10), Eq.(11) and Eq.(12) omy write the Eq.(9) as follows:

a_rl :6Ue _Fs+1+MXs+1+CX31:O (13)
X |, oX |,

where the Mass Matrix is given by:
M = [ po®,D,dV, (14)

Vo
and damping matrix (proportional to the body mass):
C=2c M (15)
wherec,, is the damping coefficient.

2.2 lIterative solution for the dynamic problem

The Eq.(13) is the nonlinear movement equation,iamder to solve it along the time, the
current variables positions and velocities in tigtep “S+1" are approximated according to
the Newmark expressions, that is:

Xy =X g+ X s+ﬂ2[(%—8j>'< st } (16)

Xs+1=Xs+At(1_V)X s+VAtX S (17)
where y and B the Newmark coefficients that determine how thealdes velocities and
positions vary along the time intervat. One may isolate the current acceleration term in

Eq.(16), thus:
. X X X 1 .
Xg=—2Lt-—S S — 11X 18
S1OBAt? BAtY BAt (23 j S (18)

Therefore, by replacing Eq.(17) and Eq.(18) in E8)(one has:

on ou, M yC
- = -F,+—X,,-MQ +CR +—X . ~VAICQ =0 19
ax o1 ax o1 S+1 Bmz St1 QS S BAt $1 y QS ( )
where the vectors §and R are related to the variables past contributi@iep( “S”) and
given by:
Xs  Xq (1 C
= +—=24+ —-1(X
% BAt*  BAt (ZB ] > (20)
Rs = Xs+At(1-y) X 21)

By deriving Eq.(19) related to the nodal positionse has the Hessian Matrix for the
dynamic problem:

9%

2
on _ 0%y LMoC

CaX?|. BAC BN

=0g(X,)

S+1

(22)

St+1
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Since EQ.(22) represents the nonlinear system tgobeed in current time “S+1”, the
Newton-Raphason Method is applied. By performirggTaylor expansion one has:
9(X) = 0 0g(X,) + 1g(X,)AX (23)
or
AX = '[Dg(xo)]-lg(xo) (24)
where the vectorX is the unknown positions vector and, the tentative vector. The
unbalanced force of the mechanical system is obdaiorm Eq.(19) and given by:
a(X,) :%Sﬂ— F&1+%x31— MQ +CR S+£ X ¢ 7 YAICQ  (25)
In addition, during the iterative process, possionust be updated as shown:

Xy =X g+ X (26)
Followed by respective accelerations:

. X

Xs = S+; —Qs

3 POSITIONAL FEM DYNAMIC FORMULATION FOR SOLIDS

3.1 Geometry Mapping and Strain Measure

In order to mapping the body movement along spacetiane, it is considered, according
to Figure 1, the positioBy of the body, which is referred to the referencsifoan andB that
Is related to the current position.

111
A

Figure 1: Geometry mapping scheme for the tridirimera solid

A"" are deformation gradient of two positions, i.@e reference and current positions.
Moreover,A', A" are auxiliary deformation gradients that represkatdeformation between
the non dimensional space in respect to the refereanfiguration and current configuration
respectively.

The deformation gradient froBy to B can be written as:
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dx.
Ay =25 28
ik ng ( )

wheredx® anddx are two infinitesimal vectors in the initial andreent configuration.
And both auxiliaries deformation gradients are:

, _dx?
Ac g (29)
n_ dx

From those auxiliaries deformation gradients, cae write the deformation gradieAt',
as follows:

i _%ﬁ_%_ a7t
ik — G, X0 = X =Ai (Aik) (31)

The stretch can be written as (Ogden, 1984):

A)= 24w e

whereM is the versor along fibedx®. Taking into account Eq.(32), for the global refeen
X,, X, andx,,one can write:

T 1/2
A, :[e(Tk) (a™) A"'e(k)} (33)
wheree,, e, ande, are the respective global coordinates versors.eftve, the engineering
deformation (Maciel and Coda, 2009) is written as:

=\ —1=|¢ AlllTAIII 1/2_1 34
e =h 12| g (A™) Aley (34)

and the distortion:
el.((Anl )T Al eJ)

L1
y, =6 ——=aco (35)
2 A,
3.2 Total potential energy
The specific elastic energy for a solid can betemitas:
K+2G
u ()= 2ce =02 2oz f e (eg rep e )+
2 (36)

+%[(2812)2 +(2£13)2 +( 2523)2}

where ¢ is the stress measure shown in Eq.(34) and Eq.[3&refore, the potential elastic
energy, given by Eq.(2) is rewritten as:
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U, = J' u,(g)dv,= I{@(sf+35+sf)+ K(eg +eg reg )+
Vo Vo (37)
G
PSl(m) + (2 + (2] v,
By replacing Eq.(37) in EQ.(7), one has:
n :J'{(K +226)(812+822+832)+K(8182+8§3+8§g+
Yo (38)

G X, X
+E[(2slz)2 +(2513)2+(k23)2]} dVO+\7[pO S dVem FX+ K,

Eq.(38) represents the total potential energy imtef positions. The Newton-Raphason
method and Newmark equations are used in ordeslt@ she nonlinear problems as shown
before.

3.3 FEM discretization

In this study, 20-node tetrahedral finite elemawtapplied in the body discretization (See
Figure 2).

Figure 2: 20-node tetrahedral finite element

This discretization, which is isoparametric, pemisr cubic approximation for variables
such as positions, velocities, accelerations areh estress field. These approximations are
given by:

X; (El’zz’zg) = q)jxf

(39)
Xi (El,az,as) :CDJXf (40)
%, (£,€,.&;) =@ X! (41)

where X!, X and X/ are nodal positions, velocities and accelerati ectively.®. are
h X!, X! and X! dal posit locit d leratr@spect Iyd)l

the shape functions for tetrahedral finite elem&hbse shape functions can be found in, for
example, Soriano (2003) and Zienkiewicz and Ta{1601).
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4 NUMERICAL EXAMPLES

4.1 Example 1. Clamped Bar submitted to an axial force

This example analyses the dynamic response ofuigeced to an axial load, according to
Figure 3.

Cross Section

/14145
e

h

s ""\.|
L | |Eb;

Figure 3: Beam under an axial load “F".

A schematic graphic “Force vs time” is depictedrigure 4 as well as the example data.

F

N

) E=1 h=1 p=1
L=10 p=1 ¢, =
Aft=1 v

=2 0

Figure 4: Graphic “Force x time” and example data.

Figure 5 shows the dynamic response for axial degyhent ¢ Two different meshes have
been used (463 nodes and 3329 nodes) in ordertéaindhe results and compared with the
analytic response. In addition, for achieving gammhvergence, the Newmark parameters
B=0.25andy=0.5 have been applied.
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Figure 5: Dynamic response for horizontal displagendue to subit load.

It is impotant to observe (see Figure 5) the oenae of some numerical damping, which
has been expected. However, that numerical damgiregluced when the mesh is refined.

4.2 Example 2: Clamped beam submitted to a transversal force

In this example, a clamped beam is submitted tarsversal force, according to Figure 6.
It is analyzed the dynamic response with and witliamping.

F(t)
CROSS SECTION

\ v
N
N h
§ ”.\' &

A4

Uu._. H

P o b

L

Figure 6: Clamped beam submitted to a transveose¢fin its free end.

Again, a schematic graphic “Force vs time” andg¢kample data are depicted in Figure 7.
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E=2.1 10"'"N/m~ F N

[=5.3333 10 m*

A=0.04 m> 510°

L=1.20m

p=7.8510"N s¥/m*

Cy =200 57! o

Figure 7: Problem data and “Force x time” grafic.

Figure 8 shows the dynamic response for the trasalvdisplacement JJ Two results are
shown, including the static linear. The mesh is posed by 77 finite elements with
At =0.0001.

—— Linear static salution
—a— Numerical solution (no damping)
DLE0 —e— Numerial solution (with damping)

S
£l H

0.000 -} T ' T '
0.00 001 002 0.03 0.04 0.05

t [5]

Figure 8: Dynamic response for the transversallaigpent |) versus time.

0.050 4
0.045
0.040 4

0.035 -
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0.030 H

For damping response, the final displacements tenthe linear static one as already
expected. But, since the static response do notidenthe shear effects, it is natural to
achieve more flexible results usnig FEM solid ajggio

5 CONCLUSIONS

In this paper a consistent and simple formulat®proposed to solve geometrically non-
linear dynamic problems involving solids. In ordershow the didactic possibilities of the
technique, a simple engineering language is usdthodgh the convergence is rather
dependent on the Newmark parameters , the resoisned presents very good agreement
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with those found in the specialized literature. fother developments, new time integration
methods should be applied as well as differentdialement shapes.
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