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Abstract. This paper presents the dynamic positional nonlinear geometric formulation for 
tridimensional problems. The positional formulation is an alternative approach for non linear 
problems, since it considers nodal positions as variables of the nonlinear system instead of 
displacements as usual in literature. In order to avoid locking, tetrahedral third-order isoparametric 
finite element (20 nodes) is implemented for both displacement and stress field. Regarding to dynamic 
forces, it is considered the consistent mass matrix and damping effects proportional to the body mass. 
The well-known Newmark algorithm for time integration is applied. Some simple numerical examples 
are presented in order to show the accuracy of the proposed formulation. 
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1 INTRODUCTION 

Most structural elements that may suffer large displacements generally have one of the 
three dimensions much smaller than the others. Therefore, it is very common to find in the 
literature of nonlinear geometric problems involving three-dimensional solid in its purest 
form, i.e., without any kinematic assumption to represent structures like shells, plates, or even 
space frame. 

Moreover, with the growing progress of the study of biomechanics, it is necessary to 
consider problems with three-dimensional solids, because the structural components, 
represented by muscles and internal organs of human body such as the heart, arteries and even 
the ocular globe, may suffer sometimes large deformations and displacements. For example, 
the work of Haussy and Ganghoffer (2005) analyses the instability of thick wall shells, that 
can simulates an artery aneurysm with use of an appropriate constitutive law concerning the 
nature of the deformed structure (large displacements and large deformations). In Hron and 
Mádlik (2006), a fluid-structure coupling formulation applied to problems in biomechanics is 
shown with solid tetrahedral elements of 10 nodes (quadratic approximation of variables).  

In addition, formulations employing cylindrical coordinates and polar rather than Cartesian 
coordinates are employed to solve problems involving tires. It is presented in Danielson and 
Ahmed (1997) that developed a formulation for the tire contact with pavement using a 4-node 
hexahedrical cylindrical element. The same type of formulation in cylindrical coordinates can 
also be found in Bourdais et al. (2003) and Costa et al (1996). 

With regard to the variables approximation in solids to represent large displacements and 
deformations, there are many works that developed formulations using linear element 
approximation, and to overcome the locking effect caused by low-order polynomial approach, 
strategies for improving the stress and strain field are commonly employed. That is the case of 
works such as Simo et al (1993), Simo and Armero (1992), Armero and Garikipati (1996), 
Moita and Crisfield (1996) and Reese et al (1999) that used a strategy to improve the strain 
field called enhanced strains field. In Kozar and Ibrahimbegović (1995) and in Simo and 
Armero (1992) , in order to alleviate locking, the incompatible modes technique is applied, 
and it means to assume that the gradient of displacements is optimized by adding another 
incompatible gradient, i.e., which is discontinuous over the element, but consistent in the 
variational aspect. 

Despite the papers described above have focused on low-order elements, in Rank et al 
(1998) and Düster et al (2003) conclude that eliminate locking problems, it is enough to 
employ high order elements. The authors share that philosophy, so the solid element used here 
is the 20-node tetrahedral, creating a cubic approximation of variables and fields without the 
use optimized strain or tension field. 

The static positional formulation for solids has already been presented in Maciel and Coda 
(2009). Thus, herein is showed the positional formulation regarding dynamic problems. 
Classical examples found in literature are presented. Equation Chapter 1 Section 1 

2 POSITIONAL DYNAMIC FORMULATION 

2.1 Energetic Approach 

 
The positional formulation starts with the energetic approach, that is, the total potencial 

energy concept is applied for total lagrangian description and given by: 
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e c a= U + K K -Π + Ρ        (1) 

Where eU  and P are the elastic potential energy and potential energy of the external forces 

respectively. cK  is the kinetic energy of the body and aK is the energy loss due to damping 

effects. The elastic potential energy eU  is: 

∫
0

e e 0

V

U = u dV         (2) 

where eu  is specific elastic energy and V0 is the total volume of the body in the reference 

configutarion (total lagrangian). Moreover, for the kinetic energy, one can write: 

0

i i
c 0 0

V

x x
K dV

2
= ρ∫

ɺ ɺ
       (3) 

where 0ρ  is the specific mass of the body and xɺ  is the vetorial velocity of a generic point, 

given by: 

( )d

dt
=

x
xɺ         (4) 

and x is the position vector of the generic point. 
The potential energy of the external forces can be written as: 

Ρ = TF X          (5) 

where F  is the vector of the external forces and X  the respective position vector. 
Regarding to the energy loss due to damping effects, one can write: 

0 0

a a
0 m 0 i 0

i iV V

K k
dV c x dV

x x

∂ ∂= = ρ
∂ ∂∫ ∫ ɺ      (6) 

where mc  is the damping coefficient.  

By replacing Eq. (2), Eq.(3), Eq.(5) and Eq.(6) in Eq.(1), the total potential energy 
becomes: 

0 0

i i
e 0 0 0 j j a

V V

x x
u dV dV FX K

2
Π = + ρ − +∫ ∫

ɺ ɺ
    (7) 

In order achieve equilibrium in current time step “S+1” (time “S” is the former time step), 
the energy functional must be a minimum, that is: 

0 0

j je ak k
0 0 0

i i i i iV VS 1

FXu Kx x
dV dV 0

x x x 2 x x
+

∂∂ ∂∂Π ∂  = + ρ − + = ∂ ∂ ∂ ∂ ∂ 
∫ ∫

ɺ ɺ
 (8) 

Taking into account Eq. (6), Eq.(8) becomes: 

0 0 0

e k k
0 0 0 i m 0 i 0

i i iV V Vs 1

u x x
dV dV F c x dV 0

x x x 2
+

∂∂Π ∂  = + ρ − + ρ = ∂ ∂ ∂  
∫ ∫ ∫

ɺ ɺ
ɺ  (9) 

When the body or structure is discretized in finite elements, its variables, in this case 
positions, velocities, accelerations and stress field along a generic finite element, can be 
expressed by assuming shape functions, as shown: 

j
i j ix X= Φ         (10) 
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j
i j ix X= Φ ɺɺ         (11) 

j
i j ix X= Φ ɺɺɺɺ         (12) 

where iX , iXɺ  e iXɺɺ  are respectively nodal values for positions, velocities and accelerations, 

and jΦ  the shape functions. By considering, however, approximated variables through shape 

functions given by Eq.(10), Eq.(11) and Eq.(12), one may write the Eq.(9) as follows: 

e
S 1 S 1 S 1

S 1 S 1

U
F 0

X X + + +
+ +

∂∂Π = − + + =
∂ ∂

MX CXɺɺ ɺ    (13) 

where the Mass Matrix is given by: 

0

0 k j 0

V

dV= ρ Φ Φ∫M        (14) 

and damping matrix (proportional to the body mass): 

m2c=C M         (15) 

where mc  is the damping coefficient.  

 

2.2 Iterative solution for the dynamic problem 

 
The Eq.(13) is the nonlinear movement equation, and in order to solve it along the time, the 

current variables positions and velocities in time step “S+1” are approximated according to 
the Newmark expressions, that is: 

2
S 1 S S S S 1

1
X X tX t X X

2+ +
  = + ∆ + ∆ − β + β  
  

ɺ ɺɺ ɺɺ    (16) 

( )S 1 S S S 1X X t 1 X tX+ += + ∆ − γ + γ∆ɺ ɺ ɺɺ ɺɺ      (17) 

where γ  and β  the Newmark coefficients that determine how the variables velocities and 
positions vary along the time interval t∆ . One may isolate the current acceleration term in 
Eq.(16), thus: 

   S 1 S S
S 1 S2 2

X X X 1
X 1 X

t t t 2
+

+
 = − − − − β∆ β∆ β∆ β 

ɺ
ɺɺ ɺɺ     (18) 

Therefore, by replacing Eq.(17) and Eq.(18) in Eq.(13), one has: 

t
S 1 S 1 S S S 1 S2

S 1 S 1

U M C
F X MQ CR X tCQ 0

X X t t+ + +
+ +

∂∂Π γ= − + − + + − γ∆ =
∂ ∂ β∆ β∆

  (19) 

where the vectors QS and RS are related to the variables  past contributions (step “S”) and 
given by: 

S S
S S2

X X 1
Q 1 X

t t 2

 = + + − β∆ β∆ β 

ɺ
ɺɺ

     (20) 

( )S S SR X t 1 X= + ∆ − γɺ ɺɺ

      (21) 
By deriving Eq.(19) related to the nodal positions, one has the Hessian Matrix for the 

dynamic problem: 

( )
22

t
02 2 2

S 1 S 1

U M C
g X

X X t t+ +

∂∂ Π γ= ∇ = + +
∂ ∂ β∆ β∆

    (22) 
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Since Eq.(22) represents the nonlinear system to be solved in current time “S+1”, the 
Newton-Raphason Method is applied. By performing the Taylor expansion one has: 

≅ ∇0 0g(X) = 0 g(X ) + g(X )∆X      (23) 

or 
∇ -1

0 0∆X = -[ g(X )] g(X )       (24) 

where the vector X  is the unknown positions vector and 0X  the tentative vector. The 

unbalanced force of the mechanical system is obtained form Eq.(19) and given by: 

( ) t
0 S 1 S 1 S S S 1 S2

S 1

U M C
g X F X MQ CR X tCQ

X t t+ + +
+

∂ γ= − + − + + − γ∆
∂ β∆ β∆

 (25) 

In addition, during the iterative process, positions must be updated as shown: 

S 1 SX X X+ = + ∆       (26) 
Followed by respective accelerations: 

S 1
S 1 S2

X
X Q

t
+

+ = −
β∆

ɺɺ

      (27) 
 

3 POSITIONAL FEM DYNAMIC FORMULATION FOR SOLIDS 

3.1 Geometry Mapping and Strain Measure 

In order to mapping the body movement along space and time, it is considered, according 
to Figure 1, the position B0 of the body, which is referred to the reference position and B that 
is related to the current position.  

 

 
Figure 1: Geometry mapping scheme for the tridimensional solid 

AIII are deformation gradient of two positions, i.e., the reference and current positions. 
Moreover, AI, AII are auxiliary deformation gradients that represent the deformation between 
the non dimensional space in respect to the reference configuration and current configuration 
respectively.  

The deformation gradient from B0 to B can be written as: 
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III i
ik 0

k

dx
A

dx
=        (28) 

 
where 0dx  and dx  are two infinitesimal vectors in the initial and current configuration. 

And both auxiliaries deformation gradients are: 
0

I i
ik

k

dx
A

d
=

ξ
       (29) 

II i
ik

k

dx
A

d
=

ξ
       (30) 

From those auxiliaries deformation gradients, one can write the deformation gradient AIII, 
as follows: 

( ) 1jIII II Ii i
ik ik ik0 0

j k k

ddx dx
A A A

d dx dx

−ξ
= = =

ξ
     (31) 

 
The stretch can be written as (Ogden, 1984): 

( ) ( ) 1/ 2
 λ = =  

T

0

dx
M M A AM

dx
     (32) 

where M is the versor along fiber 0dx . Taking into account Eq.(32), for the global reference 

1x , 2x  and 3x ,one can write: 

( ) ( ) ( )

1/2T

k k k
 λ =   

T ΙΙΙ IIIe Α A e       (33) 

where 1e , 2e  and 3e  are the respective global coordinates versors. Therefore, the engineering 

deformation (Maciel and Coda, 2009) is written as: 

( ) ( ) ( )

1/2T

k k k k1 1 ε = λ − = −  
T ΙΙΙ IIIe Α A e     (34) 

and the distortion: 

( )( )III III
i j

ij ij
i j

a cos
2

 
π  γ = θ − =  λ λ

  

T
e A A ei

    (35) 

3.2 Total potential energy 

The specific elastic energy for a solid can be written as: 
 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2 2
e 1 2 3 1 2 1 3 2 3

2 2 2

12 13 23

K 2G1
u K

2 2
G

2 2 2
2

+
= = ε + ε + ε + ε ε + ε ε + ε ε +

 + ε + ε + ε
 

T
ε ε Cε

   (36) 

 
where ε  is the stress measure shown in Eq.(34) and Eq.(35). Therefore, the potential elastic 
energy, given by Eq.(2) is rewritten as: 
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( ) ( ) ( ) ( )

( ) ( ) ( )
0 0

2 2 2
e e 0 1 2 3 1 2 1 3 2 3

V V

2 2 2

12 13 23 0

K 2G
U u dV K

2

G
2 2 2 dV

2

+
= = ε + ε + ε + ε ε + ε ε + ε ε +



 + ε + ε + ε  

∫ ∫ε

  (37) 

 
By replacing Eq.(37) in Eq.(7), one has: 
 

( ) ( ) ( )

( ) ( ) ( )
0

0

2 2 2
1 2 3 1 2 1 3 2 3

V

2 2 2 k k
12 13 23 0 0 0 i i a

V

K 2G
K

2

x xG
2 2 2 dV dV FX K

2 2

+
Π = ε + ε + ε + ε ε + ε ε + ε ε +



 + ε + ε + ε + ρ − + 

∫

∫
ɺ ɺ

    (38) 

Eq.(38) represents the total potential energy in term of positions. The Newton-Raphason 
method and Newmark equations are used in order to solve the nonlinear problems as shown 
before. 

 

3.3 FEM discretization 

In this study, 20-node tetrahedral finite element are applied in the body discretization (See 
Figure 2).  

 
Figure 2: 20-node tetrahedral finite element 

This discretization, which is isoparametric, performs cubic approximation for variables 
such as positions, velocities, accelerations and even stress field. These approximations are 
given by: 

( ) j
i 1 2 3 j ix , , Xξ ξ ξ = Φ

    (39) 

( ) j
i 1 2 3 j ix , , Xξ ξ ξ = Φ ɺɺ

    (40) 

( ) j
i 1 2 3 j ix , , Xξ ξ ξ = Φ ɺɺɺɺ

    (41) 
where j

iX , j
iXɺ  and j

iXɺɺ  are nodal positions, velocities and accelerations respectively. jΦ  are 

the shape functions for tetrahedral finite element. Those shape functions can be found in, for 
example, Soriano (2003) and Zienkiewicz and Taylor (1991). 
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4 NUMERICAL EXAMPLES 

4.1 Example 1: Clamped Bar submitted to an axial force 

This example analyses the dynamic response of bar subjected to an axial load, according to 
Figure 3.  

 

Figure 3: Beam under an axial load “F”. 

A schematic graphic “Force vs time” is depicted in Figure 4 as well as the example data. 
 

 

 

Figure 4: Graphic “Force x time” and example data. 

Figure 5 shows the dynamic response for axial displacement ux. Two different meshes have 
been used (463 nodes and 3329 nodes) in order to obtain the results and compared with the 
analytic response. In addition, for achieving good convergence, the Newmark parameters 

0.25β =  and 0.5γ =  have been applied. 
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Figure 5: Dynamic response for horizontal displacement due to subit load. 

It is impotant to observe (see Figure 5) the occurrence of some numerical damping, which 
has been expected. However, that numerical damping is reduced when the mesh is refined. 

 

4.2 Example 2: Clamped beam submitted to a transversal force 

 
In this example, a clamped beam is submitted to a transversal force, according to Figure 6. 

It is analyzed the dynamic response with and without damping.  
 
 

 
Figure 6: Clamped beam submitted to a transversal force in its free end. 

Again, a schematic graphic “Force vs time” and the example data are depicted in Figure 7. 
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Figure 7: Problem data and “Force x time” grafic. 

Figure 8 shows the dynamic response for the transversal displacement Uy. Two results are 
shown, including the static linear. The mesh is composed by 77 finite elements with 

t 0.0001∆ = . 
 

 
Figure 8: Dynamic response for the transversal displacement Uy versus time. 

For damping response, the final displacements tend to the linear static one as already 
expected. But, since the static response do not consider the shear effects, it is natural to 
achieve more flexible results usnig FEM solid approach. 

 

5 CONCLUSIONS 

In this paper a consistent and simple formulation is proposed to solve geometrically non-
linear dynamic problems involving solids. In order to show the didactic possibilities of the 
technique, a simple engineering language is used. Although the convergence is rather 
dependent on the Newmark parameters , the results obtained presents very good agreement 
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with those found in the specialized literature. For further developments, new time integration 
methods should be applied as well as different finite element shapes. 
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