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Abstract. The use of high performance concrete significantly increased in last years because the  
increasing needs of more strength, slenderness and economy of the different structural elements. The 
structural response of this kind of concrete is strongly related to the internal composition of its 
mesostructure and the strength ratio between the different phases that composes the mesostructure. In 
this work we present in advance some new numerical results obtained by using a mesomechanical 
approach to numerically represent the failure process of the material under compressive loads. 
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1 INTRODUCTION 

The use of high performance concrete (HPC) in building construction increased 
significantly during the last quarter of the 20th century. High Performance Concrete exhibits 
significantly higher compressive strengths than normal-strength concrete (NSC), which 
allows for extensions of structural design by allowing structural members made from HPC to 
carry higher loads. As a result of its increased application in many areas of construction, 
studies are being conducted to define better the properties of HPC and to develop a better 
understanding of its use. These studies were focused in both, experimental and numerical 
analysis of failure processes. They intend to achieve a complete understanding of material 
response under several conditions, and to relate the failure behavior to the internal 
composition of the material. The use of high performance concrete offers advantages in 
durability, ease of placement, and reduced creep and shrinkage, as well as increased 
compressive, shear and tensile strength. Offsetting these advantages are potentially reduced 
ductility and fire resistance, and increased unit cost. In this paper, we present some new 
computational results obtained by considering a mesomechanic approach to simulate the 
internal mesostructure of high performance concrete specimens, focusing particularly in its 
high strength characteristic and failure response. In this sense, it is clear that the failure 
response of High Performance Concrete differs from the Normal Strength Concrete because 
the different interaction between the internal phases, which is governed not only for the 
cement paste phase composition and strength but also by the proportion and strength of the 
aggregate phase. From the computational point of view, the mesomechanical approach 
presented in this paper allows to take into account in the numerical model some crucial 
aspects related to the constitutive behavior of each material phase, which in turn will govern 
the failure process. The proposed mesomechanic approach implies that the cracking process 
can be captured in an explicit way following the so-called discrete crack approach, which 
combined with a viscoplastic constitutive law at interface level allows to capture both, 
pseudo-static and dynamic material behavior, with the advantage of taking into account the 
applied strain rate and the particular case of long term loading (basic creep) in a unified, 
rate/time dependent constitutive formulation. Moreover, the combination of the 
mesomechanic approach and a rate/time dependent constitutive formulation at interface level 
is a key aspect to investigate the complex interaction between the different concrete phases 
under failure processes that activates viscosity effects, which in turn can affect the internal 
stress distribution and, as a direct consequence, the structural capacity of the concrete 
specimen. In next sections the constitutive viscoplastic theory by Perzyna (1963), (1966) and 
its numerical implementation at interface level are addressed. Numerical analysis of uniaxial 
compressive tests were carried-out by considering the material characteristics of high 
performance concrete at mesomechanic level illustrating model capabilities to simulate the 
failure processes of this particular type of concrete. 
 

2 PERZYNA’S VISCOPLASTIC THEORY 

 

In small-strain viscoplasticity, the strain rate ε is decomposed into an elastic strain rate eε  

and a viscoplastic strain rate vpε  
 

= +e vpε ε ε          (1) 
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From Eq. (1), the stress rate σ is obtained as 
 

  :( )= − = −e vp vpσ σ σ E ε ε                                                      (2) 
 
Where E represents the elastic tensor. Eq. (1) and (2) are very similar to those of the classic 
elastoplasticity theory, with plastic strain replaced by viscoplastic strain vpε . Fig. (1) illustrate 
the equivalent rheological device, with the viscous effect represented by the damper 
characterized by the viscosity material parameter η. Following Perzyna’s concept, and 
restricting our analysis to the small-strain case, the evolution of the viscoplastic part for 
general non-associated flow which accounts for both irreversible and viscous deformation can 
be expressed as 

                                   1( , , ) ( )vp F Fψ ψ
η

= =ε g σ m                                               (3) 

                                                      : : F∂
= =

∂
m A n A

σ
                                                             (4) 

 

 
Figure 1: Perzyna’s elasto-viscoplastic rheological device (N = 1) 

 
with ( )Fψ a dimensionless monotonically increasing over-stress function, η the viscosity 
parameter and m the viscoplastic potential gradient defined as a modification of the gradient 
tensor n of the yield surface F by means of the fourth order transformation tensor A. In this 
work, the following widely-used expression for ( )Fψ  is used, see a.o. Sluys (1992), Wang et 
al.  (1997), Simo & Hughes (1998), Etse & Willam (1999) 
 

0

( , )( )
N

FF
F

ψ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

σ q             (5) 

 
In Eq. (5),  F = F (σ,q) is a convex yield function which defines the limit of the elastic 
domain, while F0 is a normalizing factor, usually chosen equal to the initial yield limit and N 
a constant defining the order of the Perzyna’s viscoplastic formulation. Higher values of the 
exponent N leads to more rate-sensitive models, while the McCauley brackets in Eq. (3) 
defines the features of the over-stress function as 
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The evolution law for the set of hardening/softening variables q is defined as 
 

                         1 ( ) :Fψ
η

=q H m                                                         (7) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2: Over-stress concept in stress space 
 
being H a suitable tensorial function of the state variables. In the continuous formulation, the 
previous set of equations is complemented by a consistency parameter λ , defined as an 
increasing function of the over-stress 

( )Fψ
λ

η
=                                                                    (8) 

 
The evolution Eq. (3) and (7) can be expressed quite similar to elasto-plasticity theory as 
                              vp λ=ε m                                                                     (9) 
         
                            :λ λ= =q H m h                                                        (10) 
 
being h = H:m . From Eq. (3) and (9) follows (Ponthot (1995), Etse and Willam (1999)) 

1 1( )vpF ψ η ψ λη− −
⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

ε
m

                                        (11) 

The new constraint condition, valid to the viscoplastic range takes now the form   
 
                         1( ) 0F F ψ λη−= − =                                                    (12) 
 
Equation (12) can be viewed like a generalization of the inviscid yield condition F=0 for rate-
dependent Perzyna type materials. The name continuous formulation is due to the fact that the 
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condition η  = 0 (without viscosity effect) leads to the elastoplastic yield condition F=0. 
Moreover, from Eq. (8) follows that when 0η →  the consistency parameter remains finite and 
positive since also the over-stress goes to zero. The other extreme case, η → ∞  leads to the 
inequality 0F <  for every possible stress state, indicating that only elastic response may be 
activated. The constraint condition defined by Eq. (12) allows a generalization of the Kuhn-
Tucker conditions which may be now written as 
 
                       0      0       0F Fλ λ= ≥ ≤                                             (13) 
 
Finally, the viscoplastic consistency condition expands into 

                                                           
: 0F r sλ λ= + + =n σ                                                 (14) 

 
where 

                                                           
1( )F Fr

q q q
ψ λη−∂ ∂ ∂

= = −
∂ ∂ ∂

                                           (15) 

 
and 

1( )s ϕ ηλ
λ

−∂
= −

∂
                                                             (16) 

3 INTERFACE CONSTITUTIVE MODEL 

Interface constitutive behavior is formulated in terms of the normal and shear 
components of stresses (tractions) on the interface plane, σ = [σ, τ]t, and corresponding 
relative displacements u = [u, v]t (t = transposed). The constitutive model is analogous to that 
used for each potential crack plane in the multicrack model, Carol and Prat (1990), (1991), 
Prat et al. (1992), Carol et al. (1993), (1995). The constitutive formulation conforms to work-
softening elasto-viscoplasticity, in which viscoplastic relative displacements can be identified 
with rate/time dependent crack openings. The main features of the constitutive interface 
model are represented in Fig. (3). The initial loading (failure) surface F = 0 is given as a three 
parameter hyperbola (tensile strength χ (vertex of hyperbola), shear strength c and internal 
friction angle φ, see Fig. (3a). Classic Mode I fracture occurs in pure tension. A second Mode 
IIa is defined under shear and high compression, with no dilatancy allowed, see Fig. (3b). The 
fracture energies GI

f and GIIa
f are two model parameters. After initial cracking, χ  and c 

decreases, Fig. (3c), and the loading surface shrinks, degenerating in the limit case into a pair 
of straight lines representing pure friction, Fig. (3d), see Lopez Garello (1999). The process is 
driven by the energy spent in the viscoplastic fracture process, Wvcr, the increments of which 
are taken equal to the increments of viscoplastic work, less frictional work in compression. 
Total exhaustion of tensile strength ( χ = 0) is reached for Wvcr = GIf, and residual friction (c = 
0) is reached for Wvcr = GIIa

f. Additional parameters 
χα and αc

allow for different shapes of 
the softening laws (linear decay for 

χα = αc
= 0). The rate-dependent yield function follows 

the Perzyna’s approach according to Eq. (17): 
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Figure 3: Crack laws: (a) hyperbolic cracking surface F and plastic potential Q; (b) fundamental modes of 
fracture; (c) evolution of cracking surface; (d) softening laws for χ and c. 

 
                                                  2 2 2 1/( ) ( ) ( ) NF c tg c tgσ τ φ χ φ λη= − − + − −                         (17) 
 
Energy dissipation during the time-dependent fracture process is defined as 
 

                         
 if  0vcr vcr vcrdW du dvσ τ σ= + ≥                               (18) 

 

                                                           tg1-    if 0vcr vcrdW dv σ φτ σ
τ

⎛ ⎞
= <⎜ ⎟

⎝ ⎠
                           (19) 

 
Whereby vcru and vcrv are the normal and tangential (critical) rate-dependent rupture 
displacements, respectively. The viscoplastic flow is fully associated in tension while non-
associated in compression, according to 
                                                     
                                                             :=m A n                                                                    (20) 
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and 

                                                               
0

  if 0
0 1

dil dil
cf fσ σ

⎡ ⎤
= <⎢ ⎥

⎣ ⎦
A                                     (23) 

 
being A a (2x2) transformation matrix, n the gradient to the viscoplastic yield surface and m 
the gradient to the viscoplastic potential function. The factors and  dil dil

cf fσ  accounts for the 
dilatancy effects in the compressive regime by means of a reduction of the normal component 
σ. The continuum viscoplasticity form of the rate dependent interface constitutive model is 
defined by the following set of equations: 
                                                                  
                              e vcr= +u u u                                                              (24) 
                              ( ) 1e −

=u E σ                                                            (25) 

                                                                ( )= − vcrσ E u u                                                         (26) 
 
where u  are the rate of the relative displacements which are decomposed into an elastic eu  
and a viscoplastic component vcru , E is the 2x2 elastic stiffness matrix which has a diagonal 
structure with non-zero terms equal to the constant assumed normal and shear stiffness 

NE = TE , that can be regarded simply as penalty coefficients. The non-linear system of 
equations is solved using a Newton-Raphson iterative procedure in the framework of the 
Closest Point Projection Method (CPPM) starting from the expansion of a Taylor’s series 
truncated at the first term, see Etse and Willam (1999), Carosio et al. (2000), Lorefice (2007), 
Lorefice et al. (2008a, 2008b) . 

                      
1

1 0
i

i i idFF F d
d

λ
λ

−

− ⎛ ⎞
= + ∆ =⎜ ⎟∆⎝ ⎠

                                      (27) 

 
From Eq. (27), the differential change in the elasto-viscoplastic multiplier is derived as 
 

11

1

i

i i dFd F
d

λ
λ

−−

−
⎡ ⎤⎛ ⎞
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                                         (28) 

 
Assuming the hypothesis: /d d tλ λ= ∆ ∆ , see Ponthot (1995), Wang (1997), Carosio et al 
(2000), the derivative of the viscoplastic yield function respect to λ∆  takes now the form  
 
 

                                                χ η
λ λ χ

⎛ ⎞⎛ ⎞∂⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∂∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

Tvcr
T

vcr vcr vcr
dF dF dc dF d dW

d dc d tdW dW d
σn m

u
         (29) 

 
Considering / md d λ∆ = −σ E m ,  with 
 

Mecánica Computacional Vol XXIX, págs. 5285-5302 (2010) 5291

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

  1( )m E λ−= + ∆E M                                                       (30) 
 
whereby Em is the modified elastic matrix and /= ∂ ∂M m σ the Hessian matrix for the interface 
model  
 

22 0
0 2
tg φ⎡ ⎤−
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M                                                         (31) 

 
Replacing the differential stress change with respect to λ∆  into Eq. (29), the expression for 
d∆λ results 
 

1
λ

χ η
χ

−

∆ = −
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥− + + −⎜ ⎟⎜ ⎟ ∆⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

i
i
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T m

vcr vcr vcr

Fd
dF dc dF d dW
dc d tdW dW d

n E m m
u

       (32) 

 from where the increments of the stress vector and state variables can be obtained. 

4 NUMERICAL SIMULATION OF FAILURE PROCCESES IN HPC 

The previously described viscoplastic constitutive model has been implemented into a set 
of subroutines that have been added to the constitutive libraries of the FE code DRAC, a 
research-oriented geotechnical/structural FE program with 2D/3D capabilities, various 
element types including interfaces. The code DRAC has been developed in recent years at the 
Dept. of Geotechnical Engineering of ETSECCPB-UPC 12, being compatible with the post-
processing module of GiD software, a general pre/post processor for numerical analysis 
developed at CIMNE (International Center for Numerical Methods in Engineering) at 
Barcelona, Spain. The constitutive subroutines perform relative displacement-to-stress 
calculations, including the implementation of a consistent tangent matrix scheme (algorithmic 
tangent operator) in order to preserve a quadratic convergence rate and improve model 
performance, see Lorefice et al (2008a). The interface elements used are the so-called "zero-
thickness" isoparametric elements that can be inserted in between standard continuum finite 
elements. The nodes are grouped in pairs, that match on each side those of the adjacent 
elements. The formulation follows standard application of the Principle of Virtual Work, and 
the only special consideration refers to the integration rules which correspond to Newton-
Cotes/Lobatto schemes (with integration points in between each pair of nodes) in order to 
avoid spurious oscillations in the resulting stress profiles. The iterative strategy at the finite 
element level includes a linearized version of the arc-length standard procedure based on the 
norm of displacement increments of all nodes, see Riks (1972) and Rots (1988). This strategy 
is convenient at mesostructural level of analysis, when the interfaces are disposed along all 
possible crack paths, in which initially cracks start opening all over the mesh and later most 
of them close and deformations localize into one main crack. A square concrete specimens 
with a 4x4 arrangements of aggregates is used, inserting a number of interface elements along 
the aggregate-matrix interface, and also across the mortar matrix in order to allow most 
relevant failure mechanisms. Because High Performance Concrete is characterized by a high 
strength mortar phase, aggregate cracking should be included as a potentially failure crack 
path, so interface elements were added inside the aggregate phase, see mesh topology at Fig. 
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(4) and (5), when the configuration of the different phases is illustrated. Continuum elements 
between interfaces are considered linear elastic. The original geometry for the aggregates 
distribution was taken from previous numerical work by Stankowski (1990), but the current 
mesh was rebuilt completely to provide straighter crack paths, following the ideas proposed 
by Vonk (1992) and Lopez Garello (1999). After introducing the interface paths, the resulting 
elastic cells were subdivided with triangular elements as needed to obtain a uniform element 
size. The considered material parameters for the different interfaces are presented in Table 1. 
Mortar-mortar and aggregate-mortar interfaces follow the viscoplastic formulation, while a 
null viscosity is assigned to the aggregate-aggregate interface joints (η = 0) to take into 
account the elasto-plastic failure behavior experimentally observed for the aggregate phase. A 
uniaxial compressive loading is considered, which has been applied in the form of a 
prescribed displacement at the top of the specimen, leaving lateral displacement free in the 
transverse direction. Sum of total reactions divided by the size of the specimen gives an 
average stress, which is plotted versus the resulting vertical strain, see Fig. (6).  Because the 
numerical simulation becomes very instable close to reaching the peak value, the 
computational simulations required the combination of several iterative strategies (full 
displacement control, arc-length and line search) in order to improve the stability of the 
numerical process. The results of the finite element tests for the three compressive tests 
present a linear pre-peak branch and a highly stepped (brittle) post-peak response, which 
agree well with the experimentally observed behavior, see among others Hanson et al (1977), 
Zia et al (1993), and Graybeal (2008). Post-process results obtained using GiD software is 
presented in Fig. (7) to (13) in terms of energy dissipation and stress at the interface joints of 
the different phases. After monitoring the internal variables at the interface integration points, 
it is clear that this numerical issue is related to the spatial distribution of the aggregate phase 
in this particular mesh, which indicates that a more refined mesh topology is needed in order 
to properly capture crack propagation between the different phases. This fact can be observed 
form the plots included in Fig. (7) to (13) for the three cases (57 MPa, 98 MPa and 115 MPa 
of strength) which illustrates the energy dissipation pattern and resultant stress distribution at 
the interface joints. Because the assignation of a higher strength to the mortar-mortar phase, 
the aggregate-aggregate interfaces concentrates the higher stresses and energy dissipation. At 
this point, we state the definition of internal material failure as related to the fail of any part of 
the internal mesostructure (aggregate phase in this case), despite its propagation to the rest of 
the mesh, see mesh detail at Fig. (14). Nevertheless, the obtained results indicate that with a 
proper parameter calibration, the constitutive formulation is able to numerically reproduce the 
expected peak strength and global material behavior of HPC specimens under uniaxial 
compressive loads. A deeper work need to be performed at numerical level in order to reduce 
the observed instabilities when the computational simulation reaches the post-peak branch of 
the problem (softening branch). These numerical difficulties are related to the high steeping 
of the softening curve, which in turn is due to the high energy dissipation that occurs at the 
aggregate to aggregate  and at the aggregate to mortar phases. 

 

 

 

 

Mecánica Computacional Vol XXIX, págs. 5285-5302 (2010) 5293

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
Table 1: Summary of interface material parameters 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4: 4x4 mesh topology 
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Figure 5: 4x4 Mesh – a) Interfaces inside the aggregate phase, b) Mortar-aggregates interfaces 
c) Mortar-mortar interfaces 
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Figure 6: Stress-Strain curves – Numerical simulations (Uniaxial compression tests) 

 
 

 
Figure 7:   Energy dissipation - Strength 57 MPa (at 70% of peak value) 
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Figure 8:   Energy dissipation - Strength 57 MPa (at peak) 

 

 
Figure 9: Stress distribution in joints - Strength 57 MPa (at peak) 
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Figure 10: Energy dissipation - Strength 98 MPa – (at peak) 

 

 
Figure 11: Stress distribution at joints - Strength 98 MPa – (at peak) 
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Figure 12:   Energy dissipation - Strength 115 MPa- (at peak) 

 

 
Figure 13: Stress distribution at joints - Strength 115 MPa – (at peak) 
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Figure 14: Aggregate Failure – mesh detail - Strength 115 MPa – (post-peak) 
 

5 CONCLUSIONS 

From the computational results we can conclude that both, mesh topology and constitutive 
phase calibration plays a relevant role in the mesomechanic numerical strategy in order to 
properly capture a well defined crack path for high performance concrete. This fact is related 
to the configuration of the aggregate phase and the material properties assigned to the 
interfacial transition zone (mortar-aggregate transition phase). Moreover, crack propagation at 
meso-level of observation is strongly related to this issue, which in turn results in the 
numerical instability of the whole numerical process. Clearly, a more intensive model 
calibration of the interfacial transition zone is needed to properly represent the post-peak 
material behavior. Despite these numerical aspects, the proposed procedure seems to be a 
very promising tool to study material and structural failure of different concrete qualities, 
from normal strength concrete (NSC) to High Performance Concrete (HPC), and to 
investigate the incidence of the concrete internal heterogeneity and strength of each phase in 
the material/structural response.  
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