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Abstract. Structural response of concrete strongly depends on the nature of applied loads. Time 
varying loads can induce rate/time effects in concrete like increasing strength (rate effect) or basic 
creep deformation (under sustained loads). In this paper we present a computational approach that 
numerically simulates concrete mesostructure like a two-phase material. Each material phase is 
represented by continuum and interface finite elements which allow to track the crack trajectories 
under different loading scenarios. A specific rate-dependent interface constitutive law is included in 
the model in order to capture the rate/time effects and their incidence in the global structural response 
of the specimen. 
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1 INTRODUCTION 

 
Since several decades concrete has been used as structural material in the field of civil 

engineering. It is then clear the necessity of an adequate understanding of its behavior under 
load. Many researchers have studied and still study concrete from both experimental and 
theoretical point of view. Nevertheless the mechanical behavior of concrete is still not 
completely understood especially as far as cracking and failure are involved. The 
heterogeneity coming from the coupling between aggregate and cement paste leads to a non 
uniform distribution of the applied load in the internal mesostructure of concrete material. 
This lack of homogeneity in turn implies a gradual localization of deformation and material 
rupture. Cracking localization is the main reason of the large number of different responses 
given by concrete under different loading conditions. Despite the complexity of static 
concrete response, a significant effort has been made to properly capture rate/time effects in 
concrete materials. Several authors studied both aspects of material behavior, but always 
focusing on one of those topics at time, and frequently at macro-level of observation, by 
considering phenomenological constitutive models. In the last years, the increasing capacity 
of modern digital computers allows analyzing computational problems at different levels of 
observation, generally with an increasing problem size when the scale becomes smaller. In 
this work we present an integrated approach to face the rate/time concrete sensitivity problem 
by using the Finite Element Technique at meso-level of observation. This approach is 
characterized by inserting interface finite elements (zero-thickness-four node finite elements 
or joint elements) between the edges of conventional finite elements to represent potential 
crack lines following Hillerborg’s Fictitious Crack Model (1976) in order to properly account 
fracture behavior, detection of explicit crack paths, aggregate-mortar phases interaction and 
energy dissipation of concrete and cementitious materials under static and dynamic loading 
scenarios. Here, the term “dynamic” means that the proposed model is capable to take into 
account different loading velocities or loading rates, and also the relaxation/creep behavior 
under sustained loads by using a unique visco-elastoplastic constitutive law at the interfaces, 
which allows to run computer simulations of both quasi-static and  rate/time loading cases  
using an integrated approach.  

2 VISCOELASTOPLASTIC LAW FOR ENGINEERING MATERIALS 

In order to take into account rate/time effects, several models has been proposed, see a.o. 
Duvaut & Lions (1972), Bodner & Partom (1972), Perzyna (1963), (1966). For engineering 
materials, the most widely accepted rate-dependent constitutive theory is the Perzyna’s type 
elasto-viscoplastic material formulation. The main feature of this model is that the rate-
independent yield function used for describing the viscoplastic strain can become larger than 
zero, which effect is known as “overstress”, see Figures 1 and 2. The characteristics of the 
Perzyna model have been addressed by several authors, see a.o. Simo (1989), Sluys (1992), 
Wang (1997), Simo & Hughes, (1998), Etse & Willam (1999), Carosio et al. (2001), Etse & 
Carosio (2002). Restricting our analysis to the small-strain case, the total strain rate ε  can be 
decoupled into an elastic and a viscoplastic part which accounts for both irreversible and 
viscous deformation, 
 

e vp= +ε ε ε          (1) 
 
Like in classical elasto-plasticity theory, the stress rate σ is related to the strain rate by the 
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constitutive relation 

 
Figure 1: Perzyna’s elasto-viscoplastic rheological device 

  : ( )= − = −e vp vpσ σ σ E ε ε                                                      (2) 
 
The evolution of the viscoplastic strain rate is defined as (Perzyna, 1966) 
 

                  1( , , ) ( )vp F Fψ ψ
η

= =ε g σ m                                               (3) 

                                                      : : F∂
= =

∂
m A n A

σ
                                                             (4) 

 
with ( )Fψ a dimensionless monotonically increasing over-stress function, η the viscosity 
parameter and m the viscoplastic potential gradient defined as a modification of the gradient 
tensor n of the yield surface F by means of the fourth order transformation tensor A. In this 
work, the following widely-used expression for ( )Fψ  is adopted, see a.o. Simo (1989), Sluys 
(1992), Wang et al.  (1997), Simo & Hughes (1998), Etse & Willam (1999) 

0

( , )( )
N

FF
F

ψ
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

σ q             (5) 

 
In equation (5),  F = F (σ,q) is a convex yield function which defines the limit of the elastic 
domain, F0 is a normalizing factor, usually chosen equal to the initial yield limit and N a 
constant defining the order of the Perzyna’s viscoplatic formulation. Higher values of the 
exponent N leads to more rate-sensitive models, while the McCauley brackets in Equation (3) 
defines the features of the over-stress function as 

                                                      
  if  0

( )
0    if  0
F F

F
F

ψ
>⎧

= ⎨ ≤⎩
                                                 (6) 

 
The evolution law for the set of hardening/softening variables q is defined as 
 

                         1 ( ) :Fψ
η

=q H m                                                         (7) 
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Figure 2: Over-stress concept in stress space 
 
being H a suitable tensorial function of the state variables. In the continuous formulation, the 
previous set of equations is complemented by a consistency parameter λ , defined as an 
increasing function of the over-stress 

( )Fψ
λ

η
=                                                                    (8) 

 
The evolution equations (3) and (7) can be expressed quite similar to elasto-plasticity theory 
as 
                              vp λ=ε m                                                                     (9) 
         
                            :λ λ= =q H m h                                                        (10) 
 
being h = H:m . From equations (3) and (9) follows (Ponthot (1995), Etse and Willam 
(1999)) 

1 1( )vpF ψ η ψ λη− −
⎛ ⎞
⎜ ⎟= =
⎜ ⎟
⎝ ⎠

ε
m

                                        (11) 

The new constraint condition, valid to the viscoplastic range takes now the form   
 
                         1( ) 0F F ψ λη−= − =                                                    (12) 
 
Equation (12) can be viewed like a generalization of the inviscid yield condition F=0 for rate-
dependent Perzyna type materials. The name continuous formulation is due to the fact that the 
condition η = 0 (without viscosity effect) leads to the elastoplastic yield condition F=0. 
Moreover, from equation (8) follows that when 0η →  the consistency parameter remains 
finite and positive since also the over-stress goes to zero. The other extreme case, η → ∞  
leads to the inequality 0F <  for every possible stress state, indicating that only elastic 
response may be activated. The constraint condition defined by equation (12) allows a 
generalization of the Kuhn-Tucker conditions which may be now written as 
 

Q(σij) f (σij) 

F (σij)

σij

P 

Elastic regime

Viscous regime

εij
vp

overstress
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                       0      0       0F Fλ λ= ≥ ≤                                             (13) 
 
Finally, the viscoplastic consistency condition expands into 

                                                           
: 0F r sλ λ= + + =n σ                                                 (14) 

 
where 

                                                           
1( )F Fr

q q q
ψ λη−∂ ∂ ∂

= = −
∂ ∂ ∂

                                           (15) 

 
and 

1( )s ϕ ηλ
λ

−∂
= −

∂
                                                             (16) 

3 RATE DEPENDENT INTERFACE MODEL 

In this section the rate-dependent extension of the interface model by Carol et al (1997) , 
and Lopez (1999) is summarized. The viscoplastic yield condition for the interface 
constitutive model can be expressed as 
 
                                                  2 2 2 1/( ) ( ) ( ) NF c tg c tgσ τ φ χ φ λη= − − + − −                         (17) 
 
being σ and τ the normal and tangential stress components at the interface with χ  the traction 
strength (vertex of hyperbola), c the apparent cohesion (shear strength) and φ the friction 
angle. The energy dissipated during the time-dependent fracture process is defined as 
 

                         
 if  0vcr vcr vcrdW du dvσ τ σ= + ≥                               (18) 

 

                                                           tg1-    if 0vcr vcrdW dv σ φτ σ
τ

⎛ ⎞
= <⎜ ⎟

⎝ ⎠
                           (19) 

 
Whereby vcru and vcrv are the normal and tangential (critical) rate-dependent rupture 
displacements, respectively. The viscoplastic flow is fully associated in tension while non-
associated in compression, according to 
                                                     
                                                             :=m A n                                                                    (20) 

       

2 ( )
2

F
tg c tgF

F
φ σ φσ

τ
τ

∂⎡ ⎤
⎢ ⎥ −⎡ ⎤∂∂ ⎢ ⎥= = = ⎢ ⎥∂ ∂⎢ ⎥ ⎣ ⎦
⎢ ⎥∂⎣ ⎦

n
σ

                              (21) 

 

                            
1 0

  if 0
0 1

σ
⎡ ⎤

= >⎢ ⎥
⎣ ⎦

A                                                (22) 
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and 

                                                               
0

  if 0
0 1

dil dil
cf fσ σ

⎡ ⎤
= <⎢ ⎥

⎣ ⎦
A                                     (23) 

 
being A a (2x2) transformation matrix, n the gradient to the viscoplastic yield surface and m 
the gradient to the viscoplastic potential function. The factors and  dil dil

cf fσ  accounts for the 
dilatancy effects in the compressive regime by means of a reduction of the normal component 
σ. The continuum viscoplasticity form of the rate dependent interface constitutive model is 
defined by the following set of equations: 
                                                                  
                              e vcr= +u u u                                                              (24) 
                              ( ) 1e −

=u E σ                                                            (25) 

                                                                ( )= − vcrσ E u u                                                         (26) 
 
where u  are the rate of the relative displacements which are decomposed into an elastic eu  
and a viscoplastic component vcru , E is the 2x2 elastic stiffness matrix which has a diagonal 
structure with non-zero terms equal to the constant assumed normal and shear stiffness 

NE = TE . The non-linear system of equations is solved using a Newton-Raphson iterative 
procedure in the framework of the Closest Point Projection Method (CPPM) starting from the 
expansion of a Taylor’s series truncated at the first term, see Etse et al (1999), (2000), (2002), 
Lorefice (2007) . 

                       
1

1 0
i

i i idFF F d
d

λ
λ

−

− ⎛ ⎞
= + ∆ =⎜ ⎟∆⎝ ⎠

                                      (27) 

 
from equation (27), the differential change in the elasto-viscoplastic multiplier is derived as 
 

11

1

i

i i dFd F
d

λ
λ

−−

−
⎡ ⎤⎛ ⎞

∆ = − ⎢ ⎥⎜ ⎟∆⎝ ⎠⎢ ⎥⎣ ⎦
                                         (28) 

 
Assuming the hypothesis: /d d tλ λ= ∆ ∆ , see Ponthot (1995), Wang (1997), Carosio & Etse 
(2001), the derivative of the viscoplastic yield function respect to λ∆  takes now the form  
 
 

                                                χ η
λ λ χ

⎛ ⎞⎛ ⎞∂⎛ ⎞= + + −⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟∆ ∂∆ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠

Tvcr
T

vcr vcr vcr
dF dF dc dF d dW

d dc d tdW dW d
σn m

u
         (29) 

 
Considering / md d λ∆ = −σ E m ,  with 
 

  1( )m E λ−= + ∆E M                                                       (30) 
 
whereby Em is the modified elastic matrix and /= ∂ ∂M m σ the Hessian matrix for the interface 
model  
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22 0

0 2
tg φ⎡ ⎤−

= ⎢ ⎥
−⎣ ⎦

M                                                         (31) 

 
Replacing the differential stress change with respect to λ∆  into equation (29), the expression 
for d∆λ results 
 

1
λ

χ η
χ

−

∆ = −
⎡ ⎤⎛ ⎞⎛ ⎞⎢ ⎥− + + −⎜ ⎟⎜ ⎟ ∆⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦

i
i

Tvcr
T m

vcr vcr vcr

Fd
dF dc dF d dW
dc d tdW dW d

n E m m
u

       (32) 

 from where the increments of the stress vector and state variables can be obtained. 

4 DYNAMIC AND RHEOLOGICAL CONCRETE BEHAVIOR 

4.1 Rate / time effects in concrete 

Frequently, concrete behavior is treated as rate/time-independent material. This approach 
is acceptable only as an approximation. To analyze the structural response of real structures, 
the rate/time-dependent phenomenon in concrete must be considered and included in the 
structural model. Time dependence is negligible in a certain range of load duration referred as 
short term (static) loading and pertaining to usual material tests lasting few hours. On the 
contrary it is important for dynamic (impact) loading lasting few milliseconds and for long-
term (sustained) loading lasting many years, see Figure 3.  

 
 
 
 
 
 
 
 

 
Figure 3: Strain rate under several loading cases (Bischoff & Perry, 1991) 

 
Under impact loading the influence of the loading rate on concrete behavior becomes an 

important parameter that must be taken into account in order to have reasonable results. It is 
generally reported that when the strain rate increases, the ultimate stress, the elastic (secant) 
modulus and the peak strain increase, whereas the apparent Poisson’s ratio and the post-peak 
slope branch decrease, becoming more steeper, brittle response. For concrete, the strain rate 
effect on peak strength is larger under tensile loads than when subjected to compressive loads, 
see Figure 4. On the other hand, under sustained loading concrete shows creep and visco-
elastoplastic deformations develop even at constant load, see Figures 5 and 6. It should be 
remarked that creep is a very challenging problem because it is influenced by many factors. 
The age of loading, the temperature and the water content (humidity) which in turn depends 
on the environmental conditions, strongly affect creep. Attainment of a satisfactory 
understanding of the physical mechanism has defied seven decades of determined research 

 

10‐8  10‐6  10‐4 10‐2 1 10 2 10 4 

Creep  Static  Seismic Impact Explotions 

              Strain rate [1/seg]
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efforts. Initially, the aging and the environmental effect were simply described by empirical 
functions. However, the test data are highly scattered and cover a limited range of conditions. 
Therefore, a model with reliable prediction capabilities can be formulated and identified from 
the data only if it is based on a good, physically justified theory.  
 

 
Figure 4: Rate effect on concrete strength. Comparison between numerical - experimental results: 

a) Compressive strength. b) Tensile strength. 
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Figure 5: Time dependent strains in concrete (shrinkage and creep strain under sustained load) 

 

 
Figure 6: Influence of stress level and sustained duration on concrete mechanical strain  

εci: instantaneous strain; εcp: creep strain (Gilbert, 1988) 
 

4.2 Concrete fracture as a rate/time dependent phenomenon 
 

As verified experimentally, the rate dependence of concrete deformations is originated by 
two different physical mechanisms. The first one is a dependence of the fracture process on 
the rate of crack opening, and the second is the viscoelastoplastic deformation of cement 
paste. For concrete both mechanisms are important but the former dominates at extreme strain 
rates under impact. Moreover also for moderate strain rates concrete creep (material viscous 
deformation) would be insufficient to describe some recent findings. It has been shown that 
concrete exhibits a reversal of softening into hardening after a sudden increase of the loading 
rate (Bazant et al. 1995; Bazant and Gettu 1992; Tandon et al. 1995). The strain rate 
influences also the fracture properties of concrete as well as its strength. According to 
experimental data by Bazant and Gettu (1992), the fracture energy increases for increasing 
loading rate. It is interesting to note that these findings implies the change of the characteristic 
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lengths for the different tests, with a decrease of the characteristic length for increasing rate of 
loading, see Wittmann (1984). As showed by Tandon et al (1995), concrete response is 
sensitive also to sudden changes (increase or decrease) of the loading rate. 

5 NUMERICAL SIMULATIONS  

5.1 Rate effects 

In order to illustrate model performance under different loading scenarios, we consider the 
patch of elements illustrated in Figure 7. This configuration allows investigating rate/time 
effects isolating the interface response from complex boundary conditions and mesh issues. 
For numerical simulations of rate effects a constant displacement rate is applied at the top 
nodes of the patch, while for time effects a sustained load or fixed displacement is imposed.  

 

 
Figure 7: Continuum and interface element arrangement for rate/time effects 

 
 

Numerical simulations are carried-out imposing a constant displacement rate (normal 
displacements) at the top nodes of the interface (configuration b) in Figure 7). Figure 8 
illustrate normal stress response under traction loads for different velocities for the following 
interface data set: EN =10000 MPa/m, 0χ =2.0 MPa, GI

f  = 0.03 N/mm, GII
f =10GI

f  and rest of 
parameters equal to zero. The apparent viscosity η =1.E6 MPa.seg, the time step and 
Perzyna’s exponent: dt = 5.E-3 sec and N=1 respectively. The range of displacement rate 
varies between 2.E-5 - 1.E-3 m/sec. The continuum elements are characterized by E =25000 
MPa and v =0.2. For increasing loading rates the peak strength increase, tending to the elasto-
plastic response when the displacement rate goes to zero, recovering the inviscid response. 
The influence of Perzyna’s exponent N in model response is presented in Figure 9, running 
numerical simulations for a fixed displacement rate 2.E-4 m/sec. As explained before, for 
increasing N values a more rate-sensitive formulation is obtained. The capability of the 
constitutive model to reproduce the experimental findings of Bazant and Gettu (1992), and 
Tandon et al (1995) were verified by imposing a sudden change (increase/decrease) in the 
loading rate at a point P located on the post-peak softening branch. In both cases the effect is 
properly captured, which is verified by the coincidence of the corresponding curves for the 
higher/lower velocities regarding the reference (central) curve test. In the case of a sudden 
increase in the displacement rate, the post-peak softening reverses to post-peak hardening 
followed by a second peak. Afterwards the curve coincides with the corresponding monotonic  
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Figure 8: Model response for different velocities – uniaxial traction test 

 
 

 
 

Figure 9: Model response for different velocities – uniaxial traction test 
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Figure 10: Numerical simulation - reversal of softening effect  

 
curve for the higher rate of loading. The second peak may be higher or lower than the first 
peak at the previous slow rate of loading, depending on the ratio of rate increase and the 
magnitude of load decrease prior to the increase of loading rate. In the case of a sudden 
decrease of the loading rate, the slope of the load-displacement diagram suddenly becomes 
steeper. A mild slope is resumed when the load-displacement curve gets the response for the 
lower loading rate. The obtained numerical results agree very well with the experimental 
findings by Tandon et al. (1995). Finally, the constitutive formulation is validated comparing 
model performance versus several experimental results available in the scientific literature, 
see Figure 11. In the framework of the viscoplastic flow theory the time dependence of the 
material parameters and particularly the over-strength is introduced by the apparent viscosity 
parameter η. To properly reproduce the complex variation of the concrete tensile over-
strength with a wide range of applied loading rates, a displacement rate-dependent description 
of the viscosity parameter needs to be incorporated. On the basis of Suaris and Shah dynamic 
tensile tests (1984, 1985), the following evolution law for the viscosity parameter is proposed 
in terms of the applied velocity, see Lorefice et al (2008a): 
 

0( ) ln( )η η η α β γ⎡ ⎤= = + +⎣ ⎦u u u                               (33) 

Whereby u  represents the displacement rate at the interface, and the coefficients are α = 
0.072, β = 0.719 and γ = 1.678, while the initial viscosity is η0 =1.E5 MPa.sec. The prediction 
of the interface model in terms of the tensile dynamic increase factor DIF is plotted in Figure 
11 and compared versus several experimental results. 
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u 0 = constant

TimeT = 0

� � = constant

TimeT = 0

(a) (b)

 
Figure 11: Dynamic increase factor in the uniaxial tensile tests. 

5.2 Relaxation and basic creep tests 

Model performance to simulate time dependent failure processes is illustrated by two 
different types of loading cases: a) A constant normal displacement is applied as showed in 
Figure 12 (a), which resulted to a constant strain state. The applied displacements are chosen 
in such a way that the corresponding internal stress state to be above the yield limit. In this 
case, the way that the stresses develop with respect to time is of interest. Usually such a 
loadcase goes by the name relaxation. (b) A constant force is applied to the top nodes of the 
interface element, see Figure 12 (b), which results to a constant stress state. The magnitude of 
the force is taken to be such, that the resulting stresses exceed the yield limit. Our interest in 
this case is to study the evolution of the displacements with respect to time. This model 
corresponds to that frequently found in the literature as basic creep case (deformation under 
sustained load). 
 

 

 

 

 
 
                                     
                                          
 

Figure 12: Constitutive tests: a) Relaxation b) Creep 
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In the following we will further explore the relaxation test for the following set of material 
parameters: EN  = 1.E7 MPa/m, 0χ = 2.0 MPa, Gf

I = 0.00003 MPa.m, Gf
II = 10Gf

I. For these 
parameters the yield limit in pure traction is 0χ = 2.0 MPa; therefore a displacement of 3.E-7 
m was applied which corresponds to a uniform stress state of 3.0 MPa. The results of the 
elastoplastic and the elasto-viscoplastic computations are shown in Figure 13. 
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                                                     Figure 13: Relaxation test – constitutive level 
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                                                     Figure 14: Relaxation test – evolution of state variable 
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In the same figure several cases are also plotted for different values of the viscosity parameter 
η. In this loadcase one may find interesting that the stresses cannot exceed the yield limit in 
the case of an elastoplastic material, while in the case of viscoplasticity it is in general 
allowed, to exceed this limit. In other words, the stresses that are developed at the interface in 
the case of viscoplasticity are allowed to be larger than the yield limit 0χ . This is a big 
advantage of viscoplasticity, since from the numerical point of view it can provide a better, 
more stable and reliable algorithm. From the engineering point of view it also provides a 
behavior coming closer to the terms, of short term and long term load carrying capacity. The 
evolution of the state variable is illustrated in figure 14. Also, for higher values of the 
viscosity parameter, higher times are needed to reach the limit value. In Figure 15 we 
compare the viscoelastic solution from a Maxwell chain versus the viscoplastic one for a 
natural relaxation time t* = η/E = 1. For this case and for comparison purposes, we introduce 
here two variants of the original model: a perfect viscoplastic model (with a plastic modulus 
H p = 0), and a hardening version (setting Hp > 0). We can see that while for perfect 
viscoplasticity the numerical solution relax the stress state until reach the elastoplastic 
strength limit, the viscoelastic case has no limit and spread to relax the stress state to zero. 
Furthermore, is clear the physical meaning of the viscosity parameter η, concerning the time 
that the system needs to relax the stress state until reach the final, elastoplastic solution. In the 
same plot the hardening and softening relaxation cases are also included. Contrarily to the 
perfect viscoplasticity case in which the stress state evolves until reach the strength limit, for 
the softening/hardening cases, the stress state returns to a different stress level that depends 
on the value of the plastic modulus Hp.  
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Figure 15: Comparison of different models for identical t*=η/E 
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6 CONCLUSIONS 

A unified, integrated approach has been presented to properly analyze both, rate and time 
effects in concrete and cementitious materials. The proposed constitutive model is formulated 
on the basis of an extension of the inviscid interface model by Carol et al (1997), by 
introducing the Perzyna’s viscoplasticity theory and the overstress concept. The resultant 
interface model was calibrated using a wide range of experimental results by a new rate-
dependent viscosity function which allows to properly fit the experimental results under 
dynamic tensile loading. Model capabilities were also tested by investigating the reversal of 
softening effect, achieving reasonable results which qualitative agree with the available 
experiments by Tandon et al (1995). Finally, time-dependent problems were addressed by 
exploring the numerical response under creep/relaxation tests. From these results, it is clear 
that the proposed formulation, with a proper calibration is a very promising numerical tool to 
include rate/time effects in the structural analysis of real concrete structures, contributing to a 
better understanding of material non-linearity, capture of increasing strength under increasing 
strain rates, and rate-dependent post-peak concrete behavior in the velocity range that exclude 
inertial effects. 
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