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Abstract. A 3D fluid-structure interaction (FSI) problem in a compliant vessel, consisting of a hyper-
elastic structure model coupled with a shear-thinning generalized Newtonian fluid, is used to represent
the pressure wave propagation that characterizes blood flow in arteries, and several absorbing boundary
conditions are analyzed in order to avoid the numerical spurious reflections due to the truncation of the
domain. First, the 3D FSI model is coupled to a 1D hyperbolic model that captures very well the pulse
propagation nature of blood flow in arteries. This coupling has been shown to be stable at the continuous
level, and the 1D model proved to effectively absorb the pressure wave outgoing the 3D domain. After-
ward, other absorbing boundary conditions, based on a simple analysis of the characteristics of the 1D
hyperbolic model, are imposed directly on the outflow sections of the 3D FSI problem. These conditions,
which can be identified with linear resistance models, relate the mean pressure with the volume flow rate
at the artificial section at hand. Numerical results comparing the 3D-1D coupling and the different ab-
sorbing conditions in both idealized and realistic geometries, reconstructed from medical imaging, are
discussed.
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1 INTRODUCTION

Mathematical modeling and numerical simulation of the human cardiovascular system are
nowadays very important tools in understanding the genesis and development of cardiovascular
diseases, which are one of the leading causes of death in developed countries. However, this is a
difficult task due to the geometrical and functional complexity of the vascular system (Formag-
gia et al., 2009). On one hand, detailed 3D information on the blood flow field in patient-specific
geometries, is required to understand cardiovascular pathologies. On the other hand, realistic
simulations of blood flow in arteries cannot be performed in extensive 3D regions, due to its
geometrical complexity and computational cost. However, the arterial system is closed, and the
truncation of the physical domain should be performed without loosing information on the flow
behavior in the systemic circulation. Moreover, blood is a non-Newtonian fluid interacting with
the artery wall, that moves under the blood load, giving rise to propagating pressure waves that
characterize blood flow in arteries (Formaggia et al., 2009).

Blood is a concentrated suspension of red blood cells (RBC), white blood cells, and platelets
in plasma, having a complex rheological behavior. One of the main non-Newtonian properties
of blood is its shear-thinning behavior, which is largely explained by the RBCs ability to aggre-
gate into 3D microstructures (rouleaux) at low shear rates, and their tendency to align with the
flow field at high shear rates (Chien et al., 1970; Robertson et al., 2008; Formaggia et al., 2009).
In this work blood is considered as an inelastic shear-thinning fluid, modeled by the Carreau
non-Newtonian law for the viscosity, fitted to experimental data (Janela et al., 2010b).

The vascular wall is an inhomogeneous multi-layer nonlinear material, which deforms under
the action of blood flow. It is a very complex structure and in vivo data are difficult to obtain,
so that the devision of appropriate constitutive laws is still an open problem. For this reason,
many studies of the hemodynamics in arteries are carried out in rigid domains, without taking
into account the motion of the artery wall. Here, following previous works (Fernández and
Moubachir, 2005; Formaggia et al., 2007; Janela et al., 2010a,b; Formaggia et al., 2009), the
artery wall is modeled as a nearly incompressible 3D hyperelastic material.

The mathematical and numerical analysis of the highly non-linear FSI problem is still a
field of active research, and FSI problems with non-Newtonian blood models are practically not
addressed in literature. Recent contributions can be found in Janela et al. (2010a,b). In this
study a fully implicit partitioned numerical method (see Fernández and Moubachir, 2005) is
used, consisting in solving the FSI coupling by iterating the fluid and structure sub-problems,
supplied with suitable (Dirichlet to Neumann) matching conditions.

The complexity and computational cost of 3D FSI simulations make it necessary to truncate
the computational domain of interest, originating the so-called artificial boundary sections. In
order to accurately represent the wave propagation phenomena, absorbing boundary conditions
should be considered in the outflow artificial boundaries, so that spurious reflections due to the
truncation of the domain are avoided. In the present work several types of artificial boundary
conditions are taken into account and compared. First, the 3D FSI non-Newtonian problem is
coupled to a 1D hyperbolic model (Formaggia et al., 2007; Janela et al., 2010b), obtained from
the 3D FSI model by making simplifying assumptions and averaging over the cross section
of the artery (Formaggia and Veneziani, 2003). The 1D model captures very well the wave
propagation of blood flow in arteries, and coupled to the 3D FSI model effectively acts as
absorbing boundary condition (Janela et al., 2010b; Formaggia et al., 2007). Moreover, 1D
models can represent large arterial trees (Alastruey et al., 2007) and be coupled both at the
inflow and outflow of the 3D FSI model (Moura, 2007), so that the 3D model can be embedded
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into large 1D networks. Secondly, absorbing boundary conditions obtained from the 1D model
are devised and imposed directly into the 3D FSI problem (Janela et al., 2010b). These are
derived by canceling the 1D incoming characteristic, obtaining a non linear condition between
flow rate and mean pressure. A linear absorbing boundary condition, that can be identified with
a resistance model, is also derived.

The several boundary conditions are compared in a cylindrical tube, and also applied to an
anatomically realistic geometry of a carotid bifurcation. Numerical results demonstrate the
efficiency of the conditions proposed to absorb outgoing pressure waves of the 3D domain,
predicting its future application to hemodynamic simulations in compliant vessels.

2 THE 3D NON-NEWTONIAN FSI MODEL

In this study blood is modeled as an incompressible Carreau generalized Newtonian fluid,
governed by the following momentum and continuity equations, written in Eulerian coordinates:

 ρ

(
∂u

∂t
+ u · ∇u

)
+∇p− div

(
µ(γ̇)(∇u +∇uT )

)
= 0, in Ωt,∀t ∈ I

divu = 0, in Ωt,∀t ∈ I
(1)

for the time interval I =]0, T ], with T > 0. These equations will be coupled with a structure
model, and the domain where they are defined will change in time. The reference domain is
denoted by Ω0, while Ωt is the current domain, with t ∈ I . In (1) ρ is the constant fluid density,
u and p are the fluid unknown velocity and pressure, µ is the shear dependent viscosity, and

γ̇ =
√

1
2
(∇u +∇uT ) : (∇u +∇uT ) is the shear rate. The Carreau viscosity function is given

by:
µ(γ̇) = µ∞ + (µ0 − µ∞)(1 + (λγ̇)2)(n−1)/2,

where parameters µ0, µ∞, λ, and n are obtained by fitting experimental data. The experimental
viscosity data used were obtained by Prof. M.V. Kameneva (Univ. Pittsburgh) as described in
Janela et al. (2010b), obtaining µ0 = 0.456 Poi, µ∞ = 0.032 Poi, λ = 10.03, and n = 0.344.
In Figure 1 is plotted the Carreau viscosity function with these parameters.

As initial condition we take u = u0 in Ω0. The boundary condition on the physical wall,
denoted Γtw, will be given by the coupling with the structure model. On the artificial sections,
the boundary conditions must account for the remaining parts of the system. For this matter,
first reduced 1D models will be coupled to the 3D, afterward proper absorbing conditions will
be set up.

The vessel wall is assumed to be a 3D compressible elastic material. It is defined in the 3D
solid domain, varying in time, and denoted as Σt, being Σ0 its reference configuration. The
equations are given, in Lagrangian coordinates, by (see Ciarlet, 2004):

ρw
∂2η

∂t2
− div0 (P) = 0, in Σ0,∀t ∈ I, (2)

where η is the unknown displacement vector, ρw is the wall density, div0 is the divergence
operator with respect to the Lagrangian coordinates, and P is the first Piola-Kirchhoff tensor.

We consider a St Venant-Kirchhoff material (Ciarlet, 2004, Section 3.9), for which the re-
sponse function for the second Piola-Kirchhoff tensor is linear as a function of the Green - St
Venant strain tensor e = 1

2

(
∇T

0 η +∇0η
)
: S = λ tr(e)I + 2µe, with λ = Eξ

(1+ξ)(1−2ξ)
and
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Figure 1: Apparent viscosity as a function of shear rate for the Carreau model.

µ = E
2(1+ξ)

the Lamé constants, being E the Young modulus and ξ the Poisson ratio. In this
study we consider a nearly incompressible material by setting a Poisson ratio close to 0.5 and a
constant mass density ρw.

The initial condition for (2) is set to be η = η0, and η̇ = η̇0 in Σ0, verifying the compatibility
constraint η̇0 = u0, on Γtw. At the exterior boundary we assume that the stress is zero.

At the interface with the fluid Γ0
w, the boundary condition is given by the fluid-structure

interaction (FSI) coupling, which is performed through the following matching conditions:

u = η̇, ∀t ∈ I, on Γtw, (3)
− (det∇0η)σ(u, P )

(
∇0
−Tη

)
· n0 = P(η) · n0, ∀t ∈ I, on Γ0

w, (4)

where ∇0 indicates the gradient with respect to the Lagrangian coordinates, and n0 is the out-
ward unit vector to Γ0

w. The first is the no-slip conditions and it is imposed on the fluid model,
thus being written in Eulerian coordinates, while the later establishes the continuity of the nor-
mal stresses and it is imposed on the solid model, thus being written in the Lagrangian frame
through the Piola transform.

An energy estimate for this 3D FSI non-Newtonian coupling has been demonstrated in Janela
et al. (2010a).

3 ABSORBING BOUNDARY CONDITONS

In this Section we focus on the prescription of boundary conditions at the artificial sections
of the 3D FSI non-Newtonian problem previously introduced. We will mainly discuss absorb-
ing boundary conditions, which are essential at outflow sections. These are typically at the
downstream (closer to systemic circulation). Nevertheless, since blood flow in arteries is pul-
satile, due to the action of the heart and the compliance of the vessels, downstream sections can
experience incoming flow. Notice that the techniques presented in the sequel can be applied at
both inflow or outflow sections, whence, at both upstream (closer to the heart) or downstream
boundaries. For the sake of simplicity, and without loss of generality, a prescribed inflow veloc-
ity or pressure (normal stress) is considered at the inflow upstream section, while the presented
absorbing conditions will be taken at the outflow boundary.
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3.1 The 1D model

The 1D model is derived from the 3D FSI model by making simplifying assumptions and
integrating over the artery cross section (Formaggia and Veneziani, 2003). Assuming a flat
velocity profile, the 1D model for blood flow in a cylindrical vessel is given by the following
system of PDEs: 

∂A

∂t
+
∂Q

∂z
= 0,

∀t ∈ I,
∂Q

∂t
+

∂

∂z

(
Q2

A

)
+
A

ρ

∂p

∂z
= −Kr

Q

A
,

(5)

where z is the axial coordinate, ρ is the constant fluid density, Kr is the friction coefficient and
it is defined by Kr = 8πν, with ν the blood dynamic viscosity. In this work the 1D model does
not account for the shear-thinning behavior of blood, being the viscosity ν constant.

The unknowns are the cross-section area A(z), the flow rate Q(z), and the mean pressure
p(z). We endow system (5) with the simple pressure-area algebraic relation (Formaggia and
Veneziani, 2003; Formaggia et al., 2007, 2009):

p = β

√
A−
√
A0

A0

, with β =

√
πh0E

1− ξ2
, (6)

with A0 the cross-section reference area at rest, E the Young modulus, h0 the wall thickness,
and ξ the Poisson ratio. Both A0 and β may vary along the vessel length z.

System (5) with (6) is hyperbolic, having two distinct eigenvalues λ1,2 = u±
√

β
2ρA0

A
1
4 , with

u = Q
A

the mean velocity. Under physiological conditions in hemodynamics, the eigenvalues
λ1,2 have opposite signs, i.e. the flow is sub-critical (see Formaggia and Veneziani, 2003). Their
corresponding eigenfunctions or characteristic variables are:

W1,2(Q,A) = u± 4

√
β

2ρA0

(
A

1
4 − A

1
4
0

)
, (7)

being W1 the incoming characteristic at the left extremity (inflow) of the vessel, and W2 the
incoming characteristic at the right extremity (outflow) of the vessel.

System (5)-(6) is provided with initial, A(0, ·) = A0(·), and Q(0, ·) = Q0(·), and boundary
conditions, W1(t) = g1(t), at the left extremity, and W2(t) = g2(t), at the right extremity.

3.2 Coupling with the 1D model

In order to prescribe adequate boundary conditions, the 3D outflow section is coupled to
a 1D model, that can represent a singular cylinder or a network of arteries. The coupling is
performed imposing the continuity of the normal stresses and the fluxes:

pn− 2µ(γ̇)D(u) · n =
(
p1D +

ρ

2
|u1D|2

)
n, (8)

Q3D =

∫
Γt
a

u · ndγ = Q1D. (9)

In Janela et al. (2010b) an energy estimate is derived for this 3D FSI non-Newtonian - 1D
coupling. There the authors reformulate the Navier-Stokes equations (1) obtaining a different
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matching condition (8), establishing the continuity of the total normal stresses instead of the
normal stresses. As discussed in Formaggia et al. (2007), and Janela et al. (2010b, Remark 5.2),
although the reformulation of the Navier-Stokes equations proposed in Janela et al. (2010b) is
essential to obtain the stability result, in hemodynamics the term ρ

2
|u|2 is negligible compared

to the pressure values. This means that in practice, for blood flow simulations, the standard
Navier-Stokes formulation considered in this study works equally well with condition (8) when
coupled to the 1D model.

The 3D-1D coupling can be performed imposing (8) into the 3D problem, and (9) into the 1D
model, or vice-versa. We consider the former approach (Janela et al., 2010b): the total pressure
computed on the 1D model is provided to the 3D model through a constant Neumann boundary
condition (Heywood et al., 1996), while the flow rate computed on the 3D artificial section is
prescribed at the 1D inflow boundary.

At the right extremity of the 1D model the incoming characteristic is set to zero, W2(Q, p̄) =
0, so that only the exiting characteristic remains, eliminating the spurious reflections that might
enter the domain. In this way, an absorbing boundary condition is prescribed at the 1D outflow
boundary.

A staggered numerical algorithm is used, consisting of an iterative procedure between the 3D
FSI and 1D subproblems. This iterative scheme can be considered explicit or implicit (Moura,
2007). Numerical tests already performed (see Formaggia et al., 2007; Moura, 2007) in the
Newtonian case show that, as long as the continuity of the area is not forced at the 3D-1D
coupling interface, the explicit scheme remains stable. Whenever the continuity of the area is
required and forced as described in Formaggia et al. (2007); Moura (2007), an implicit 3D-1D
scheme must be applied. That is the case when using real geometries coming from medical
data, since they always have some curvature.

3.3 Other boundary conditions

Different absorbing boundary conditions can be obtained by imposing the absorbing bound-
ary condition of the 1D outflow point, W2(Q, p̄) = 0, directly on the 3D FSI outflow section
(Janela et al., 2010b; Nobile and Vergara, 2008). In this case there is no need for solving a 1D
problem.

From the expression of W2(Q, p̄) given by (7) and the adopted pressure-area relation (6),
condition W2(Q, p̄) = 0 is equivalent to following non linear formulae:√

8β

ρA0

(
p̄
A0

β
+
√
A0

)2
(√

p̄
A0

β
+
√
A0 − A1/4

0

)
= Q. (10)

Given the value of the flow rate, Q, the mean pressure, p̄, to be prescribed at the outflow 3D
FSI section can be easily computed by means of few iterations with the Newton method. From
now on, condition (10) will be referred to as non-linear absorbing condition (NAC).

It has been shown that, for physiological values of the Young modulus for the arterial tissue,
relation (10) between mean pressure p̄ and flow rateQ is almost linear (see Janela et al., 2010b).
Having this in mind, a linear boundary condition relating mean pressure and flow rate can be
derived considering the first order Taylor approximation of the right hand side of (10) around
zero, as described in Janela et al. (2010b):

Q ≈
√

2A
5/4
0√
ρβ

p̄. (11)
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Expression (11) provides a way of setting the proper resistance at the artificial section of
interest, so that the outgoing wave is absorbed. Indeed, a boundary condition of this type, where
the mean pressure to be prescribed is linearly computed from the flow rate on that section, can
be seen as a coupling between the 3D FSI problem and a simple RL lumped parameters model
(see for instance Janela et al. (2010c)). Condition (11) will be referred to as linear absorbing
condition (LAC).

In both NAC and LAC conditions, the pressure to be imposed on the 3D FSI changes in time
with the flow rate Q. If these conditions are imposed implicitly, we obtain a Robin boundary
condition on the 3D FSI artificial section. In this study this complication is avoided using the
flow rate at the previous time step to obtain the mean pressure value. This simplification can
introduce a phase shift, that should be of the same order of that introduced when using an
explicit 3D-1D coupling (Moura, 2007). However, the impact of the explicit algorithms should
be further analyzed, the numerical results carried out so far demonstrate the effectiveness of
these conditions in both explicit and implicit situations.

Regarding boundary conditions for the solid artificial sections, when taking NAC or LAC
boundary conditions, the area can be forced using the same procedure applied to the 3D-1D
coupling (Moura, 2007; Formaggia et al., 2007).

Finally, as discussed in Janela et al. (2010b, Remark 6.1), although absorbing boundary
conditions can be directly imposed on the 3D FSI model, the coupling with the 1D problem
provides physiological information that a strictly absorbing condition does not. In fact, the
1D model allows to account for the global circulation, including for instance upstream and
downstream bifurcations.

4 NUMERICAL RESULTS

The non-linear 3D FSI non-Newtonian coupling is solved implicitly through a staggered
algorithm using a quasi-Newton method adapted from Fernández and Moubachir (2005), ne-
glecting the shape derivatives.

The time discretization of the structure is carried out through the Newmark mid-point rule
(see for instance Moura, 2007). The fluid equations are discretized in time by means of the
implicit Euler scheme. The fluid convective and viscous terms are discretized in a semi-implicit
way (see Janela et al., 2010a,b). The Arbitrary Lagrangian Eulerian (ALE) formulation is used
to account for the evolution of the computational domain, which changes in time due to the FSI
coupling (see for instance Nobile, 2001, and references therein). The ALE approach is based
on the construction of an appropriate mapping At : Ω0 → Ωt, (x̂, t) 7→ x = At(x̂), from the
reference domain Ω0, to the current one Ωt. This technique allows to overcome the mismatch on
the coordinate systems between the fluid (Eulerian coordinates) and the solid (Lagrangian coor-
dinates), by simply reformulating the Eulerian time derivative of the fluid momentum equation
into the ALE time derivative: ∂u

∂t
= ∂u

∂t

∣∣
x̂
−(w·∇)u, with w = ∂At

∂t
◦(At)−1 the domain or mesh

velocity in the current configuration Ωt. In particular At := IΩ0 + ηf , where ηf = Ext(η|Γ0
w
),

being Ext an arbitrary extension of the solid displacement η over the fluid reference domain
Ω0, which in this work is the harmonic extension of the fluid domain, imposed through condi-
tion (3). We remark that the ALE formulation is fundamental at the discrete level, beacuse it
allows to follow the evolution of quantities associated to the moving mesh nodes that were at
a different place at the previous time step. However, it is not essential at the continuous level,
since in the continuous case the Eulerian time derivative is well defined in all the domain Ωt,
and the problem formulation (1)-(2)-(3)-(4) is thus transparent.
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The fluid space discretization is carried out by means of a P1-P1 stabilized streamline dif-
fusion finite element method (Hansbo and Szepessy, 1990), and the structure is approximated
with P1 finite elements.

The 3D FSI-1D coupling is performed through a staggered algorithm, subiterating between
the 3D FSI and 1D sub-problems (Moura, 2007). The 1D problem is solved by means of the
Lax-Wendroff finite element method (Formaggia and Veneziani, 2003). It consists of an explicit
time discretization algorithm, hence there is a CFL condition to be verified, making the time step
of the 1D problem smaller than the time step of the 3D FSI one. Since the 3D FSI algorithm has
a high computational cost, two different time steps are considered for each sub-problem, being
the 1D model advanced with constant boundary conditions until the 3D time step is reached
(Moura, 2007; Janela et al., 2010b).

4.1 An academic test case: the cylinder

For comparison purposes, the first numerical test consists of a 3D cylinder with 5cm length.
The lumen radius is 0.5cm, and wall thickness 0.1cm. The fluid density is ρ = 1g/cm3,
while the structure parameters are: density ρw = 1.2g/cm3, Poisson ratio ξ = 0.3, and Young
modulus E = 3 × 106dyne/cm2. A pressure of 1.3332 × 104dyne/cm2 (10mmHg), during
5× 10−3s is imposed at the 3D fluid inlet. The vessel wall is considered clamped at inflow, and
free to move radially at outflow.

Three different test cases are studied, corresponding to the three different boundary condi-
tions described above. In the case of the 3D FSI - 1D coupling, the 1D model consists of a single
tube with the same properties of the 3D FSI model, and a constant viscosity of ν = 0.04 Poi.
The 3D time step is 10−3 s, while the 1D time step is 10−5 s.

From the numerical results, the differences in the 3D FSI non-Newtonian solutions obtained
with the NAC and LAC outflow conditions were negligible (Janela et al., 2010b). Thus, only
the results for the LAC absorbing condition are reported.

In Figure 2 (Janela et al., 2010b) are plotted errors in the cross sectional area induced by each
set of boundary conditions, with respect to the reference solution considered that of a 3D FSI
cylinder with 10cm length. The standard solution is that obtained in the 5cm cylinder using a
standard zero traction boundary condition at the outlet. Figure 3 (Janela et al., 2010b) displays
the pressure distribution, as well as the deformation of the domain, amplified by a factor of 10,
on the 3D FSI region for the three test cases. From the results, it is clear that both the 3D-1D
coupling and LAC conditions absorb the pulse wave of the 3D FSI problem, while the standard
boundary condition leads to expected unphysiological pressure wave reflections.

4.2 A realistic test case: the carotid bifurcation

In order to show that the techniques here presented can be applied to any real geometry
coming from medical data, an anatomically 3D realistic compliant model of a human carotid
bifurcation is considered (Janela et al., 2010b). The physical properties of the problem, as well
as the inflow data and time discretization, are the same as in the previous section, with the
exception that here the wall thickness is 0.075cm.

Again, three test cases are considered: standard, LAC condition, and 3D-1D coupling. The
later consists of coupling each downstream section of the bifurcation with a 1D single tube of
5cm length and radius equal to the 3D radius at which they are coupled. The remaining 1D
properties remain as before. At the 3D outflow section the continuity of the area is imposed.

Although no quantitative comparisons can be made in this case, since we do not have a
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Figure 2: Relative error of the computed cross-sectional area for the LAC, Standard and 3D-1D outflow conditions,
with respect to the reference solution in the longer tube

reference solution, Figure 4 demonstrates that both LAC and 3D-1D coupling strategies work
very well in absorbing the pressure wave outgoing the 3D model, in accordance to the results
presented in the previous section. We can hence conclude that the boundary conditions here
presented can be effectively applied in realistic numerical simulations of medical interest.

5 CONCLUSIONS

Different absorbing boundary conditions were presented for a 3D FSI non-Newtonian model
for blood flow in arteries, including the coupling of the 3D FSI problem with a 1D model, as
well as absorbing boundary conditions to be imposed directly on the 3D FSI outflow section.
The simpler boundary conditions, without the coupling with the 1D, proved to effectively ab-
sorb the outgoing pressure wave of the 3D FSI model, even when using real patient-specific
geometries. Whence, we conclude that the 3D-1D coupling should only be used when a wider
arterial network has to be incorporated in the simulations. When the goal is strictly to elimi-
nate the spurious reflections, the absorbing LAC or NAC conditions are efficient and simpler to
implement, even in already existing CFD codes.

REFERENCES

Alastruey J., Parker K., Peiró J., Byrd S., and Sherwin S. Modelling the circle of Willis to assess
the effects of anatomical variations and occlusions on cerebral flows. Journal of Biomechan-
ics, 40(8):1794–1805, 2007.

Chien S., Usami S., Dellenback R.J., and Gregersen M.I. Shear-dependent deformation of
erythrocytes in rheology of human blood. American Journal of Physiology, 219:136–142,
1970.

Ciarlet P. Mathematical Elasticity. Vol. 1: Three-Dimensional Elasticity. Elsevier, 2004.
Fernández M. and Moubachir M. A Newton method using exact Jacobian for solving fluid-

structure coupling. Computers & Structures, 83(2-3):127–142, 2005.
Formaggia L., Moura A., and Nobile F. On the stability of the coupling of 3D and 1D fluid-

structure interaction models for blood flow simulations. Math. Modell. Num. Anal. (M2AN),
41(4):743–769, 2007.

Formaggia L., Quarteroni A., and Veneziani A., editors. Cardiovascular Mathematics: Mod-

Mecánica Computacional Vol XXIX, págs. 5961-5971 (2010) 5969

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 3: 3D representation of the pressure distribution and computational domain at times t = 0.005 s (left),
t = 0.01 s (center), and t = 0.015 s (right). For each time step, from left to right: standard condition; LAC
condition; 3D-1D coupling; reference solution.

elling and simulation of the circulatory system. Springer-Verlag Italia, 2009.
Formaggia L. and Veneziani A. Reduced and multiscale models for the human cardiovascular

system. Lecture notes VKI Lecture Series 2003-07, Brussels, 2003.
Hansbo P. and Szepessy A. A velocity-pressure streamline diffusion finite element method

for the incompressible Navier-Stokes equations. Comput. Methods Appl. Mech. Engrg,
84(2):175–192, 1990.

Heywood J., Rannacher R., and Turek S. Artificial boundaries and flux and pressure conditions
for the incompressible Navier-Stokes equations. Int. J. Num. Meth. Fluids, 22:325–352, 1996.

Janela J., Moura A., and Sequeira A. A 3D non-Newtonian fluid-structure interaction model for
blood flow in arteries. J. Comput. Appl. Math., 234(9):2783–2791, 2010a.

Janela J., Moura A., and Sequeira A. Absorbing boundary conditions for a 3d non-newtonian
fluid-structure interaction model for blood flow in arteries. ijes, 2010b. In press.

Janela J., Moura A., and Sequeira A. Towards a geometrical multiscale approach for non-
Newtonian blood flow simulations. In Advances in Mathematical Fluid Mechanics, pages
295–310. Springer, Berlin, 2010c.

Moura A. The geometrical multiscale modelling of the cardiovascular system: coupling 3D
and 1D models. Ph.D. thesis, Politecnico di Milano, 2007.

Nobile F. Numerical approximation of fluid-structure interaction problems with application to
haemodynamics. Ph.D. thesis, Ecole Politechnique Federale de Lausanne, 2001.

Nobile F. and Vergara C. An effective fluid-structure interaction formulation for vascular dy-
namics by generalized Robin conditions. SIAM Journal of Scientific Computing, 30(2):731–
763, 2008.

Robertson A., Sequeira A., and Kameneva M. Hemorheology. In G.P. Galdi, R. Rannacher,
A. Robertson, and S. Turek, editors, Haemodynamical Flows: Modelling Analysis and Sim-
ulation, volume 37 of Oberwolfach Seminars, pages 63–120. Birkhauser, 2008.

A. SEQUEIRA, A. DE MOURA, J. JANELA5970

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Figure 4: 3D representation of the pressure distribution in a carotid bifurcation, at times t = 0.007 (left), t = 0.014
(center), and t = 0.021 (right), for the standard (left), 3D-1D coupling (center) and LAC (right) test cases.
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