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Abstract. We present a variant of the hyper-quadtree that divides &diménsional space according
to the hyperplanes associated to the principal compondriteealata in each hyperquadrant. Each of
the hyper-quadrants is a data partition in a multidimeraisnbspace, whose intrinsic dimensionality is
reduced from the root dimensionality by means of the pralafjomponents analysis, which discards the
irrelevant eigenvalues of the local covariance matrix. hi@ present method a component is irrelevant
if its length is smaller than, or comparable to, the locagirdata spacing. Thus, the covariance hyper-
quadtree is fully adaptive to the local dimensionality. Titeposed data-structure is used to compute
the anisotropic K nearest neighbors (KkNN), supported byMbakalanobis metric. As an application, we
used the present k nearest neighbors method to performylessmation over a noisy data distribution.
Such estimation method can be further incorporated to theo#md particle hydrodynamics, allowing
computer simulations of anisotropic fluid flows.
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1 INTRODUCTION

There is a number of problems in pattern recognition thatiireg efficient algorithms to
search for the k nearest neighbors (kNN) in multidimenditesture spaces, (e.gMcNames
2002, Yu et al, 200% D’haes et al.2003 Mouratidis et al.2009. For instance, color segmen-
tation of images requires a kNN algorithm to select partshef ¢context whose color range
matches a query in the color space (e 8ehrmann and Pries&998. Algorithms for cluster
analysis of multivariate data are better improved if baspdnukNN techniques for estimat-
ing both the class-independent and the class-conditioradzhpility densities (e.g.Tran et al,
2009. Moreover, many pattern recognition problems might regjdiensity estimation tech-
nigues, which are in turn efficiently performed if combiniigN algorithms with kernel inter-
polation, which is a generalization of Parzen’s windowsg.(eBishop 1995 Duda and Hart
1973.

Pattern recognition techniques are applied even in canteth concerns other than of the
usual information retrieval or scene analysis problemsalsua helper on solving the conser-
vation equations in computer simulation of fluid dynamicsr Fstance smoothed particle
hydrodynamics, SPKe.g., Gingold and Monaghari 977 Lucy, 1977 is a kernel-based tech-
nique to perform computer simulation of fluid dynamics ugbagticles as input vectors. The
technique simulates the continuum by means of particlepotated quantities, using similar
approaches of kernel based density estimation.

Usually smoothed particle hydrodynamics codes requireld &pproach to decide the ker-
nel parameters (e.gMarinho and Léping200Q Marinho et al, 2001), and references therein,
in order to perform both density estimation and interpalagpatial derivatives of the fluid
guantities as, for instance, pressure gradient, stresetelivergence and Maxwell’s stress di-
vergence. Also SPH is useful in plasma simulations as showlang et al(200§. Nowa-
days, SPH is an important particle method used even in incessjble fluid simulations as
presented irXu et al.(2009. Recent works have focused the full adaptivity of the digresti-
mation technique of SPH concerning the anisotropy in iaterfregimes as discussed formerly
by Owen et al(1998 and more recently biiu et al. (2006.

We introduce the concept of covariance hyper-quadtree axtmsion of the traditional
hyper-quadtree data structure, but now taking into accinaithe orthogonal directions through
which the space is subdivided into hyper-quadrants are yséhd covariance eigenvectors.
Moreover, this novel approach includes the principal congmds analysis method on the re-
duction of the data dimensionality in each node.

Covariance trees are a relatively novel concept on hiel@atbata decomposition. How-
ever, we may find in the literature that such terminology imebow mismatching both on its
purpose and in its data structure definition as it has beewrsiiar instance in the works of
Burschka et al(2004); Ma and Ji(1998.

From theBurschka et al(2004 view point, a covariance tree is a variant of the k-D tree, in
which the uniform orthogonal coordinate system is repldmgethe local coordinate system of
the covariance eigenvectors, centered on the center ofoh#ssdata partition (node). In other
contexts, covariance trees are defined to map the stratefgresltiscale stochastic processes
(e.g., Ribeiro et al, 20086.

A term nearly similar to covariance quadtrees was preseintéde literature in a previ-
ous work ofMinasny et al.(2007), but in a quite different approach, and still preserving th
traditional concept of quadtrees, in which the image téstseh is taken along a fixed set of
orthogonal directions.
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In the present work, we get ride of tlBeirschka et al(2004) idea of covariance tree, which
is a strict binary tree, to introduce the conceptovariance quadtreas a generalization of the
traditional quadtree rectangular image tessellakorkel and Bentley(1974. In the present
approach, each data partition has its own local orthogom@idinate system centered on the
local data expectation with the coordinate axes defined éydbal covariance eigenvectors,
which in turn are the normal directions of the clipping hyganes.

We apply the covariance quadtree to the KNN search using adaihmetric, which is a
variant of bothMcNames(2001) and D’haes et al. 2003 hereafter D’'DR) scheme. In the
D’DR method, the search data structure is limited to a badrmnary tree, which maps the
recursive split of each data partition by the median hy@g@Wwhose normal is the covariance’s
principal component (see Figures 1 and 2 of D’'DR). We extdrttés interesting idea to the
covariance quadtree, whose number of derived nodes sgam<2fup to2” children, whereD
is the space dimensionality.

The main purpose of the present paper is the presentatiomadiddtion of an efficient al-
gorithm of finding the exact K nearest neighbors from a quegtar in a multidimensional
data space, either considering isotropic or anisotropccbes. The concept of anisotropy is
presently interpreted in terms of the Mahalanobis metricc&the k-nearest neighbors have an
ellipsoidal support, set by the covariance matrix for tleigion, the anisotropic search requires
a bootstrapping scheme of finding the optimal k-nearesthieigs morphology. The applica-
tions of the present method for both image processing arsb@opic SPH simulations shall be
presented in future works.

The paper is structured as follows. In Sect@ims introduced the concept of covariance
guadtree, whose geometrical principles are discussedgestion2.1, and the computational
aspects of its data structure are discussed in subset@oin subsectior?.3is discussed the
idea of intrinsic dimensionality which may change alongttiee construction if regarding each
node as vector subspace spanned from the node expectatimg khe principal components as
the orthonormal basis of the subspace. The 2D image intatjme of the covariance quadtree
is illustrated with some examples in subsectofj which helps the reader to interpret correctly
the main idea of the covariance quadtree. In Se@iare discussed the methods of finding the
isotropic (subsectioB.1) and the anisotropic (subsecti@m®), Mahalanobis based, k-nearest
neighbors. The benchmark is discussed in Sedlidor the isotropic case. The anisotropic
search has the same time complex multiple of the isotrosie,aahich depends on the number
of the required iterations until convergence. One simplgiagtion for image construction
from noise images is shown in sectibnFurther considerations, perspectives and conclusions
on the introduced method are made in Sec@on

2 COVARIANCE QUADTREE
2.1 Principles

In order to introduce the concept of covariance quadtreesaalrfirst to the classical idea of
a quadtree. HistoricallfFinkel and Bentley1974 a quadtree is the hierarchical data structure
which maps the division of a rectangle into four subrectesgio that each internal node derives
four child nodes, and an external node derives a terminétipar or image segment, which is
a rectangular atom of the image. A simple example of a quadtnage tessellation is given in
Figurel of the original image of Lenna shown in Figwze

An immediate generalization of quadtree is its multidimenal form, which divides ai-
dimensional hyper-rectangle in2é child hyper-rectangles, or hyper-quadrants. Hyper-qeast
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Figure 1: The quadtree tessellated image of Figuicer about 10% tolerance in the gray-scale standard dewiatio

Figure 2: The standard 5512, 24 bit, Lenna’s portrait.
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Figure 3: The first three steps of the top-down constructiom covariance quadtree. The outer rectangle is the
image frame, and the orthogonal strait lines, crossingdta kexpectation, are the principal directions of the image
segment. The dotted line illustrates the top-down path.

preserve the aspect ratio of the the hyper-quadrants wethoibi.

For considerations of brevity, we assume hereafter thaetine quadtree applies both for the
2D case and for multidimensional case.

A covariance hyper-quadtree, or simply covariance quegisea generalization of the tradi-
tional quadtree, with the difference that covariance hglagres cuts the data space through the
data expectation, as sketched in FigBréHenceforth, we call such a spatial decomposition as
covariance tessellatioto make distinction from the classic quadtree tessellation

The covariance quadtree is the Gaussian multivariate sixterof the traditional quadtree
data structure, but now with the difference that each nodesfrom the local expectatign
a vector spacé, whose basis is the set of the local principal eigenvedteors. .., v,}. Any
input vectorx is then written down ax = A + pu, whereA is a vector inS. Moreover,
each covariance node carries out the local aspect raticeifotim of the\ principal eigenval-
ues{ay,...,ay}, which by their own define the local data anisotropy as weltamtrinsic
dimensionality\, where)\ is the number of principal components of the covarianceimatr

Each of the principal covariance eigenvectors sets up dmogonal hyperplane passing
through the expectation. Such a hyperplane is called a covariance hyperplane, arabfo
sistency the subspaceis the covariance subspace. Each covariance hyperplarsplits S
into two adjacent regions havirg, as interface and the expectatipras a common vertex.
Thus, the\-covariance hyperplanes divide the covariance subspazeimpartitions or hyper-
quadrants, which are assignedtochild nodes.

Each internal node obeying some division condition is suddd by the covariance hyper-
planes int@* children. The covariance hyperplane is defined as the higrexpvhich crosses
the expectation and is directed by some of the covarian@neggtors. as its normal direction.
The number\ of principal components is called the intrinsic dimensidpaf the local data
distribution.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar



6050 E. MARINHO, C. ANDREAZZA
If the numbern of input vectors associated to the node is smaller than tiggnal data
dimensionalityd then the intrinsic node dimensionalikyis limited to0 < A <n — 1.

2.2 Treebuild
2.2.1 Covariance quadtree data structure

The covariance quadtree is a hierarchical data structuneefd by nodes whose attributes
are the following:

1. a data subset represented as a list of the input vectorsdetad in the space patrtition;
2. the expectation and theprincipal components evaluated over the local data conten

3. a lower-bounding corner formed by the parent-evaluaig@@ation and the principal
components renormalized in order to point outward the spadgion;

4. alink to visit the2* possible children.

The parental link is implemented by assigning’adimensioned array of pointers to child
nodes. Given the data s¥t, which is assigned to the nodethere are* disjoint subsetX
each of which is assigned to the respective child node

Each of then, input vectors inX, is assigned (or moved) to one of thé partitionsX,,,
(6 € Z,,), which means that there is a map: R* — Z , to derive a childhood from the
interior nodev:

l/ﬁl

X, 8 (X, ... X, )
 —

whereZ , = {0,...,2* - 1}.
We adopt the following hash function, namely the hypergaatclassifier or child index, to
map a input vector from its origin data s&} to a (child) data partitioiX,

A
BA)=> 27 HA v, (1)

whereA is the data deviation about the expectationv; is the j-principal eigenvector, and
H is the following step function:

1, >0;
0, z<0.

H(x) = { 2)

A 2D instance of the child indexing scheme can be seen in Ejur

After successive divisions each node is bounded not onlysolpwer-bounding corner but
also by the lower-bounding corners from all of its ancestarsthe root. The latter can be
unbounded unless for the sake of the problem details whiclingpose an input frontier as e.g.
the frame illustrated in Figur8. In this case, any interior node is wrapped by a convex hull,
formed by the innermost of the corners collected from alhefhode ancestors. As a result, the
node boundary is then formed by the innermost hyperplanesihoth the local-lower bounding
corner and the parent boundary. The node boundary is thenthesyzed attribute combined
from the inherited parent boundary and from the lower boogdorner.
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Figure 4: Child numbering order with respect to the printgumponents detected in the dividing node according
to equationsl) and @).

In multidimension spaces it is somehow entangling to astembata structure to represent
the node boundary. However, in 2D-spaces it is too simpleterchine the boundary in terms
of minimal polygons formed by the straight lines orthogaieathe principal components.

If the root is unbounded, its childhood is lower-bounded iynite hyperpyramids having
the root expectation as their common vertex. An importasitltenot proven here, is that if the
root is either unbounded or it has a convex boundary, anyianteode boundary is either an
infinity hyperpyramid or a convex hyperpolyhedron.

Since the set of covariance hyperplanes foermewer bounding corner with the expectation
as the common vertex, each of these principal hyperplan&ges pair of children. Thus, each
child hasA common face siblings. A 2D sketch of the covariance-quadtessellation was
given in Figure3. From the child point of view, any interior input vector fadie concave part
of the lower bounding corner, which requires a directiontipliér ¢ € {—1,+1} in order to
have the child normal vectors ever pointing outward itsoBgi

From equationX), we have that the leftmost bit of the child indgx(unsigned integer)
represents the data point orientation with respect to timeipal hyperplanex, -direction): 0,
if the eigenvector is pointing outward the data region, &nfl v, is pointing inward. Thus, the
direction multiplier¢;, as a function on both thgprincipal eigenvector and the child indgx
is given by

¢; = (—1) bit(7, ﬂ)’ (3)

where the functiomit(j, 3) returns the ' left-to-right bit of the child index3. Consequently,
for each eigenvector;, given the child indexs, corresponds the lower-bounding corner normal
vectorsug, given by

u; = ¢; v; 4)

2.3 Intrinsic dimensionality

An interesting aspect of the covariance quadtree is thapasial tessellation keeps track of
the residual covariance left on each child partition. Thian interesting development since it
reveals the natural adaptivity of the decomposition metbakle partition’s intrinsic dimension-
ality, yielded from the principal components analysis, R@Rathe Karhunen-Loéve transform
(e.q., Jollife, 1986 Bishop 1995.

The proposed decision rule for the principal componentdyaisais that the next training
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Figure 5: A simplified situation in which the node boundanassembled by combining the parent boundary
with the local lower- bounding corner. The parent boundargn inherited attribute from its ancestors which
is presented in the form of a polygonal. The lower-boundioer intercepts some straight lines of the parent
boundary which has at least two solutions. The solutionésrthermost one which is faced by the concave part of
the lower-bounding corner.

Figure 6: The first level covariance quadtree partition ftbmoriginal image in Figur@. Each partition is filled
up with the mean RGB color. Compare this image with the skietéligure3.

component, which is ever smaller than or equal to the prevemmponent, must be greater
than the mean data spacing interior to the hyper-rectarayi@t as edges the square root of the
previously estimated components.

The intrinsic dimensionality is decided either by limititige number of relevant components,
or by spatial singularities such a data distribution havinglispersion in some dimensions as
the case of the local data being entirely distributed in daser As the numben of input
vectors of a given partition becomes smaller than the aaigiata dimensionality, the intrinsic
dimensionality) is geometrically constrained to < n — 1. Thus, a two-point partition has
intrinsic dimensionalityoNE (A = 1).

Top-level space patrtitions (nodes) likely have higherimsic dimensionality than lower-
level partitions. Moreover, our space division is perfoditerough the expectation, which
implies that the division centers (node vertices) tend talbser to the denser child partitions
than to the rarefied ones.
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Figure 7: The second level covariance quadtree partitiom fihe original image in Figur2. The local dimen-
sionality is reduced if the minor componentis below 50% tteganone.

Figure 8: As in previous figure, but with no dimensionalityefgion.
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N

[ 4

Figure 9: Level 4 covariance quadtree, within 50% tolerdncéhe dimensionality detection.

2.4 Two-dimensional case: image examples

To better illustrate the covariance quadtree datastrectue three examples of image tessel-
lation by a hierarchy of grey scale covariance. in this ciseroot image is divided into 2 or 4
partitions, depending on the dimensionality reductiotecion applied.

In the following examples we assume a simple dimensionggitiyction scheme, where an
image partition is considered 2D if the minor-to-major cament ratio is above a prefixed
threshold, and then is divided into 4 partitions directedtliy eigenvectors. Otherwise, the
partition is cut perpendicularly to the principal componen

Each of the\ hyperplanes from the lower-bounding corner interceptgmihhyperplanes
from the parent boundary to determine a vertex onXteémension hyperpolyhedron. In the
particular case of 2D images, as illustrated in FigBrave have the situations depicted in
Figures6 through10.

Figure6 illustrates the first level in the covariance quadtree fgure2, assuming no dimen-
sionality threshold used on choosing the covariance gralcomponents. Each image partition
is filled up with the mean RGB-color. The descent stop coodiis that the partition’s greyscale
dispersion is below a fraction (tolerance parameter) opdrent’s greyscale dispersion.

Figure 7 resumes the image tessellation from the previous Figutat assuming a sim-
ple dimensionality reduction. If the minor-to-major conmgots ratio is smaller than 0.5, the
dimensionality is reduced tONE (d = 1).

Similar to Figure7, Figure8 resumes the image tessellation from the previous Figubet
assuming no dimensionality reductiah=£ 2, regardless the tree depth).

Resuming from Figur&, we have the covariance quadtree situation for level 4 shown
Figure9. Now, some patrtitions are considered 1D, and other oneasedered 2D, depending
on the aspect ratio of each resulting partition. Finallythi@ level 7 of the covariance quadtree,
we have the tessellated image shown in FidiOe
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Figure 10: Resuming from the tree situation shown in Figrantil Level 7 in the covariance quadtree, also
adopting 50% tolerance for the dimensionality detection.

3 COVARIANCE-BASED KNN
3.1 Isotropic search

The present covariance-based K nearest neighbors algasta top-down search that recur-
sively proceeds the descent through nodes which may have gomt closer than any of the k
(< K) collected nearest candidates until that level in the tree.

The adopted query-to-node distance is one of many formsmessing distance of a point
to a set. To compose the query-to-node distance, it is figstired to define a pseudo distance,
namely the direct query-to-node distaneé ) as the following function:

D(x,node) = I?Exlx {(x— )" u; b, (5)

wherey is the node’s lower-bound corner vertex adh, ..., u,} the set of its normal unit
vectors as discussed in Subsecttb Since the internal produck — ,u)T u; is positive only

if the query point is facing thg-hyperplane from outside the node, the direct distance e&fin
a lower boundary for a collection of candidate vectors to jpose the list of the k nearest
neighbors.

Further examining equatiom) one may conclude that if the query vector is facing the hy-
perplanes from inside, thef(x, node) < 0. The equality occurs if, and only if, the query is
lying in one of the node’s boundaries.

Since the covariance nodes but the root are bounded not gritg principal hyperplanes
but also by at least one of its ancestors boundary, we wigtedmplete query-to-node distance
as the following recursive function:

d(x,node) = max {d(x, parent(node)), D(x,node)}, (6)

with the breaking condition thal(x, node) = 0, if node = r oot .

The distance calculation in equatidd) (s performed along the tree descent, and the returned
value from the recursive call faf(.) in the RHS is an inherited attribute from the node’s ances-
tor.
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It sounds like a theorem that the distance from any queryoveotthe covariance node is
zero if the query is included in the node. In fact, the dirastahceD(x, node) is negative or
null if the query is interior or it is in some of the node’s pripal hyperplanes, which is valid to
the distance from the query to some of its ancestors untildbe where the distance given by
equation 6) is trivially zero. Since the maximum from zero and a noni{psnumber is zero,
the distance from the query to any node which encloses it ze

Algorithm 1 The C-code for the recursive top-down kNN algorithm.

1: extern query_type q;

2: extern list _type KNN_|ist;

3:

4: wvoid kNN find (node_t =*cell, double d)

5. {

6: d = query_to_node_di stance (g, cell, d);

7: if ( KNNIlist.N==K & d > kNN |ist.top_dist)
8: return;

9: el se {

10: if (cell->N>1) {

11: int b,

12: for (b =0; b < cell->nchilds; b++)
13: if (cell->child[b])

14: KNN find (cell->child[b], d);
15: }

16: el se

17: KNN_ i nsert (cell, d);

18: }

19: }

The present KNN scheme requires an upper-bounded neigeb@NIN list), which stores
each input vector according to its query-to-data distascdhat the end term is the outermost
one from the query neighborhood. The closest neighbor iswifse the first element of the list
after the complete search. Each input vector is pointed ta #gta descriptor, which is stored
both in the neighbor list as well as in the covariance quadiles as previously discussed.

For the present, a neighbor is an input vector, which is assigo a unit node (leaf). The
kNN list hasK members at most, whek€is the user assigned number of nearest neighbors
to find. The list is initially empty and it progressively grewvith the successive insertion of
nearest neighbor candidates along the descent until the fidly populated withK members.
Henceforth, any new insertion implies in removing the faesthelement from the list.

Positive query-to-node distance denotes the maximum afiftences from the query to the
hyperplanes bounding the node. On the other hand, the desteam the query to a hyperplane
is the Euclidean distance from the query to the closest poitite hyperplane. Thus, if the
farthest of the kNN candidates is still closer than the fecdusode, then no closer neighbors
can be found in that node. This is the refutation criteriobe@pplied along the tree descent if
the KNN list is fully populated with th& nearest candidates.

Conversely, a given node potentially has KNN candidateghéethe kNN list is not full yet,
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Figure 11: The original RGB image of the M51 galaxy, whoseyegeale (R+G+B) is used to drive the random
distribution shown in the next two figures.

nodes visited / N

Figure 12: A Plot of 44,081 random points sampling the greatesimage of the galaxy M51.

or the query-to-node distance is below or equal to the distérom the query to the outermost
candidate in the KNN list. Particularly in this case, if thade is unit, the calculated distance is
the Euclidean point-to-point distance, and then the irmernethod is called to solve in what
position in the list, if any, the new candidate might be iteer

Both paragraphs above are summarized in the form a C coded lis the Algorithm 1.
The proposed method is a recursive descent, with a prefixetb¢he query-to-node distance
function given in equationssf and ©). The second argumend, in KNN_f i nd is initially
the distance from the query to the parent node, which mighnbdified in the assignment
statement at line 6 conform equatids).(

According to the algorithm, the stop condition for tree dagads that the kNN list is full and
that the query-to-node distance is greater than the digiahe outermost list member, ending
the recursion through line 8. Line 10 decides whether ormoatgorithm recursively descends
(lines 11-14) or it includes the new neighbor candidate kNN list (line 17).

As an example of the search for exact KNN, we performed theclsemn a random distri-
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nodes visited / N

a 188 208 308 488 500 608
K

Figure 13: A plot of K=320 nearest neighbors (in green) forlitearily chosen points from previous figure.

bution of points which was drawn by the probability densiy groportional to the gray-scale
distribution of M51 spiral galaxy image (see Figur®, whose data points are plotted in Fig-
ure12 Five query points were arbitrarily chosen as shown in Fed®

3.2 Anisotropic search

The algorithm discussed in previous section performs anapic k-nearest neighbor search
using the Euclidean metric. However, as the covariance tggmadtself suggests, the search
algorithm is worth applied to detect a fixed number of the esianeighbors accordingly to the
Mahalanobis metridahalanobig1936, which is the natural choice to find the nearest vectors
accordingly to the covariance matrix estimated for the Inleaghood found.

The Mahalanobis distancgfrom a query vecto to the expectation: of a given data
distribution explained by a covarianég is defined as the following positive definite bilinear
form:

€= (x—p)"S 7 (x—p) (7)

In the present case, equatior) (s valid for a data partition assigned to as a covariance
guadtree node. Thugs,is the node vertex about which further division might occur.

Let {u,;|j=1,...,D} be the set of all eigenvectors of the covariance matrix,uatat
for the K-nearest neighbors, al{df li=1,..., D} its eigenvalues. Then, the inverse of the
covariance matri®2~! may be rewritten in the diagonal form:

|
-1 T
YN = ; U?- u;u, (8)

If regarding the principal components analysis to perfdmmdimensionality reduction, the
number of relevant eigenvectaksmight be smaller than the input space dimensiondlifyas
discussed in subsecti@3.

The query-to-point distano:éx’xj) is a modification in the Mahalanobis distance so that

5(2x,x]~) = (X - Xj)TEl;\llN (X - Xj) (9)
The distance from the query to a covariance quadtree nodeedéfi previous subsection is
just the maximum Euclidean distance from the query to theedygerplanes. The modification
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of this distance to the Mahalanobis metric is then

2 2 T —1
f(x,node) = d(x,node)ujmx 2NN Wi (10)

whered?, .., is the query-to-node distance calculated via equapraidu,,,. is the node’s
normal vector that gave the maximum contribution in evahgathe RHS of the equatior®).

Algorithm 1 is robust regardless the metric chosen to dadise covariance quadtree nodes
as kNN candidates. Thus, no changes are required in theitalgoof the previous subsec-
tion. Only the distance definition must be modified to the Mahabis metric to perform the
anisotropic search. Moreover, since we do not know prioccthariance of the not yet known
K nearest anisotropic neighbors, the kNN modification resgibootstrapping.

The bootstrapping algorithm to perform the anisotropiacdedor the k nearest neighbors

under the Mahalanobis metric works as follow:
1. Initialize the KNN covariance matrix with the identity tma.
2. Repeat:

() Perform the kNN via Algorithm 1 with the distances modifeeccording to equa-
tions @) and (LO);

(b) Forthe present kNN list, calculate the covariance matri
3. Until convergence occurs on the covariance eigenvalues.

Convergence occurs in few steps even if we adopt a tightaober as for instance) ' used
in the runs of present work.

To illustrate the anisotropic search, we performed the pte#tbove for the same data used in
previous subsection. Figufigl shows the points plotted in green corresponding taifhe 410
neighbors found for 9 queries conveniently chosen to rameaphological aspects of the galaxy
noise image. The leftmost upper green spot is almost isiatsipce corresponds to the image
background. However, in denser regions, the kNN profildsviolhe spiral pattern of the galaxy
M51.

4 BENCHMARK

The time complexity of the top down KNN search shown in Algon 1 is measured by
counting the total number of nodes visited and the total remab insertions of unit nodes
into the kNN list per query. This latter corresponds to thenbar of individual points which
were inserted into the kNN list regardless they remainetiénlist until the search ended. The
number of node candidates is greater than the desired numlwémearest neighbors of the
guery point.

There are two critical costs on the present search compleKite first one concentrates on
the total number of internal nodes visited along the ent@eh per query (Figuréb). The
other one is the fraction of visited nodes which has in fad&llcandidate — it means that the
more efficient is the search the smaller is the proportionailer of rejected nodes (Figuté).

Examining Figurel6 one may see that the search efficiency increases with thesiseiof the
prefixed numbers of the nearest neighbors found. The plausible explanatiothis speedup
is that theK /N ratio is roughly the probability of finding some of tfié nearest neighbors of a
given query point.
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Figure 14: A plot of the K=410 nearest neighbors (in greenBfarbitrary queries for the data in figut@ but
performing a Mahalanobis based anisotropic search. Natéhh green spots align with the preferential directions
of the data distribution.
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Figure 15: Number of nodes visited per data point versus timeber of K nearest neighbors found. Upper and
lower curves are plotted for the maximum and minimum numibeaadidate nodes found, respectively.
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Figure 16: Number of candidate nodes visited per neighhordoersus the number of K nearest neighbors. Upper
and lower curves matches the maximum and minimum candiftaiesl.

The search complexity depends on the data distributiorhait low contrast regions the
time complexity is smaller than finding the KNN in higher aast distributions. This effect

is responsible for the dispersion between the upper andrlbaending curves shown in both
figures15andi6.

5 APPLICATION. ANISOTROPIC INTERPOLATION

To illustrate one of a number of purposes of the covarian@lgee method, we show an
image reconstruction from a noise image, as in the datagpsirawn in Figurd2. The recon-
struction is performed using a density estimation techaioggsed on compact support kernels.
Usually, a kernel is a good function, which is a member fromra®s §-sequence.

The adopted kernel is a radial basis function, whose suppditis is set by the distance
from the origin to the outermost point from the K-nearesghéors. Adopting the Mahalanobis
distance, the kernel supportis an ellipsoid whose semenaxes are defined by the square root
of the principal components of the covariance matrix edtahéor the K-nearest neighbors.

The anisotropic density is estimated from the following suation:

1 K(&(x
px) =D 7553; ) (11)
j a
where the metric functiog; is given by
x —x;)Tu,|? x —x;) Ty |?
a b

u,, u, are the two-dimensional eigenvectos§, o7 are the eigenvalues; is the query point,
in which the estimation is made, amdis the neighboring position. The kernel functighis
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Figure 17: The anisotropically interpolated image of thdMfalaxy, using only 4,401 randomly chosen points
from the 44,081 shown in Figuti.

normalized in order to give
/p(x)dx2 =1. (13)

To illustrate the anisotropic density estimation we rettadl examples previously given with
a random distribution of 44,081 points drawn from the gregls image of the spiral system
M51. The integral given in equatio ) is easily translated to a grid image so that densities are
normalized to comprise the 8-bit color range of the outpugmin Figurel7. The density esti-
mation shown in Figur&7 was performed over 4,402(10%) of the points shown previously
in Figure12, which reduced considerably the computational cost of tag-gcale construction.
The integral in L1) is effectively performed over the kernel support, whicthis ellipsoidal
region encompassing thié = 200 nearest neighbors found with the method described in Sub-
section3.2 The adopted kernel model to perform the density estimaimwn in Figurel7
was the cubic B-spline, largely used in the SPH literaturg. (&ingold and Monaghari977,
Owen et al, 1998 Pelupessy et gl2003.

6 CONCLUSION

The present work is a preliminary approach to introduce aaditlate a fast algorithm to
perform anisotropic search for the exact k nearest neighddre adopted concept of anisotropy
was based on the Gaussian multivariate interpretationeolfoital data distribution assigned to
the covariance quadtree nodes. The method detects spgai@lses by conforming the kNN
ellipsoid to the principal directions of the local data disgion.

Differently from the work ofD’haes et al(2003, the modified query to node distance de-
pends not only on the principal component but on intermediatvariance component which
gives the the maximum contribution to the distance estmmativhich improves the search on
choosing the closest covariance cell (covariance qudsitineele) in a more refined criterion,
avoiding deeper descents along the kNN search, typicatioflgtbinary trees.

Both the total performance and the search efficiency areoappately logarithmic per
search if the number of neighbof$ is relatively large [ ~ 2v/N). The search efficiency
was measured as the ratio of the number of definitive neightoothe number of insertions
in the KNN list. The speedup with the numbki€rof neighbors can be explained by the increase
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on the probability~ K/C that an insertion in the KNN list is definitive.

We tested the present method with a simple application ofythg-scale image retrieval
from a noise data distribution, which revealed a good guatiage even using only 10% of the
data points.

The proposed technique might be extended to the case of heymasitive-definite bilinear
form. For instance the inertia tensor might be used to defiag@tincipal directions to divide a
solid into small pieces separated from each other by noraotgllanes. In this case, if the solid
were represented by particles, as in the SPH scheme, tlwgrapis search should be performed
using the inverse inertia tensor in place of the covarianagimamodifying the Mahalanobis
metric in the Algorithm 1.

Future applications of the present anisotropic KNN apgraawall be concentrated in the
investigation of SPH simulation of strongly compressivgimees, in which the adopted metric
tensor presently used in the Mahalanobis distance musipleecezl by the stress tensor.
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