
ERROR ANALYSIS OF THE DIGITAL IMAGE CORRELATION
METHOD

Jakson M. Vassolera and Eduardo A. Fancelloa

aDepartamento de Engenharia Mecânica, Universidade Federal de Santa Catarina, Campus
Universitário, Trindade, 88040-970 Florianópolis, SC, Brasil. http://www.grante.ufsc.br

Keywords: Digital Image Correlation, Displacement measurement, Measurement errors.

Abstract. The optical method Digital Image Correlation (DIC) has been extensively studied due its
capability to measure the entire displacement field over a body surface. This particular feature makes this
measurement method appropriated to measure heterogeneous displacement fields in large strains. Then,
it can be applied for specimens used in standard tests or even for in vivo applications, like biological
tissues. In the last years, many works about the performance of different DIC algorithms were published.
These studies demonstrated the excellent accuracy and precision of the optical method; however almost
all have been focused on the measurement errors for low order displacement fields, like translation and
constant strain, and only a few works have been studied the error related to high-order displacement
fields. Since this method shown great applicability for heterogeneous displacement fields founded in
large strains, this work investigates the displacement measure accuracy for different possible sets of the
DIC algorithm using numerically simulated images for zero, first and second order displacement fields
in order to consider only errors related to the algorithm. The results shown that the accuracy may vary
in many orders of magnitude from the choice of different setups, where the relation between the subset
size and the speckle granule size is quite important.
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1 INTRODUCTION

The identification of constitutive model parameters requires experimental tests to provide
information about the mechanical behavior of materials. Traditional experimental tests based
on contact-techniques have limitations to generate appropriated data for complex heterogeneous
displacements fields, like the necking phenomenon. These methods are limited to measure
localized strains in the contact points and then the measuring may not be able to represent the
mechanical behavior over the entire specimen in large deformations. During years the optical
method Digital Image Correlation (DIC) has been extensively investigated and improved to
achieve high accuracy, (Bruck et al., 1989), (Vendroux and Knauss, 1998), (Lu and Cary, 2000),
(Sutton et al., 2000), (Bing et al., 2006), (Pan et al., 2008), (Pan et al., 2009a) and (Pan et al.,
2010). Its main characteristic is the capability to measure the entire displacement field of the
specimen surface for a wide range of displacement magnitudes. Many applications for different
materials are reported in literature. In (Vanlanduit et al., 2009) the DIC technique is used to
monitor the crack growth process on an aluminum U-profile during a cyclic fatigue test. The
displacement accuracy reported is a few hundredths pixels. In (Tao and Xia, 2005) is presented
a multiaxial cyclic/fatigue test for an epoxy polymer. In (Guastavino and Göransson, 2007)
the three-dimensional displacement over the surface of anisotropic porous cellular melamine
foam was measured by the DIC method in order to capture the effects of viscoelasticity in the
polymer. The optical method was employed in (Zhang and Arola, 2004) to determine the elastic
modulus and the Poisson’s ratio of arterial and dermal tissue. Also in (Zhang and Arola, 2004)
was measured the relative displacement between bone/bone cement and bone cement/prosthesis
interface. The results of this study had shown the possibility to use the DIC method for in vivo
applications. In the works reported above the displacement field is quite complex and very
difficult to be measured by a traditional contact-technique, like strain-gauge or clip-gauge.

An important issue about the DIC technique is accuracy. Although originally restricted to
the size of one-pixel, different algorithms called sub-pixel techniques, has been proposed and
used to improve DIC accuracy. In (Bing et al., 2006) the performance of three most used
sub-pixel techniques were compared for simulated images. These techniques are known as
Curve-fitting, Gradient-based and Newton-Raphson algorithms. The last two cases are based
on the identification of the parameters that define the mapping of a subset of pixels in order
to maximize the image correlation. The results show that the Newton-Raphson approach is
the more accurate and stable. Other interesting approaches like the use of genetic algorithms,
finite elements and B-splines are reported in (Pan et al., 2009b) but it appear to have a lower
performance than the so called Newton-Raphson technique in terms of accuracy.

Besides the choice of the algorithm, other factors influence the accuracy of the DIC method.
The measurement errors may be classified in two types: errors associated to the experimental
setup (acquisition system, illumination conditions) and errors associated to the correlation al-
gorithm. The experimental errors are related basically to the variations of illumination and the
quality of the acquisition system, i.e., the noise during the acquisition and digitalization, the
imaging distortion, position of the camera respect to the specimen, etc. The errors related to the
algorithm are due to different choices of the implementation of the algorithm, i.e., the choice
of the subset size, correlation function, sub-pixel algorithm, shape function and interpolation
scheme. Here, the error due to the speckle pattern is considered to be an algorithm error be-
cause it changes significantly the measurement accuracy of the algorithms. Despite many works
on DIC are found in literature, only a few of them deal with the errors related to the correlation
algorithm. In (Pan et al., 2009b) the errors related to the specimen, loading, imaging and cor-
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relation algorithm are discussed. A study of the systematic errors due to use of shape functions
of lower order than the displacement field is presented in (Schreier and Sutton, 2002). Also, in
(Schreier and Sutton, 2002) it is presented some requirements about properties of the pattern,
subset size and order of the shape functions. In (Lecompte et al., 2006) is presented a study
about the relation between the mean speckle size and the subset size. To this aim, a reference
image was acquired from a randomly sprayed white flat surface and then numerically stretched
by two deformations (homogeneous and non homogeneous) obtained from finite element sim-
ulations. The use of numerically stretched images is usually chosen in order to eliminate errors
caused by the acquisition system, imperfect loading, out-of-plane motion and illumination fluc-
tuation. In the works (Bing et al., 2006), (Pan et al., 2010) and (Schreier and Sutton, 2002)
the authors decided to use Fourier domain shifting to offset the pixels to non-integer positions.
Although this approach seems to be more accurate to create stretched images, it is not able
to impose localized high-order displacement fields like those obtained by FEM simulations in
(Lecompte et al., 2006). In (Pan et al., 2010) the author proposes the Mean intensity gradient
to obtain the optimal subset size, where it is used the Newton-Raphson algorithm, the simplest
correlation coeficient and the zero-order shape function for pure in-plane translation tests. In
(Sutton et al., 2009) it is presented a method to estimate an appropriated pattern density for
different subset sizes determining the characteristic sampling length of the speckle granules.

The main objective of the present work is to investigate the accuracy of the displacement
measurements associated exclusively to the correlation algorithm for different possible sets of
image speckle, subset size and interpolation functions. The errors related to the acquisition
system are automatically excluded of this study since the sequences of speckle images are nu-
merically simulated.

2 DIGITAL IMAGE CORRELATION ALGORITHM

In order to define a common notation, it follows a brief description of the subset-based digi-
tal image correlation procedure used in this work. A virtual grid of evenly spaced points, called
markers, is defined on the studied region of the reference image. Also, a square area of pixels
around each marker, called subset, is defined. The digital image correlation algorithm tracks the
displacements of the markers in the sequence of digital images acquired in experimental tests.
The method searches for the best correspondence between the square area of the subset in the
reference image and the square area in a subsequent image. Being the marker the geometric
center of the subset, this last provides sufficient information to the tracking algorithm in order
to obtain a unique and truthful correlation. The cross-correlation between reference and subse-
quent subsets of (2M + 1) × (2M + 1) pixels is based on the Zero-mean Normalized Sum of
Squared Differences (ZNSSD) correlation coefficient:

CZNSSD =
M∑

i=−M

M∑
i=−M

 f(x, y)− fm√
M∑

i=−M

M∑
i=−M

(f(x, y)− fm)2

− g(x′, y′)− gm√
M∑

i=−M

M∑
i=−M

(g(x′, y′)− gm)2


2

(1)
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where f(x, y) is the gray intensity at coordinates (x, y) in the reference image (undeformed),
g(x′, y′) is the gray intensity at coordinates (x′, y′) in the deformed image and

fm =
1

2M + 1

M∑
i=−M

M∑
i=−M

f(x, y),

gm =
1

2M + 1

M∑
i=−M

M∑
i=−M

g(x′, y′).

(2)

are, respectively, the mean gray values in the reference and deformed subsets. The ZNSSD cor-
relation coefficient is insensitive to the offset and linear scale of illumination intensity offering
a robust noise-proof performance (Pan et al., 2009b).

In order to allow the deformation of the subset and therefore improving the correlation,
different shape functions ( mapping functions) may be used. In the present work, the reference
subset is mapped to the target subset by a second-order mapping function:

x′ = x + ū = x + u + ux4x + uy4y + uxy4x4y + uxx4x2 + uyy4y2,

y′ = y + v̄ = y + v + vx4x + vy4y + vxy4x4y + vxx4x2 + vyy4y2.
(3)

where u and v are respectively the x− and y−directional displacement components of the ref-
erence subset center, ux, uy, vx, vy are the first-order displacement gradients and uxx, uxy, uyy,
vxx, vxy, vyy are the second-order displacement gradients. This mapping function is much more
computationally expensive (12 parameters) than a simpler first-order function (6 parameters)
which can be obtained eliminating the last three terms of each expression (Schreier and Sutton,
2002). However, the quadratic terms allows the use of a larger subset area with accurate mea-
surement for high-order displacement fields. However, since the image processing is performed
off-line (no real-time processing), requirements of computational performance may be taken
as a second concern. The algorithm minimizes the ZNSSD correlation coefficient CZNSSD,
solving a set of twelve non-linear functions, where the minimizing arguments, solution of the
minimum problem, correspond to the unknown parameters

p =
[

u v ux vx uy vy uxx vxx uxy vxy uyy uyy

]
. (4)

The set of equations is solved using the iterative Newton-Raphson procedure:

p = p0 −
∇CZNSSD(p0)

∇∇CZNSSD(p0)
. (5)

where p0 is the initial values of the solution and ∇CZNSSD and ∇∇CZNSSD are, respectively,
the first and second-order derivatives of the correlation coefficient respect to the unknown pa-
rameters p.

This algorithm is highly recommended for practical use due to its higher accuracy, stability
and application (Bing et al., 2006). More details about this digital image correlation algorithm
and shape functions can be found in the works (Pan et al., 2009b) and (Pan et al., 2010).

2.1 Sub-pixel Interpolation

In a real problem the pixel can be offset to non-integer position (x′, y′). The sub-pixel in-
terpolation procedures seek for these offsets even having integer information in the images. To
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this aim, an interpolation scheme has to be used to reconstruct the gray intensity value g(x′, y′)
at the deformed position. It is known that that spline interpolators have been quite successful
in this task. (Schreier et al., 2000) investigated bi-cubic polynomial interpolation, B-spline in-
terpolation and bi-quintic spline interpolation. It was concluded that the mean systematic error
of splines has the same periodic shape with different amplitudes and the amplitude decrease for
high-order splines, that are highly recommended. In this work the high-order bi-cubic spline
interpolation is used.

2.2 Subset Size

The subset size determines the area around the marker that will be taking into account in
the cross-correlation to obtain the marker displacement. This value is set up by the user and
it can vary from a few pixels to a hundred pixels, choice that can change considerably the
measuring accuracy. A small size is preferable due to low computational cost and it allows
the use of a minor order of shape function even for complex displacements field. In the other
hand, the subset size has to contain enough information (intensity pattern) to perform the cross-
correlation and to obtain high accuracy. Then, an appropriated relation between the subset size
and the speckle granules should be used. In this work, three different subset sizes are used:
21× 21, 31× 31, and 41× 41.

3 SIMULATED SPECKLE IMAGES

In order to evaluate the displacement measure accuracy related only to the algorithm, the
numerical simulated image data can not contain additional errors associated to the specimen,
like acquiring system and noise. Again, numerical generation of different displacement fields
can result in the offset of the pixels to non-integer positions. Thus, appropriated interpolation
schemes must be employed. In (Schreier and Sutton, 2002) the discrete Fourier transform is
used for each row of the image to avoid phase errors associated to polynomials or B-spline in-
terpolators. In (Bing et al., 2006) a modified analytic expression of this interpolator is proposed
in which the transformation is performed for each speckle granule, instead of each row of the
image. In the present work, the deformed images are generated by using the expression pro-
posed in (Bing et al., 2006). The deformed image In of a reference image I1 is obtained by the
expression

I1 =
s∑

k=1

Ik
0 exp

(
−
(
(x− xk)2 + (y − yk)2)

R2

)
,

In =
s∑

k=1

Ik
0 exp

(
−
(
(x− xk − ū)2 + (y − yk − v̄)2)

R2

) (6)

where Ik
0 is the random peak intensity of each speckle granule, xk and yk are the positions of

each speckle granule, s is the total number of speckle granule, R is the size of the speckle
granule and ū and v̄ are the imposed displacements along the direction X and Y , respectively.

The systematic error associated to the algorithm is computed as the difference between the
pre-imposed and the measured displacement:

es = ūimposed − ūmeasured (7)

In the present study the sequence of images were numerically generated with different sizes
of speckle granules presented in Tab. 1. These speckle distributions represent a speckle applied
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over the specimen surface in a real experimental test, more information about requirements in
the speckle pattern distribution, minimum subset size and minimum order of the shape func-
tions, presented are studied can be found in (Schreier and Sutton, 2002) and (Pan et al., 2009b).

s R

Large speckle granule 1200 4
Median speckle granule 2500 2.5
Small speckle granule 5100 1

Table 1: Speckle granules characteristics of the generated images.

The reference images for the three different speckle granule size are shown in Fig. 1.

Figure 1: Undeformed images for the large, median and small speckle granule (left to right)

3.1 Type of Displacement Fields

Some authors have been studying the sub-pixel error for a constant displacement field (rigid
translation) (Bing et al., 2006), (Pan et al., 2010) and (Schreier et al., 2000). A few studies
have been performed about the error in high order displacement fields (Schreier and Sutton,
2002), (Lecompte et al., 2006), which it’s quite common in heterogeneous strain. Since the
algorithm has to be able to register sub-pixel displacements for complex displacement fields
commonly found in uniaxial tests after necking, the measurement accuracy of the algorithms
for high-order displacements fields should be widely investigated. In the present work sets of
images containing 256 x 256 pixels were numerical generated for three different deformations:
rigid translation, first-order displacement field and second-order displacement field. These dis-
placement fields are defined for each deformation field and then they are substituted in 6 in
order to produce the numerical generated images.

3.1.1 Rigid translation

In this case, the displacement field is defined by:

ū(x, y) = 0

v̄(x, y) = a
(8)

This mapping was used to generate a sequence of 21 images with a homogeneous displacement
over the entire image ranging from 0 to 1 pixel with a shift of a = 0.05 pixel. This displacement
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field represents a rigid translation of the reference image and no strains are produced. The
correlation analysis was performed using a square grid, with 47 × 47 = 2209 markers evenly
spaced (of 4 pixels).

3.1.2 First-order displacement field

The linear displacement field is defined by:

ū(x, y) = 0

v̄(x, y) = ay
(9)

A set of 11 images ranging from a = 0 to a = 0.1 is shifted of a = 0.01. This expression
defines a nonhomogeneous displacement field over the images that correspond to deformed
images with a homogeneous strain field. The last generated image (a = 0.1) represents 10% of
strain and the images are shifted of 1% of strain (a = 0.01). A square grid with 44×53 markers
(2332 points) evenly spaced of 3 pixels was analyzed.

3.1.3 Second-order displacement field

The second order displacement field was generated using the expression

ū(x, y) = 0

v̄(x, y) = ay2 (10)

The second order coefficient is shifted of a = 0.0001. Eleven different values for a were used,
ranging from 0 to 0.001. The grid of markers was composed with 34×53 = 1802 points, evenly
spaced by 3 pixels.

The deformed images generate for this displacement field represent a nonhomogeneous dis-
placement and strain field. The last deformed images for the three speckle granule sizes (Tab. 1)
are shown in Fig. 2.

Figure 2: The second-order displacement field of the last deformed images for the large, median and small speckle
granule (left to right)

4 ERROR ANALYSIS

In this section an error analysis of the correlation algorithm and its dependence on user setups
like subset size and speckle granule size is performed. Systematic errors coming from image
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acquisition are not expected, since the displacements fields tested were numerically generated
as presented in the previous section.

The subset size and the speckle pattern influence significantly the accuracy of the measure-
ment, since the error depends on the interpolation of the gray-values of the speckle pattern for
non-integer position. If the speckle granules are large, the gray-value surface is smoother than
a surface with speckle granules of a few pixels. In the other hand, the subset size changes the
amount of interpolated pixels taken into account to approximate the shape function parameters.
Then, different setups can lead to different results and appropriated subset size and speckle
pattern are preferred to increase the accuracy in high-order displacement fields.

The DIC method allows to choose different setups of the algorithm in order to obtain the
wanted accuracy. In the correlation algorithm was used the ZNSSD correlation coefficient with
the second-order mapping function in order to capture appropriately high-order displacement
fields and a high-order spline interpolator function to reduce phase errors of the sub-pixel mea-
suring. At this point only the subset size has to be determined and it is related to the speckle
granule size, that in its turn, it is related to the order of the displacement field.

The results for the three displacement fields of the three speckle granule sizes are presented
for different subset sizes:

4.1 Rigid translation

The 21 generated images representing a progressive rigid translation from 0 to 1 pixel was
used for error calculations. The error results are shown in Fig. 3. Each column represents the
maximum absolute, mean and deviation error respectively, for three different granular sizes of
the image pattern. Each graph includes the error curves for different subset sizes.

The image with large granular sizes presents a maximum absolute error along the y-direction
of about 0.0012 pixels, the pattern with medium granular size presents an absolute error of about
0.009 pixels and the small granular size an absolute error of about 0.07 pixels using a subset
size of 21× 21 pixels.

The mean errors showed a sinusoidal shape with period of 1 pixel and no dependency on
the subset size. In the other hand, the mean error changes significantly for different granular
sizes. It is worth mentioning that the mean errors along the y-direction have the same period
for different subset sizes and they are in phase because all the pixels in the reference image are
offset by the same value. It should be noted that, for all cases, the absolute error of the three
generated speckles pattern decrease when the subset size increases.

4.2 First-order displacement field

The first-order displacement field was analyzed up to 10% of stretching and the error results
are shown in Fig. 4. As in the rigid translation, the pattern with small granular size showed, in
general, larger errors than those obtained with the pattern with larger granules.

Again, the pattern with small granular size presents a maximum absolute error of about
0.00085 pixels. The medium pattern presents an absolute error of about 0.004 pixels while the
small pattern presents an absolute error of about 0.087 pixels along the y-direction. The image
compared used a subset size of 21× 21 pixels.

It is also noted that the absolute error along the X and Y directions of the three generated
speckles pattern decrease when the pattern size increases.
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Figure 3: Error results for zero-order displacement field (rigid translation) using different speckle pattern and
subset sizes.

4.3 Second-order displacement field

As stated, 11 (eleven) images were generated for the second-order displacement with param-
eter a ranging from 0 to a = 0.001, which implies to a subset stretching of almost 60%. The
calculated errors for each one are displayed in Fig. 5. Differently from the previous two cases,
the lower absolute error was obtained with the pattern with medium granular size. However, the
image with larger pattern presents the lowest absolute error for the highest strain if the smallest
subset size is used.

When low strains are imposed for the three patterns, the absolute error decrease when the
subset size increase. On the other hand, with large and medium patterns and large strains, the
absolute error increases when the subset size increases.

The absolute errors for the larger and medium patterns have comparable values in high
strains. Conversely, the mean error is completely different for the three patterns at high strains.
These observations suggest that the absolute error may have an exponential growth for with
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Figure 4: Error results for first-order displacement field using different speckle pattern and subset sizes.

respect to strains due to a no appropriated relationship between the pattern and subset sizes.
The images with the smallest speckle pattern present a maximum absolute error of about

0.075 pixels along the Y -direction of the image obtained with the subset size of 21× 21.
The images with large and medium speckle pattern show a maximum absolute error of 0.025

and 0.019 pixels along the Y -direction for a subset size of 41 × 41. When the subset size is
reduced to 21× 21 pixels, the images with the largest and medium patterns present a maximum
absolute error of 0.004 and 0.0054 pixels respectively. These values are almost one order smaller
than the previous case which enforces the strong relationship among subset size, pattern size
and characteristics of the displacement field.

5 CONCLUSIONS

It is possible to see that the displacements fields provided by the DIC algorithm closely
match the displacements fields numerically generated. However, quite different accuracy may
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Figure 5: Error results for second-order displacement field using different speckle pattern and subset size.

be obtained depending on important variables that are set up by the user at each particular
measurement.

For the set of studied cases it was noted that, in general, the absolute errors for the images
with granules with size of about 1 pixel can be quite larger than those obtained with larger
granular sizes. The absolute error decreases significantly when the the speckle grows to the size
of 4-5 pixels.

For low-order displacement fields (zero and first-order), the absolute error presents better
results for large subset sizes. Conversely, small subset sizes have performed better for second-
order displacement fields at high strains.

In the identification of mechanical properties, the DIC method has been successful to register
accurately the infinitesimal strain at the beginning of the experimental test and also the complex
strain field during the necking phenomenon at high strains. In the first images of the sequence,
when the specimen presents small displacements, the subset size should be large enough to
guarantee high accuracy measurements. Once the necking starts, the the results showed that
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smaller subset sizes may be convenient in terms of accuracy.
From the analyzes of different speckle patterns and subset sizes, this work shows the impor-

tance of an appropriated relationship between the speckle pattern and the subset size, specially
for high-order displacement fields. The results suggest the use of small subset sizes to keep
high measurement accuracy for high order displacement fields, but it does not guarantee the
best accuracy and precision for low order displacement fields.

To conclude, it is worth noting that although the evidences shown in this work do not offer
the ideal speckle granule size or subset size, they emphasize the importance of the choice of
these parameters for high-order displacement field. Once this work is focused in the errors
related only to the DIC algorithm, it does not mean that the errors associated to the measuring
system are less significant. Further studies are needed to investigate other source of errors,
like the errors related to real experiments such as noise during acquisition, fluctuation of the
illumination, lens distortion and etc.
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