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Abstract. The biomechanical model of a human postural system and the simulation of behaviour in 

movement can be applied in several areas, such as sports, engineering and medicine. The purpose of 

this work is obtain a dynamic and control model that represents a simplified postural system. The 

description of kinematic and dynamic links movements is based on Newton-Euler and Euler-Lagrange 

formulation. The resulting movements and forces are produced by sets of joint torque actuators. These 

dynamic models are non-linear with multiples input and output and many degrees of freedom. The 

model must be generic enough for accept several muscle models and control techniques. In this paper, 

it was used a control based on state dependent Riccati equation theory. A geometric model for 

simulations of postural control is obtained with Matlab/Simulink software. 
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1 INTRODUCTION 

Researchers on robotic enthusiastically dreamed with smart machines that realize 

movements and tasks that a human can realize, with many expectation about modern control. 

Therefore, progresses in robotic control did not correspond to the expectation and the biggest 

difficulties were about the understanding of human motion in day-tasks. Human beings can 

manipulate objects and realize movements and complex tasks with facility and ability, 

through a biological evolution and trainee. A lot of researchers from several areas are 

involving in dynamic of human body. While a comprehensive theory of human movement is 

still far away, it is true that great progress has been made in the last few decades, with 

important contributions coming from researchers engaged in robotics. Mathematical models 

of biological systems are a field with the biggest increase in scientific development in the 

present-day. Although all techniques in simulation and mathematical models, the generalized 

application in musculoskeletal system is very complex (Thelen, 2006). The biomechanic 

model of musculoskeletal system and the simulation of the system behavior in motion can 

contribute to understanding the relationship among musculoskeletal properties and movement 

and articulation forces with application on medicine, diseases (Anderson et al. 2001, 

Pandy,1995) and sports (Thelen, 2005). 

     In the context of optimal control theory we consider the property of global stability of 

nonlinear systems with regulation control law based on the solution of a State Dependent 

Riccati Equation (SDRE) (Cloutier et al. 1996). Such method is known to yield a solution for 

the quadratic optimal control problems (Hammett et al. 1998). This control problem applied 

to the class of dynamical systems we are dealing with, the biomechanical model defines a 

topology where the solution is a set of control signals. ).  The SDRE nonlinear regulator 

produces a closed-loop solution which is locally asymptotically stable (Mracek and Cloutier, 

1998; Banks et al. 2007). The procedure for drive the tip position to a desired point via SDRE 

technique considers successive optimal solutions for static equations and stabilized the system 

by feedback control. The advantage of this approach is the possibility of finding as muscle 

torque and kinematical trajectories, without previous measurement of the motion (Kuo, 1995; 

Menegaldo et al., 2003).  

 

 

 

2. HUMAN DYNAMIC MODEL  
 

 In order to surpass the numerical difficulties associated with the optimal control solution, 

simpler biomechanical planar models with dynamic torque actuators of posture were adopted. 

The human system  include four rigid segments representing the foot, the leg, the thigh and 

the upper part of the body, which are linked by three articulations, ankle, knee and hip joints 

modeled as frictionless hinges as shown  in figure 1 
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Figure 1. simpler biomechanical postural planar model. 

 

 

 In Figure 1, the vector of generalized variables is ],,[ 321 θθθ=q   that  represents articulations 

angle. 

 

2.1. Position and Orientation of a Rigid Body 
 

    An human  link, in this case, a leg, can be seen, in a mechanic point of view, like a 

kinematic open chain, formed by rigid bodies connected by rotation joints (Yang, 1990),. An 

end is connected to the base and the other one to the terminal element (foot). The structure 

movement is realized by a composition of elementary movements for each link, with respect 

to the preceding. In order to simulate a movement like walking or pedaling it is necessary a 

description of position and orientation of joints and links. It is also necessary a derivation of 

kinematic equations of leg, describing the position and orientation of the terminal element, as 

function of joint variables with respect to a reference coordinates system. These equations can 

be obtained through Denavit-Hartenberg convention (Siciliano and Valavanis, 1998; Bottega 

2005). We express the transformation of coordinates that relate the system iO  with the system 

1−iO , through the following steps: 
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Figure 2. Different coordinated systems. 

 

 

1. It starts from coordinated system 1−iO . 

 

2. It does the rotation iθ  around of iz  axis. This operation take to the system 1−′iO , described 

by homogeneous rotation transformation matrix. 
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3. It dislocates the coordinated system 1−′iO  in ia , through 1−′ix  axis. This operation take to the 

system iO , described by homogeneous dislocation transformation matrix. 
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     Finally, it is obtained the transformation of coordinates 
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     For successions of several transformations, as a musculoskeletal system, the position and 

the orientation of terminal element is 

 

R. PERGHER, V. BOTTEGA, A. MOLTER6608

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



                                                         3
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0                                                                    (4) 

 

4.2.  Geometric Jacobian 
 

     Once knew the direct kinematic equations, we obtain the relationship among  velocity of 

joints and linear and angular velocities of links, through the geometric jacobian (Bottega, 

2005). These relations are necessaries for the derivation of movement equation of the 

musculoskeletal model as a whole. 

 

     The linear and  angular velocity of a point p  of the terminal element are expressed, like 

free vector in function of velocity of the joints θ&& =q , with relations as 

 

                                                              
qqJw

qqJp p

&

&&

)(

,)(

0=

=
                                            (5) 

 

which can be written in the following form 
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where the transformation matrix nJ ×6  is called geometric jacobian. The Equation (4) can be 

written in vectors  
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where iipi qqJ &)(  represents the contribution of joint i to the linear velocity of the terminal link, 

while iii qqJ &)(0  represents the contribution of this joint to the angular velocity  of the terminal 

link. 
   

4.3. Lagrange's Formulation 
 

     In order to obtain a set of differential equations of motion to adequately describe the 

dynamics of the musculoskeletal system, the Lagrange's approach can be used (Cannon, 

1982). A system with n  generalized coordinates iiq θ=  must satisfy n  differential equations 

of the form 
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where 
if

ξ  are the generalized forces with respect to the generalized coordinates iq . L  is the 

so called Lagrangian which is given by 

 

                                                            UL −Τ= ,                                      (9) 

 

where T  represents the kinetic energy of the system and U the potential energy. 
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     The Equation 8 define the  relations among the generalized forces applied on the system 

and the joints velocity and acceleration.  

 

 

4.4. Kinetic Energy 
 

     The kinetic energy of link i can be expressed as 
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is the generalized inertia matrix. 

 

 

4.5. Potential Energy 

 

     The potential energy is given by 
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T
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where 0g  is the gravity vector expressed in the base frame. 

 

5.  Equations of motion  
 

     By taking Equation 10  and Equation 12 , into account, the Lagrangian of Equation 8  can 

be written as 
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where (q)h
I

 represents a vector with centripetal, Coriolis and gravitational forces given by 
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Finally, the equations of motion Eq.(13) for our system, which are modeled as a set of 

coupled rigid bodies are of the form         
 

                                                  ug(q)q)qC(q,qM(q) =++ &&&&  ,                                             (15) 
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where M(q)  is the mass matrix, g(q)  is the gravity vector, u   is the 1×n  vector of applied 

joint torques and q)qC(q, &&  is the Coriolis matrix  and 
ii

q θ=  are the joint angle generalized 

coordinates. 

 

    With an appropriate coordinated system, the Jacobian  of linear velocity Eq.(7) is given by 
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where c(12...n) and s(12...n)  indicate, respectively, cossino and sino of (
n

θθθ +++ ...
21

). 

 

     The Jacobians of angular velocity of baricenters are 
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3.   CONTROL MODEL   
 

3.1  Non-linear feedback controller: state-dependent Riccati equation (SDRE) technique  
 

      In nonlinear systems the matrices of the state are dependent on the variables of the 

problem. An optimal control of a dynamic model requires a formulation that seeks to 

minimize a cost functional and comply with restrictions on the model, which can be dynamic 

equilibrium equations, boundary conditions and / or others.  

 

     A problem for a system with the coefficients of the matrices of state, state dependent, can 

be formulated as follows (Mraček and Cloutier, 1998): minimize the cost functional, 
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from the state x and control u subject to the system of nonlinear constraints 
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where nℜ∈x , mℜ∈u  and 
nn×ℜ∈Q  is symmetric positive semidefinite, and mm×ℜ∈R  is 

symmetric positive definite.  The state-dependent Riccati equation (SDRE)  approach for 

obtaining a suboptimal solution of this problem is 

 

     1 – Use direct parameterization to bring the nonlinear dynamics to the state-dependent         

coefficient  form.  

 

      Rewriting the nonlinear dynamics, Eq.(20) in the state-dependent coefficient  form 

A(x)xf(x) = , (Banks et al. 2007) we have 
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      For the multivariable case we consider an illustrative example, ( ) [ ]T

xx 3
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,=xf . The 

obvious parameterization is 
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    However, we can find another parameterization 
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by dividing and multiplying each component of f(x)   by 
1

x . Since there are at least two 

parameterizations, there are an infinite number. This is true since for all 0 ≤ α ≤ 1, 

 

                                αA1(x)x + (1 − α)A2(x)x = αf(x) + (1 − α)f(x) = f(x).                         (24) 

     

     The choice of the parameterizations to be done must be appropriate, in accordance with the 

system and control of interest. An important factor for this choice is not to violate the 

controllability of the system, that is, the matrix of dependent controllability of the state 

 

                                            ( ) ( ) ( )[ ( ) ( )]xBx  AxBxAxB 1n −
K                                             (25) 

 

 to have full rank. 

 

     2- Solve  the state-dependent Riccati equation (SDRE)  (Banks et al. 2007).  

      

    The Hamiltonian for the optimal control problem, Eq.(20) is given by 
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                               ( ) ( ) ( )( ) ( ) ( )uxBxxAλuxRuxxQxλux,H TT +++= T
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    The co-state is assumed to be of the form λ=P(x)x, that it has dependence of the state. 

Using this form of the co-state and differentiating the Hamiltonian of the problem in relation 

the u, gets the feedback control 

 

                                                 ( ) ( ) ( )xxPxBxRu
T1−−= ,                                                       (27) 

 
where P(x) is gotten of the solution of the state-dependent Riccati equation 

 

                       ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 0xQxPxBxRxBxPxAxPxPxA
T1T =+−+ − .                     (28) 

 

     Substituting the control Eq.(27)  into Eq.(21), we find ( ) ( ) P(x)xB(x)RxBxxAx T1−+=& , 

thus getting the system in the closed form. 

 

     The optimality condition satisfies the solution of the local suboptimal control. In the 

infinite time, in the  standard case of the  linear quadratic Regulator (LQR) (with matrices of 

weight of the functional with constant coefficients) it is verified that this equation is local 

satisfied. For some special cases, as systems with little dependence of the state or few  

variable of state, the equation can be solved of analytical form (Shawky et al. 2007).  On the 

other hand, a numerical solution can be gotten with a tax of enough great sampling.  An 

approach, with local stability of the system of closed mesh is resulted of the use of the 

technique of the state-dependent nonlinear Riccati equations. 

     By Mracek and Cloutier (1998), an important factor of method SDRE is that it does not 

cancel the benefits that can come from the nonlinearities of the dynamic system. The reason 

for this can be that it does not demand dynamic inversion and nor linearizations in the 

feedback of the nonlinear system. 

 

4. RESULTS 
 

4.1 Dynamic System 
      

     The dynamic system defined by Eq. (15) can be parameterized in first order equations and 

written in the state-dependent coefficient  form    
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 ,,, , , θθθθθθθθθθ &&&&&& −−−−−−=x  is a time state-dependent, 

6ℜ∈x&  is the vector of the first order time derivates of the states, defined as the difference 

between the regulated 
i

θ output and the value of the set-point 
di

θ , 3ℜ∈u   is the control 

vector, U is the control constraint set and S(x) is the output matrix. This system represents the 

constrains from the nonlinear regulator problem, together with ( ) ( ) 0,
00

=∞= xxx t , 

respectively the initial and final conditions. 

     The coefficient dependent matrices are given by 
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where 66 xℜ∈A  , 36 xℜ∈B  and ( ) ( )xxAxf = . It is assumed that f(0)=0, which imply that the 

origin is an equilibrium point. 

     A state feedback rather that output feedback is adopted to enhance the control 

performance. The non-quadratic cost function for the regulator problem is given by Eq. (19) 

where Q(x) is semi-positive-definite matrix and R(x) positive definite, chosen as Q = 

diag(50, ..., 50) and R = diag(1, ..., 1) and the control law is given by Eq. (27). 

 

     There are weighting matrices on the outputs and control inputs, respectively.  For a 

pointwise linear fashion there matrices are assumed with constant coefficients.  

       

      It is shown in Mracek and Cloutier (1998)  that 

 

1) In the neighborhood Ω  about the origin the SDRE method guarantees a closed-loop 

solution, local asymptotic stability.  

2) In the scalar case, the SDRE method reaches the optimal solution of the feedback 

regulator problem performance index Eq. (30), even when Q and R are functions of x. 

3) In general multivariable case, the SDRE nonlinear feedback controller satisfy the first 

necessary condition for optimality, 0Hu = , (H is the Hamiltonian from the problem 

Eq. (29), while the second necessary condition for optimality, xHλ −=& , is 

asymptotically satisfied at a quadratic rate as x goes to zero. 

4) The system Eq. (29) is pointwise controllable and observable, for a region in 

neighborhood Ω  about the origin.  For controllability this mean [ ]
5,...,1=n

BAB n
M  from 

the static problem BuAxx +=& , in this neighborhood. SDRE method considers a 

solution for this static pointwise problem, for small time interval. 

 

     The SDRE technique to obtain a suboptimal solution for this problem has the following 

procedure (Mracek and Cloutier, 1998). 

 

Step 1. Define the space-state model of the manipulator with the state-dependent coefficient 

form as in Eq. ( 30). 

Step 2. Measure the state of the system x(t), i.e., define x(0) = x0 , and choose the coefficients 

of weight matrices Q and R. 

Step 3.  Solve the Riccati equation, Eq. (28) for the state x(t), considering pointwise static 

solutions, i.e., solve  0QPBPBRPAPA
T1T =+−+ −  for each step.       

Step 4. Calculate the input signal from  Eq. (27) 

Step 5. Integer the system  Eq.(29) and update the state of the system x(t) with this results. Go 

to step 3. 

 

4.2  Stability Analysis 

 
     Using the SDRE method implies that the controllability of the static problem depends on 

the size from the time step. In this work this chosen size was 0.001 sec. Controllability is lost 
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for large time steps. In our case, with high frequencies, the time step is also important for 

characterizing correct frequency period.       

     The choice of the best values for the state weighting matrix Q is very important. A good 

choice can improve the efficiency of the controllers.  In this work we have tested some 

weighting matrices and concluded that, for our control design, the good results are obtained 

with values around Q=diag{50,…,50}. Smaller or greater values affects the control efficiency.    

     The stability analysis for this system may be examined around the origin (Shawky et al., 

2007). The linearization technique was used for  
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where fJ  and hJ  are the Jacobian matrices of f(x) and w(x,u) at x = 0, respectively. If the 

eigenvalues of the Jacobian have negative real part, the point x = 0 is a locally stable 

equilibrium point. If one of the real part are positive, then the point x = 0 is an unstable 

equilibrium point. In our case, ( ) ( )0BJ,0AJ hf == . Then, a necessary condition for a local 

stability is that the pair ( ) ( ){ }0B,0A  has to be stabilizable. It was obtained one positive 

eigenvalue, so that we have an unstable equilibrium point at the origin. Even so, the linearized 

system is pointweise controllable and observable for a region of interest Ω . This fact is shown 

in Shawky et al. (2007), and we have also verified the controllability for our system. The 

stability is obtained by full state feedback gain kxu −= .         

 

5. SIMULATIONS 
 

     We consider a simplified model presented  in Figure 1 that uses torque as variable of input 

control, where the mathematical model is given by Eq. (29). Let  
1

m , 
2

m   and 
3

m   be the 

masses, 
1

l , 
2

l  and 
3

l  the baricenter length, 
1

I ,  
2

I  and 
3

I  , the inertial moment and g , the 

gravity acceleration. 

 

     This model uses the following  anthropometric and geometric parameters of 

musculoskeletal system (Menegaldo, 2003), 
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     The movement of musculoskeletal system was simulated on PC, using MatLab/Simulink 

with time period mst   1=∆ , numerical method for differential equation  solution by Runge 

Kutta, with 1 second period. In this case, we obtained the following results. 

     In order to check the performance of the controllers presented, using a path that represents 

an initial condition of the human body crouching down to erect condition to simulate a control 
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of human posture (Pandy, 2001), where the initial conditions represent angles of 

approximately 57 degrees to the hip joint 
3

θ , approximately -57 degrees to the knee joint 
2

θ  

and about 40 degrees to the ankle joint 
1

θ . In Figure 3 is shown by the trajectory angle of the 

joints, there is a convergence to zero of the angle of joints, representing the upright position of 

the model.  

 

Figure 3. Tracking trajectory for angle of articulations to musculoskeletal system. 

 

In Figure 4 there is a convergence to zero of the speed trajectories. The torques applied to 

joints, limited by the gain matrix of control, are shown in Figure 5. 

Figure 4. Tracking trajectory for the speed angle of articulations to musculoskeletal 

system. 
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Figure 5. The torques applied to joints. 

 

This simulation shows the good performance of the adaptive control system presented in 

both the stationary and the transient state. 

 

6. CONCLUSIONS 

 

The biomechanical model of a human musculoskeletal system and the simulation of his 

behavior in movement can be applied in several areas, such as sports, engineering and 

medicine. The objective of this work was obtain a dynamic model and control that represents 

the postural musculoskeletal system. The description of kinematic and dynamic links 

movements was based on Newton-Euler and Euler-Lagrange formulation. In this paper, it was 

used a control based on state-dependent Riccati equation (SDRE) technique. A geometric model 

for simulations was obtained with Matlab/Simulink software. A path that represents an initial 

condition of the human body crouching down to erect condition was used to simulate a control of 

human posture. We presented the tracking trajectories for angle of articulations to postural 

musculoskeletal system. The trajectory error remained next to zero with similar results to those 

published in literature. The simulation showed the good performance of state-dependent Riccati 

equation (SDRE) control technique to postural control presented here. 
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