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Abstract.
The analysis and design of structural systems such as offshore structures usually involve several de-

sign goals which are required to be maximized or minimized simultaneously. The design goals are in
general potentially conflicting requirements reflecting technical and economical performances. The pur-
pose of this work is to obtain in an efficient manner compromise designs that best represent the outcome
that the designer considers potentially satisfactory. The designs are obtained by formulating a com-
promise programming problem, which is solved by an efficient first-order interior point algorithm. In
order to exemplify the proposed methodology a typical offshore structural model is considered for anal-
ysis. The random sea is modeled as a Gaussian process following a Joint North Sea Wave Observation
Project (JONSWAP) type spectrum for free surface elevation. Numerical results show that the proposed
approach for decision making is quite effective.
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1 INTRODUCTION

The design and optimization of complex engineering problems such as offshore structures
usually involve several design goals which are required to be maximized or minimized while
satisfying a number of design constraints. These design goals are potentially conflicting re-
quirements reflecting technical and economical performances of a given system design. To
accommodate these conflicting design goals and to explore the design options, the optimization
problem is formulated in terms of a multi-objective optimization procedure (Steuer, 1986). An
important class of solutions to the multi-objective problem is said to belong to the Pareto front
(set of Pareto optimal solutions). Each solution or alternative design comprising the front is
understood to be Pareto optimal which means there are no other design alternatives for which
all objectives are better (Stadler, 1992; Miettinen, 1999). The selection of one of the Pareto
design alternative over another is a matter of decision-maker preference.

Classical methods for generating the Pareto optimal set combine the objectives into a single
parameterized function. These methods involve assigning a weight to each objective function.
Several optimization runs with different settings are performed in order to generate the Pareto
optimal set. The results of the identification of a particular design depend on the set of weights
used in the analysis. The single objective problem is computationally attractive since conven-
tional minimization algorithms can be applied to solve the problem (Rao et al, 1988; Ulrich
and Eppinger, 2000; Papadrakakis et al, 2002). The main limitation of weighted sum methods
is that they do not yield solutions that lie in non-convex regions of the feasible design space.
In practice this means that weighted sum methods could miss potentially preferable designs.
Additional procedures available for the generation of compromise solutions with various capa-
bilities and limitations, include goal programming, physical programming, interactive methods,
and methods based on genetic algorithms (Messac and Mattson, 2002; Tappeta and Renaud,
1999; Goldberg, 1989; Papadimitriou, 2005). In general, the determination of the entire Pareto
front is prohibitively expensive for complex structural systems. This is the case of dynamical
systems under stochastic loading such as offshore structures subject to water wave excitation.

The aim of this work is restricted to obtain in an efficient manner compromise solutions that
best represent the outcome that the designer considers potentially satisfactory. This type of in-
formation provides a useful tool for the designer or analyst for decision making and tradeoff
analysis, since it allows an efficient design exploration around specific Pareto points. To exem-
plify the proposed methodology a typical offshore structural model is considered for analysis.
The random sea is modeled as a Gaussian process following a Joint North Sea Wave Obser-
vation Project (JONSWAP) type spectrum for free surface elevation (Hasselmann and Olbers,
1973).

2 PROBLEM FORMULATION

Consider a multi-objective optimization problem defined as the identification of a vector
{χ}, χi, i = 1, ..., nd, of design variables to minimize a vector of objective functions

{c({χ})} = {c1({χ}), c2({χ}), ..., cnc({χ})} (1)

subject to

gj ({χ}) ≤ 0 , j = 1, ..., ng (2)

{χ} ∈ Ξ (3)
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whereci, i = 1, ..., nc are the objective functions,gj, j = 1, ..., ng are the constraints functions,
andΞ is the set that contains the side constraints for the vector of design variables. The ob-
jective and constraint functions can be defined in terms of initial costs, repair and replacement
costs, downtime costs, reliability measures, etc. For structural systems under stochastic load-
ing the reliability measures are usually defined in terms of failure probability functions. For
a given design{χ} the failure probability functionPF ({χ}) can be expressed in terms of the
multidimensional probability integral

PF ({χ}) =

∫
ΩF ({χ})

p({θ})d{θ} (4)

whereΩF ({χ}) is the failure domain corresponding to the failure eventF evaluated at the
design{χ}, and{θ}, θi, i = 1, ..., nu is the vector of uncertain system parameters involved in the
problem, i.e. uncertain structural parameters and excitation. The uncertain system parameters
are modeled using a prescribed probability density functionp({θ}). This function indicates the
relative plausibility of the possible values of the uncertain parameters{θ} ∈ Ω{θ} ⊂ Rnu . For
systems under stochastic excitation the probability that design conditions are satisfied within a
particular reference period (first excursion probability) provides a useful reliability measure. In
this case, the failure eventF ({χ}, {θ}) is defined as

F ({χ}, {θ}) = max
i=1,...,ns

maxt∈[0,ts] | si(t, {χ}, {θ}) |≥ s∗i (5)

where[0, ts] is the time interval of analysis,si(t, {χ}, {θ}), i = 1, ..., ns are the response func-
tions associated with the failure criterionF , ands∗i is the corresponding critical threshold level.
The response functionssi(t, {χ}, {θ}), i = 1, ..., ns are obtained from the solution of the equa-
tion of motion that characterizes the structural model.

3 COMPROMISE PROGRAMMING

The determination of a set of non-dominated solutions (Pareto optimum solutions) of the
above multi-objective optimization problem achieves a compromise among different objective
functions. As previously pointed out there are a number of procedures available for the gener-
ation of compromise solutions with various capabilities and limitations. The objective of this
work is to obtain in an efficient manner particular compromise solutions. To this end, the set of
compromise solutions is defined by means of the so-called ideal point,{c(id)}, cid

i , i = 1, ..., nc,
which contains the individual optima of each of the objective functions. The approach, which
is called compromise programming (CP) is based on the minimization of the distance between
the ideal point and the Pareto set (Steuer, 1986). In particular, the Tchebyshev norm (Sawaragi
et al, 1985; Jensen, 2009) is used to measure such distance in the present implementation. The
corresponding compromise programming problem to the multi-objective optimization problem
(1-3) can be written as

Min z (6)

subject to

z ≥ ci({χ})− cid
i

cas
i − cid

i

, i = 1, ..., nc (7)

gj ({χ}) ≤ 0 , j = 1, ..., ng (8)
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{χ} ∈ Ξ , z ≥ 0 (9)

wherez is an auxiliary variable. The componentscas
i , i = 1, ..., nc are called the aspiration levels

and they are defined by the designer or analyst prior to solving the compromise programming
problem. These aspiration levels represent the outcomes that the designer feels adequate, and
they can only be achieved when they are on the compromise set. In other cases, a Pareto point
that best represents the aspiration levels is obtained.

4 TRADEOFF ANALYSIS

The sensitivity analysis at a given Pareto solution provides the variation in one objective
given the variation in another objective on the Pareto surface in a given direction. In particular,
the sensitivity along the feasible descent direction of each of the objectives in the objective
function space is considered here. Let{χ∗} be the design corresponding to the Pareto solution
that best represents the designer aspiration level, andJ the active constraint set defined as

J = {j : gj({χ∗}) = 0, j = 1, ..., ng} (10)

The feasible direction{dci} with the greatest improvement of the objectiveci is obtained
by projecting the gradient vector−∇χci({χ∗}) onto the projection matrix[P ] of the active
constraint set , that is,

{dci} = −[P ] ∇χci({χ∗}) (11)

where the projection matrix is given by

[P ] = [I]− [B]T ([B][B]T )−1[B] (12)

and where the rows of the matrix[B] are the gradients of the active constraints (constraints inJ
and the active bounds) (Belegundu and Chandrupatla, 1999). The vector{dci} corresponds to
the projection of the steepest descent direction of the objectiveci onto the tangent plane defined
by the active constraints at{χ∗}. The Pareto sensitivity measureδci/δcj, i.e., the variation in the
objective functionci given the variation in the objective functioncj, along the feasible descent
direction of the objectivecj is given by the projection of{dci} onto the direction{dcj}, that is

δci/δcj =
{dci}T{dcj}
{dcj}T{dcj}

(13)

This equation represents the tradeoff information of the objectiveci along the feasible de-
scent direction of the objectivecj. The sensitivity information given by Eq. (13) requires the
sensitivity evaluation of the quantities involved in the optimization problem (1-3). The evalua-
tion of such sensitivities is discussed in a subsequent section.

5 NUMERICAL IMPLEMENTATION

5.1 Solution of compromise optimization problem

For solving the optimization problem posed in (6-9), a nonlinear interior point method is
implemented here. Starting from an interior point the objective of the method is to determine a
direction vector{v} followed by a step length along this direction which gives a new improved
design point (Haftka and Gürdal, 1992). In particular, a scheme that moves along the active
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constraints to reach the solution point is used in the present implementation. In this algorithm
the direction{v} corresponds to a descent feasible direction and it is computed by solving a
linear programming subproblem (Haftka and Gürdal, 1992). The characterization of the linear
problems involves the gradients of the objective and constraint functions. Once a direction{v}
has been obtained, a one dimensional search is carried out (line search). The process continues
until convergence is achieved.

5.2 Reliability estimation

It is noted that some of the quantities involved in the compromise optimization problem are
given in terms of reliability measures which are characterized by failure probability functions.
In order to compute these quantities a high-dimensional integral needs to be evaluated. This
difficulty favors the application of Monte Carlo Simulation as fundamental approach to cope
with the probability integrals. However, in most engineering applications the probability that a
particular system fails is expected to be small, e.g. between10−4 − 10−6. Direct Monte Carlo
is robust to the type and dimension of the problem, but it is not suitable for finding small prob-
abilities. Therefore, advanced Monte Carlo strategies are needed to reduce the computational
efforts. In particular a generally applicable method, called subset simulation, is implemented in
this work (Au and Beck, 2001).

5.3 Sensitivity estimation

The proposed solution strategy requires the gradients of the functions associated with the
compromise optimization problem in order to identify search directions. In particular, the esti-
mation of the sensitivity of the constraints involving probability terms can be a challenging task.
Thus, a specialized approach for estimating the sensitivity of these quantities is considered here.
The approach is based on the approximate representation of two different quantities. The first
approximation involves the demand function while the second includes the failure probability
function. The failure domainΩF for a given design{χ} can be defined as

ΩF ({χ}) = {{θ} | κ({χ}, {θ}) ≥ 1}. (14)

whereκ is the demand function. If{χk} is the current design, the demand functionκ is approx-
imated in the vicinity of the current design as

κ̄({χ}, {θ}) = κ({χk}, {θ}) + {δκ}T{∆χ} (15)

where{χ} = {χk}+{∆χ}. For samples({θi}), i = 1, ...,M near the limit state surface, that is,
κ({χ}, {θi}) ≈ 1, the demand function is evaluated at points in the neighborhood of{χk}, and
the coefficients{δκ} of the approximation are computed by least squares. Since the samples
({θi}), i = 1, ...,M are chosen near the limit state surface the approximate demand function
κ̄ is expected to be representative, on the average, of the behavior of the failure domainΩF

in the vicinity of the current design{χk} (Valdebenito and Schuëller, 2009). Next, the failure
probability function, evaluated at the current design{χk}, is approximated locally as an explicit
function of the normalized demand aroundk∗ = 1 as

P
[
κ({χk}, {θ}) ≥ κ∗

]
≈ eψ0+ψ1(κ∗−1), (16)

κ∗ ∈ [1− ε, 1 + ε]
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whereκ∗ is a threshold of the normalized demand (in the neighborhood of one) andε represents
a small tolerance. The coefficientsψ0 andψ1 can be calculated by least squares with samples
of the demand functionκ generated at the last stage of subset simulation. Using the above
information it can be shown that the gradient of the failure probability function with respect to
the design variableχl is given by (Jensen et al, 2009)

∂PF ({χ})
∂χl

{χ}={χk}
≈ −ψ1 δkl PF ({χk}) , l = 1, . . . , nd (17)

whereδκl is the l-th element of the vector{δκ}, and all other terms have been previously
defined. This approach for estimating the gradients of the failure probability functions requires
a single reliability analysis plus the evaluation of the demand function in the vicinity of the
current design.

6 APPLICATION TO OFFSHORE STRUCTURES

6.1 Stochastic sea model

The random sea is modeled as a Gaussian process following a JONSWAP (Joint North Sea
Wave Observation Project) type spectrum for the free surface elevation (Hasselmann and Olbers,
1973)

S(f) =
αg2

(2π)4f 5
exp

[
−1.25(

f

fp
)−4

]
γexp(−

(
f
fp
−1)2)

2σ2 ) (18)

wheref is the frequency,α an equilibrium coefficient,σ a dimensionless spectral width param-
eter with valueσa for f < fp and valueσb for f > fp, fp the peak frequency,γ a peakedness
parameter, andg the gravitational acceleration. For illustration, Figure (1) shows the spectrum
corresponding to the valuesα = 0.015, σa = 0.07, σb = 0.09, fp = 0.1 Hz, andγ = 3.3.

Figure 1: JONSWAP spectrum for the free surface elevation
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To implement this spectrum the free surface wave elevation is represented in the time domain
by a superposition of harmonic waves corresponding to different frequenciesωi = 2πfi, i =
1, ...,M

η(x, t) =
M∑
i=1

Aicos(kix− ωit+ νi) (19)

with

Ai =
√

4S(fi)∆ωi (20)

wherex is the horizontal distance where the free surface elevation is evaluated,ki is the wave
number,νi is a uniform random variable defined in[0, 2π], and∆ωi = 2π∆fi is the band width
that each harmonic represents. For determining the sequence{ωi}, i = 1, ...M the frequency
range is divided into equal sub-ranges andωi is chosen as the middle of each one. The band-
width ∆ωi equals the width of the respective sub-range. It is noted that the frequencyωi and
the wave numberki are related according to the so-called dispersion relationship. A sample
realization of the free surface elevation corresponding to the spectrum presented in Figure (1)
is shown in Figure (2).

Figure 2: Sample realization of the free-surface elevation

The water particle kinematics are computed according to Airy linear wave theory (Hudspeth,
2006). The water particle velocityv and accelerationa in the horizontal direction are given
respectively by

v(x, z, t) =
M∑
i=1

AiωiZi(z)cos(kix− ωit+ νi) (21)

a(x, z, t) =
M∑
i=1

Aiω
2
iZi(z)sin(kix− ωit+ νi) (22)

with

Zi(z) =
cosh(kiz)

sinh(ki(d+ η(x, t)))
(23)
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wherez is the water elevation measured from the ocean bottom.

6.2 Hydrodynamic forces

The hydrodynamic forces of the submerged portion of the structure are calculated using
the Morison’s modified wave force equation (Hudspeth, 2006). For a pile-type structure with
diameterD the force in the normal direction, per unit of length, is given by

F (x, z, t) =
1

2
ρwDCD [v(x, z, t)− ẏ(x, z, t)] [|v(x, z, t)− ẏ(x, z, t)|] +

1

4
ρwπD

2CMa(x, z, t)−
1

4
ρwπD

2(CM − 1)ÿ(x, z, t) (24)

whereρw is the density of the sea water,CD is the drag coefficient,CM is the inertia coefficient,
v(x, z, t) anda(x, z, t) are as before the wave particle velocity and acceleration normal to the
pile, andẏ(x, z, t) and ÿ(x, z, t) are the corresponding structural normal velocity and acceler-
ation. The drag and inertia coefficients are assumed to be constant along the water depth and
frequency independent. The last term of Equation (24) is referred to as the added-mass. For
the evaluation of the hydrodynamic forces on the submerged portion of the structure the total
length of the structural elements (piles) is divided into segments. The structural and wave kine-
matics are then calculated at the ends of each segment (nodal characterization). For the case of
the wave kinematics, the corresponding nodal characterization is obtained as follows. First, the
wave particle velocity and acceleration are multiplied by linear interpolation functions and then
the product is integrated along each segment. These nodal forces are then incorporated into the
equation of motion of the offshore structural model.

6.3 Equation of motion

The equation of motion of the offshore structural model is written as

[Ms]{ÿs(t)}+ [Cs]{ẏs(t)}+ [Ks]{ys(t)} = {fs({ẏs(t)})} (25)

where{ys(t)} denotes the vector of nodal displacements of dimensionn, {ẏs(t)} the velocity
vector,{ÿs(t)} the acceleration vector, and{fs({ẏs(t)})} the vector of hydrodynamic forces.
The matrices[Ms], [Cs], and[Ks], describe the mass, damping and stiffness of the structural
model, respectively. All these matrices are assumed to be constant with respect to time. Note
that the excitation vector{fs} can be defined directly in terms of the free surface elevation
η(x, t), the wave particle velocityv(x, z, t), the wave particle accelerationa(x, z, t), and the
velocity response vector{ẏs(t)}. The linearity of the structural model as well as the linearity
of the wave theory for modeling the wave kinematics and estimating the hydrodynamic forces
are assumptions for this particular study. The methodology discussed here, though, is appropri-
ate for more complex cases, for example the consideration of nonlinear structural models and
applications that consider nonlinear theories for modeling the wave kinematics. The numerical
integration of the equation of motion is carried out by an appropriate step-by-step integration
scheme.
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7 NUMERICAL EXAMPLE

7.1 Description

An offshore structural model represented by a pile in a wave field, as schematically sketched
in Figure (3), is considered for study. A mass of 2500 ton is supported by the circular column of
diameterd. The nominal properties of the reinforced concrete pile element, which is fixed at the
bottom, are given by: modulus of elasticityE = 2.3× 1010 N/m2; and mass densityρ = 2500
kg/m3. The mean water depth ish = 70 m and the height of the pile is equal tol = 75 m.
The wave field is modeled as a Gaussian process following a JONSWAP type spectrum for the
free surface elevation with model parametersα = 0.015, σa = 0.07, σb = 0.09, fp = 0.1 Hz,
andγ = 3.3. The drag and inertia coefficients are taken asCD = 1.5 andCM = 2.0, and the
density of the sea water is equal toρw = 1.0 × 103 kg/m3. The Young’s modulusE and the
damping ratio of the model are treated as uncertain system parameters. The Young’s modulus is
modeled by a Log-normal random variable with most probable valueĒ = 2.3×1010 N/m2, and
coefficient of variation of10%, while the damping ratio is modeled by a Log-normal random
variable with mean valuēζ = 0.05 and coefficient of variation of40%. On the other hand, the
total diameterD of the pile is also treated as uncertain due to the biofouling phenomenon. It
is defined asD = d + 2df wheredf is modeled by a Log-normal random variable with most
probable valuēdf = 0.1 m, and coefficient of variation of40%

Figure 3: Offshore structural model
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7.2 Design Problem

The analysis and design of the system is carried out in terms of the diameterd of the pile. The
objective functions are expressed with respect to the initial cost (c1), and the failure consequence
cost (c2). The initial or production cost is assumed to be proportional to the area of the cross
section of the pile. On the other hand, the failure consequence cost is expressed in terms of the
system failure probabilityPF (d) given a storm occurrence. The storm occurrences are modeled
as a Poisson process with an occurrence rate ofν = 0.25 per year. Then the probability of
failure for a given reference or operation period (T = 50 years) is obtained by

PF |T (d) = 1− exp[−νTPF (d)] (26)

Failure over the operation period is assumed to occur when the displacement at the deck (top
of the pile) reaches some critical level for the first time. A threshold level equal to 0.75 m is
considered. Thus, the failure event is defined as

F = maxt∈[0,ts]|y(t, d, {θ})| > 0.75 (27)

wherets = 8 min is the time of analysis for a given storm,y is the displacement response at
the top of the pile, and{θ} is the vector of uncertain parameters involved in the problem. The
vector of objective functions to be minimized is{c1(d), c2(d)} where the diameterd of the pile
is constrained in the interval[3.5, 5.0] m.

7.3 Results

The corresponding compromise programming problem to the previous design problem can
be written as

Min z (28)

subject to

c1(d) ≤ z(cas
1 − cid

1 ) + cid
1

c2(d) ≤ z(cas
2 − cid

2 ) + cid
2

3.5 ≤ d ≤ 5.0 m

z ≥ 0 (29)

In the above equationcas
1 and cas

2 represent the aspiration level of the objective functions,
while cid

1 andcid
2 are the corresponding ideal values (individual optima for each of the objective

functions). The ideal point in the normalized objective function space(c1, c2) = (9.62, 5.56)
as well as the points corresponding to single objectives, i.e, initial cost minimization problem
(c1, c2) = (9.62, 7.99), and failure consequence minimization problem(c1, c2) = (19.63, 5.56)
are shown in Fig. (4). In this figure, the objective functions are normalized by appropri-
ate factors. For illustration purposes the following aspiration level is considered:(c1, c2) =
(13.50, 7.00). By solving the compromise optimization problem the following design is ob-
tained(c1, c2) = (11.53, 6.26). For comparison, the Pareto front is also shown in the figure.
It is seen that the point(c1, c2) = (11.53, 6.26) is a Pareto point in the sense that no other
solutions are superior to it when the two objective functions are considered simultaneously. It
is also observed that the Pareto point minimizes the distance between the ideal point and the
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Pareto front in the direction defined by the ideal point and the aspiration level. The trajectory of
the optimization process corresponding to the compromise optimization problem in the design
space is shown in Fig. (5). It is seen that the process converges in less than four iterations.
Thus, the Pareto point is obtained in a very efficient manner. The same efficiency is found for
other aspiration levels. Thus, the method is robust in terms of the aspiration levels considered
in the analysis.

Figure 4: Pareto point in the normalized objective function space obtained by compromise optimization

As previously pointed out the sensitivity analysis at a given Pareto solution provides the in-
formation on the effect of changes in one objective function over the other objective along its
feasible descent direction. In this case the feasible descent directions with the greatest improve-
ment of the objective functionsc1 andc2 are given by their steepest descent directions. The
feasible direction ofc1 is negative while the feasible direction corresponding toc2 is positive.
This indicates for example that an increase in the diameterd will produce an increase in the
initial cost and a decrease in the failure consequence cost. It is also found that an increase in the
initial cost of the system is associated with a decrease in the failure consequence cost. Similarly,
an increase in the failure consequence cost is achieved by a decrease in the initial cost. The fact
that these sensitivities are negatives indicates that the current design is Pareto optimum.

8 CONCLUSIONS

The goal of the present work was to introduce an efficient computational procedure for multi-
objective optimization of structural systems such as offshore structures under stochastic excita-
tion. For that purpose several techniques such as compromise programming, advanced Monte
Carlo strategies, and nonlinear interior point schemes have been integrated. Numerical results
show that the total number of reliability analyses required during the entire design process is
in general very small. Hence, different compromise solutions including the design that best
represents the outcome that the designer considers potentially satisfactory are obtained in an
efficient manner. At the same time an effective sensitivity analysis of Pareto solutions can be
carried out by the proposed formulation. Such sensitivity information provides the designer
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Figure 5: Trajectory of the optimizer for the compromise optimization problem in the design space

a practical tool for efficient exploration around Pareto solutions and for decision making and
tradeoff analysis. It is concluded that the proposed multi-objective optimization procedure can
be very effective in realistic engineering problems such as offshore structures under stochastic
water wave excitation.
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