
GID PROBLEM TYPE FOR THE LAGRANGIAN ANALYSIS OF FLUID 
FLOWS                                                                              

ENIEF 2004 

Julio Marti *, Facundo Del Pin†, Gerardo Frank*and Sergio Idelsohn*† 
 

* Centro Internacional de Mecánica Computacional (CIMEC), Instituto de Desarrollo Tecnológico 
para la Industria Química (INTEC),  

Guemes 3450, (3000) Santa Fe, Argentina 
e-mail: jmarti@ceride.gov.ar 

 
† International Center for Numerical Methods in Engineering (CIMNE)  

Universidad Politécnica de Cataluña, Barcelona, Spain.  
 

Key words: Lagrangian formulation, fluid-structure interaction, problem type. 

Abstract. The objective of this work is the programming of a problem type which configures 
GID for the pre-process of data that will be used in a fluid mechanic program. This program 
differs from the traditional Eulerian programs in that a particle fully Lagrangian formulation 
is implemented. Thus, in writing the problem type special considerations have to be taken 
regarded to boundary conditions and to the fact that no mesh is needed as input in the 
calculus program. The nodes generated by GID will be taken as the particles in the initial 
state of the problem. The Lagrangian program will store the states at different time steps such 
that they can be read by the GID post-process for a posteriori analysis of the results. 
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1 INTRODUCTION 

Fluidsuite is an object orientated code thus written is C++ to solve the Navier-Stokes 
equations for incompressible flows. The particular aspect of this code is that the equations of 
motion are written in a Lagrangian way. Thus, convection is obtained by directly moving the 
nodes of the discrete problem.  

A problem type denominate MFEM was developed to constitute a link between the 
program and the pre/post processor GID1. Some two-dimensional examples are analyzed.  

2 THEORY 

A Lagrangian particle formulation is presented to approximate the continuous fluid 
mechanics equations. Particle methods are those in which the problem is represented by a 
discrete number of particles, where each particle moves accordingly to its own mass and the 
internal/external forces applied to it. A Lagrangian frame of reference has been chosen to 
represent the convection of the particles. In this way, a set of axis is placed over each particle 
and the convection is directly obtained by moving the particle. This fashionable way of 
describing convection simplifies the Navies-Stokes equations by avoiding the advection 
terms. To complement the Lagrangian formulation the Meshless Finite Element Method 
(MFEM)2,3 is introduced. This method does not require a mesh to discretize the domain since 
the points are connected by means of the Extended Delaunay Tesselation (EDT)2 and the 
domain is partitioned into polyhedrons. Special shape functions, called non-Sibsonian4, are 
used to interpolate the unknowns over the polyhedrons, whereas the time integration is 
evaluated by an semi-implicit way by a fractional step method5,6. Then, particles are not only 
part of the fluid but are also represented by the nodes of the discrete problem.  

The mass and momentum conservation equations may be written in a semi Lagrangian 
formulation as: 

Mass conservation: 
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where ρ  is the density u  are the Cartesian components of the velocity field, the pressure, i p
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ijτ the deviator stress tensor,  the source term (normally the gravity) and if Dt
Dφ  represents the 

total or material time derivative of a function φ . 
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For Newtonian fluids the stress tensor ijτ  may be expressed as a function of the velocity 
field through the viscosity µ  by 
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For near incompressible flows (
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and it may be neglected in eq.(3). Then:  
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In the same way, the term ij
jx
τ∂  in the momentum equations may be simplified for slow 

incompressible flows as: 
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Then, the momentum equations can be finally written as: 
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Boundary conditions 

On the boundaries, the standard boundary conditions for the Navier-Stokes equations are: 

niijij p σνντ =−  on σΓ  

nii uu =ν  on nΓ  

tii uu =ζ  on tΓ  

where iν  and iζ  are the components of the normal and tangent vector to the boundary. 

3 DEFINING A PROBLEM TYPE 

A problem type is a collection of files used to configure GID for a particular type of 
analysis with a graphical user friendly interface (GUI). All the files are inside of a directory 
with the problem type name and extension .gid which is located in the main GID executable 
directory. For an extended description of the GID‘s problem types and its definition the reader 
is referred to8,9. 

Our problem type called MFEM is obtained using classical files, and an extra 
programming is needed to create a menu in the post-process with Tcl/Tk7 extension. The 
configuration files are:  

•MFEM.cnd: definition of node conditions (fluid, solid and mobile solid); 

•MFEM.prb: definition of data no associated to geometric figures (physical properties, 

boundary and initial conditions); 

•MFEM.bas: file that indicates what and how the GID should write the input data file to 

the code (files with extension .dat and .cond) ; 

•MFEM.tcl: file to create a menu for viewing the results in the post-processing (MFEM); 

•MFEM.bat: file that use commands of the operating system and execute the calculation 

from GID. 

This provides an easy definition of the geometry and meshing while the different 
conditions are assigned in a natural way for the user. Subsequently all the information is 
written into the files that are given to the solver dedicated to the analysis of fluid mechanic 
problems  and  later to allow the visualizing and analysis of the results. 

4 USAGE AND IMPLEMENTATION DETAILS 

To make the definition of the problem as easy as possible in this interface, a screen of 
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presentation, appear when the user first specifies the use of the developed interface for the 
problem (Figure 1). 

First, there is a preprocessing stage where the geometry of the problem to be solved is 
defined and subsequently saved with the project name; the FEM mesh is generated and the 
nodes conditions (Figure 2) and specific data are defined (Figure 3 and 4). Note that, the 
definition of the boundary conditions will depend on the kind of analysis performed. 

Next stage is to run Fluidsuite (calculate option is selected). The input to this module are 
two files, one with an extension .dat and the other with an extension .cond, both generated by 
the MFEM.bas. The first file defines the initial geometry with the initial position of nodes and 
the second file indicates physical properties, boundary and initial conditions. 

The last stage of the analysis is the visualization of the results using the menu mentioned 
before (Figure 5). 

   

Figure 1: Problem type presentation. 
 

Figure 2: Condition menu 
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Figure 3 : Problem data menu 

Figure 4 : Units menu 

 
Figure 5: Post- processing menu. 

5 GRAPHICAL AND NUMERICAL IMPLEMENTATION 

A number of free-surface flow and fluid-structure interaction problems will be presented. 
In a first group of examples the interacting solid will be considered infinitely rigid and fixed. 
In a second group of examples moving rigid solid motion will be considered. In all cases, the 
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elastic strains will be neglected. The following examples are considered: 

5.1 Water column collapse 

Figure 6 shows the initial geometry and mesh. The water is initially supported by a 
removable board and the collapse starts at time t=0, when the removable board is slip-up. 

The point positions at different time steps are shown in Figure 7. 
 

  

Figure 6: Water column collapse. Geometry and initial mesh. 

 
t = 0.005 sec. 

 
t = 0.2 sec. 

 
t = 0.4 sec. 

 
t = 0.6 sec. 

 
t = 0.8 sec. 

 
t = 1 sec. 

Figure 7: Water column collapse. Point positions at different time steps. 
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5.2 Mixing two different fluids 

Figure 8 shows two recipients with fluid. The upper fluid has a density smaller than the 

bottom fluid. In the Figure 9 the velocity vectors are shown at different time steps.  

 

  
Figure 8: Mixing two different fluids. Geometry and initial mesh 

t = 0.005 sec. t = 0.2 sec. 

t = 0.4 sec. t = 0.6 sec. 
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t = 0.8 sec. t = 1 sec. 

Figure 9: Mixing two different fluids. Velocity vectors at different time steps. 

5.3 Generation of waves in a channel 

Figure 10 shows the generation of waves in a channel, where the left extreme oscillates 

about its center of mass with a given period T. The oscillation takes place for 5 seconds. A 

variable distance h between particles has been introduced in order to improve the 

representation of the large gradients around the rocks protection. Figure 11 shows the 

pressure contours at different time steps. 

Figure 10: Generation of waves in a channel. Geometry and initial mesh 
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t = 0.72 sec. t = 4 sec. 

t = 8 sec. t = 16 sec. 

t = 24 sec. t = 32 sec. 

Figure 11: Generation of waves in a channel. Pressure contours at different time steps. 

5.4 Cube falling into water. 

 This example is also a case of fluid-structure interaction. The solid is initially totally free 
and is falling down into a recipient with fluid (Figure 13). Figure 12 shows the initial position 
and initial mesh. The solid is considered to be heavy compared to the liquid weight.   
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Figure 12: Cube falling into water. Geometry and initial mesh 

 

 
t =  0.5 sec. 

 
t =0.51 sec. 
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t = 0.7 sec. 

 
t = 1.2 sec. 

Figure 13: Cube falling into water. Contour fill of pressure for different time steps. 

5.5 Opening of a radial gate of a weir. 

This example shows the maneuver of opening of a radial gate of a weir. The radial 
(Taintor) gate rotates around its center of mass. Figure 14 shows the geometry and initial 
mesh and Figure 15 shows the point positions of the fluid at different time steps.  

 

  
Figure 14: Opening of a radial gate of a weir. Geometry and initial mesh 
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t = 0.005 sec. 

 
t = 1 sec. 

 
t = 2 sec. 

 
t = 4 sec. 

Figure 15: Opening of a radial gate of a weir. Positions of the fluid for different time steps. 
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6 CONCLUSIONS 

In this work, a Lagrangian formulation was considered in GID to simulate 2D flow 
problems. Particle methods are interesting for large surface flows, large changes in the 
geometry (e.g. wave breaking). The problem type presented here permitted a comfortable 
definition of the geometry and the generation of the initial particles, while the conditions and 
general parameters of the problem to analyze are assigned more natural to the code.  The use 
of the Tcl/Tk language permitted to create a menu in the post-process of GID that facilitated 
the selection of the output for visualization. Future work will be to continue adapting the 
problem type defined in this work to extend our analysis to 3D flow problems.   
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