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Abstract. The aim of this paper is to present the application of a parallel Finite Elements Method
(FEM) code based on General Purpose Graphics Process Units (GPGPU) to the evaluation of effective
mechanical properties of periodic media. The multiscale technique adopted herein is the Asymptotic
Expansion Homogenization (AEH), which demands considerable computational effort even for simple
geometrical and mechanical material models. In this work, the AEH technique is implemented on a
GPGPU basis. The preliminary results indicate a considerable speedup in comparison with a sequencial
version of the employed code.
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1 INTRODUCTION

The Asymptotic Expansion Homogenization (AEH) is a multiscale technique applied to the
estimation of effective properties of heterogeneous media with periodic microstructure.

During a preliminary study (Ferreira et al., 2007; Farage et al., 2008) developed at the NU-
MEC (Research Group on Computational Methods in Engineering, Federal University of Juiz
de Fora, Brazil), the AEH was employed to evaluate the effective mechanical properties of
plane periodic structures. Even though the adopted models were quite simple, the need for re-
fined meshes resulted in considerable computational efforts, demanding rather long processing
time. In order to reduce the processing time, the use of parallelization is essential.

In a previous work, it was developed a parallel version of the code using OpenMP. The
parallelization provided up to 20% improvement in application performance. However, bet-
ter improvement in performance was expected to be achieved: a memory contention problem
contributed to limit the gains obtained by code parallelization (Quintela et al., 2010). This re-
sults encouraged the development of a new parallel version of that code using General-purpose
Graphics Processing Units (GPGPUs).

GPGPUs were chosen due to their ability to process many streams simultaneously. The
present work describes the new parallel implementation as well as evaluates its performance.
Experimental results showed that the parallelization was effective in improving the simulator
performance, yielding speedups up to 19. For comparison purposes, the OpenMP results are
presented herein.

The paper is organized as follows. Section 2 presents the Asymptotic Expansion Homog-
enization technique, while section 3 presents its sequential implementation. In section 4 dis-
cusses the parallelization approach. Sections 5 and 6 present the experiments, and section 7 a
conclusion.

2 THE ASYMPTOTIC EXPANSION HOMOGENIZATION TECHNIQUE

The Asymptotic Expansion Homogenization (AEH) is a multiscale technique based on the
assumption that a heterogeneous medium may be represented by a homogeneous counterpart
since its microstructure is periodic or repetitive. The technique is based on the uncoupling of the
different scales of a material, extrapolating the results from inferior or heterogeneous scales in
order to obtain global or homogenized properties (Sanchez-Palencia, 1980; Murad et al., 2001;
Murad and Moyne, 2002; Romkes and Oden, 2004). As applying the AEH, a very important
aspect is the definition of the geometric characteristics of the periodic cell, which is the smallest
microstructural volume able to statistically represent the global constitutive behavior of the
medium. By knowing the heterogeneous properties of a cell, it is assumed that those properties
are periodically repeated over the structure. Basically, in periodic structures that present two
scales, the AEH consists of uncoupling those scales into a microscale and a macroscale.

The homogenization deals with partial differential equations related to heterogeneous mate-
rials with periodic structure considering the assumption that the amount of periodic cells tends
to infinity. The scale parameter ε is the characteristic dimension of the period. Figure 1, adapted
from reference (Cioranescu and Donato, 1999), illustrates the physical meaning of periodicity
and the scales uncoupling in a two-dimensional problem. In practical purposes, the main inter-
est is getting to know the global behavior of a composite by considering that the heterogeneities
dimensions - or that the scale parameter ε - tends to zero (Cioranescu and Donato, 1999). The
coefficients of the describing differential equations are the characteristics of the studied mate-
rial, depending on ε. Concerning a composite with a ε-periodic distribution, those coefficients
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Figure 1: Periodic structure adapted from (Cioranescu and Donato, 1999)

are not easy to evaluate. Consideration of the limit case of ε → 0 leads to a homogenized
problem, with constant coefficients that may be calculated with the help of numeric techniques,
such as the Finite Element Method (Sanchez-Palencia, 1980; Cioranescu and Donato, 1999).
In the present work, the AEH is employed to evaluate the homogenized elastic properties of
composites. The primary variable is a smooth displacement function ui(x, y), which presents
periodicity in the microscale Y , related to the macroscale by means of the equation: y = x/ε.

2.1 AEH applied to Linear Elasticity

By considering a material whose microstructure is composed of multiple phases, periodically
distributed over the body (Sanchez-Palencia, 1980; Chung et al., 2001), the periodic elastic ma-
terial properties are defined by the following relation:

Dε
ijkl = Dijkl

(x
ε

)
(1)

where ( )ε denotes quantities related to the actual non-homogeneous medium; the function Dε
ijkl

stands for the material’s properties variations in the heterogeneous microstructure Y . The linear
elasticity problem is described by the equilibrium equation (Eq. 2), boundary conditions (Eq.
3) and (Eq. 4), strain-displacement relation (Eq. 5) and constitutive relation (Eq. 6):
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σε
ij is the ij term of the internal stresses tensor and f1 is the body force in the dominium Ω; uε

i is
the displacement in direction i; nj is the vector normal to the boundary ∂Ω and F1 is the external
force applied on the boundary and εij is the ij term of the strains tensor. The displacements are
approximated by an asymptotic series in ε, given by equation 7:

uε
i(x

ε) = u
(0)
i (x, y) + εu

(1)
i (x, y) + ε2u

(2)
i (x, y) + . . . (7)

where u
(0)
i is the macroscopic displacement and u

(1)
i , u

(2)
i , . . . stand for the periodic displace-

ments in more refined scales. As the heterogeneous actual medium is represented by two
coordinate systems (x and y = x/ε), the derivatives originally in xε must be expanded in a
chain rule given by:

∂

∂xε
i
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∂
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+
1

ε

∂

∂yj
(8)

In order to obtain the uncoupled equations that describe the microscale and the macroscale
problems, the displacement ui is replaced by equation 7 in the set of equations 2 to 6. The basis
of the approximation is the assumption of ε → 0, indicating that the number of periodic cells
tends to infinity and the actual non-homogeneous structure is then approximated by a homo-
geneous one. In order to validate such an approximation, the resulting coefficients of ε with
negative exponent must be identically nulls. That leads to the conclusion that the homogenized
solution u(0) is constant over the microscopic scale (u(0) does not depend on y), as indicated by
the following equation:

∂

∂yj
Dijkl

(
∂u0

k

∂yl

)
= 0 (9)

The homogenized elastic properties tensor is, finally, given by expression 10:

Dh
ijmn =

1

|Y |

∫
Y

Dijmn

[
δimδjn +

∂ξmn
i

∂yj

]
dy, (10)

The detailed description of the AEH formulation is given in reference Sanchez-Palencia (1980).

3 AEH IMPLEMENTATION

3.1 Program Description

This work derives from three previously published studies (Ferreira et al., 2007; Farage et al.,
2008, 2009) in which the HEA2D program was introduced and validated for the evaluation of
homogenized elastic properties of plane periodic cells. Numerical results were compared to ex-
perimental data obtained for lightweight aggregate concretes (Ke et al., 2006b,a), showing good
agreement. The current versions of the program evaluate the homogenized elastic tensor of two-
dimensional cells through the Finite Element Method (FEM), employing six-noded triangular
elements. The HEA2D application was initially implemented in the integrated technical com-
puting environment MATLAB c©, from which some preliminary results were obtained. Those
experiments indicated that complex meshes severely hurt performance, and it was decided to
port the application to the C programming language. That was a first step to the generalization
of the code to the solution of 3D problems, which are rather more time-consuming than the
current 2D version.

The HEA2D inputs are the geometrical and mechanical characteristics of the cell and the
output is the effective elastic tensor for the material. The following steps are performed to
calculate the homogenized properties (Chung et al., 2001):
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1. Data input: Information about the finite element mesh, boundary conditions of the periodic
cell and mechanical properties of their α phasis (elastic modulus Eα and Poisson’s ratio
να).

2. Assemblage of the stiffness matrix [K] and the independent tensor [F ] (right-hand side of
the equilibrium equation).

[K] =

[
nelm∑
i=1

BTDBJ

]
(11)

[F ] =

[
nelm∑
i=1

BTDJ

]
(12)

where nelm is the number of elements in the mesh, B is the derivation tensor, D is the
local elastic property tensor (for each α phase that composes the microstruture) and J is
the Jacobian tensor, which relates the coordinate system to the parametric representation
of the geometry;

3. Solution of the linear equations system. The system of equations is solved to obtain the
elastic corrector tensor U:[

nelm∑
i=1

BTDBJ

]
[U ] =

[
nelm∑
i=1

BTDJ

]
(13)

4. Determination of the homogenized property tensor, by means of the averaging procedure
described by Eq. (10), rewritten herein as:

[Def ] =
1

Y

[
nelm∑
i=1

D(I −BU)|J |

]
(14)

where Y is the total body volume, D is the local elastic property tensor (for each phase
that composes the microstruture), I the identity matrix, B is the derivation tensor, U is the
elastic corrector tensor and J is the Jacobian tensor, which relates the coordinate system
to the parametric representation of the geometry.

The C version of HEA2D (Quintela et al., 2009) was the basis to the parallel version, as
described in the following sections.

4 PARALLEL VERSION

As expected, during the performance evaluation of the sequential code, the resolution of the
system of algebraic equations from the finite element aproximation was identified as one hot
spot. The system is represented by a matrix with dimensions gll x gll and a matrix of indepen-
dent terms with dimensions gll x 3, where the unknown is a matrix with gll x 3. The dimension
gll means the total number of degrees of freedom on the global structure after applying periodic
boundary conditions. The function that solves the system of equations is called solve and it was
the part of the code which was parallelized. On the sequential execution to solve the unknown
matrix, the solve function calls three times the resolution of the chosen direct method (QR, LU
or Cholesky), each one for each column of the unknown matrix to be solved.
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4.1 OpenMP

The first parallel version of HEA2D (Quintela et al., 2010) was implemented using OpenMP
(Open Specifications for Multi Processing) (Chapman et al., 2007). OpenMP offers a program-
ming interface for shared memory parallel machines. The programmer uses compilation di-
rectives to identify the portions of the source code that should be executed in parallel. The
programmer can also specify how the code should be executed.

In the OpenMP version of the code (Quintela et al., 2010), methods for solving the three
systems of equations were called concurrently using the sections directive. The parallelization
provided up to 20% improvement in application performance. A detailed analysis has shown
that a memory contention problem was negatively impacting performance. Due to this fact,
a new parallel version of the code was developed using General-purpose Graphics Processing
Units (GPGPUs).

4.2 General-Purpose Computing on Graphics Processing Units - GPGPU

NVIDIA’s CUDA (Compute Unified Device Architecture)(NVIDIA, 2006) is a massively
parallel high-performance computing platform on GPGPUs. CUDA includes C software devel-
opment tools and libraries to hide the GPGPU hardware from programmers.

In GPGPU, a parallel function is called kernel. A kernel is a function callable from the CPU
and executed on the GPU simultaneously by many threads. Each thread is run by a stream
processor. They are grouped into blocks of threads or just blocks. A set of blocks of threads
form a grid. When the CPU calls the kernel, it must specify how many threads will be created at
runtime. The syntax that specifies the number of threads that will be created to execute a kernel
is formally known as the execution configuration, and is flexible to support CUDA’s hierarchy
of threads, blocks of threads, and grids of blocks.

Since all threads in a grid execute the same code, a unique set of identification numbers is
used to distinguish threads and to define the appropriate portion of the data they must process.
These threads are organized into a two-level hierarchy composed by blocks and grids and two
unique coordinates, called blockId and threadId, are assigned to them by the CUDA runtime
system. These two build-in variables can be accessed within the kernel functions and they
return the appropriate values that identify a thread.

Some steps must be followed to use the GPU: first, the device must be initialized. Then,
memory must be allocated in the GPU and data transferred to it. The kernel is then called. After
the kernel have finished, results are transferred back to the CPU.

4.3 Concurrent Number Cruncher

The Concurrent Number Cruncher (CNC) library was chosen to parallelize the HEA2D code
using CUDA. The CNC library is a high-performance preconditioned conjugate gradient solver
on the GPGPU. The CNC is based on a general optimized implementation of sparse matrices
using Block Compressed Row Storage (BCRS) blocking strategies for various block sizes, and
optimized BLAS operations through massive parallelization, vectorization of the processing
and register blocking strategies (Buatois et al., 2008).

The Jacobi preconditioned conjugate gradient algorithm requires a sparse matrix-vector prod-
uct, a vector inner-product and vectors operations (Buatois et al., 2007; Shewchuk, 1994). These
operations are performed in the GPGPU.

The HEA2D code was modified to use the CNC library. The CNC library was also adapted
to solve each column of the system of equations at a time. It is shown bellow an example of
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CNC solver method call from HEA2D where A is the stiffness matrix, b is one right hand side
column and x one solution column.

ok=CNCGPUSolver::solve_cg(A,b,x,max_iter,epsilon,block_size);

The internal CNC method include CUBLAS (Compute Unified Basic Linear Algebra Sub-
programs) calls which are BLAS implementation on top of the NVIDIA CUDA driver. (NVIDIA,
2008) The Jacobi-preconditioned conjugate gradient iterations are performed on CPU and each
matrix-vector product, vector inner-product and vector operations are accomplished parallel on
GPU.

5 NUMERICAL EXPERIMENTS

This section presents the results for numerical experiments. The experiments were performed
on a 1.2 GHz Intel Core i7-860 processor, with 8 GB RAM, 8 MB L2 cache and a GTX 285
card. The system runs Linux kernel 2.6.31. The gcc version 4.4.2 was used to compile all
versions of the program.

5.1 Experimental Methodology

Aiming to compare the performance of the sequential and parallel versions of the program,
three distinct types of periodic cells were considered to represent composite materials.

Figure 2: circular Figure 3: laminated Figure 4: short fiber

Fig. 2 represents a square cell with a circular inclusion that may represent the cross section
of a composite reinforced with long aligned fibers. This composite material exhibits isotropic
behavior in the represented plane.

The cell shown in Fig. 3 is the elementary volume of a laminated composite. This structural
conformation is largely employed to the construction of structures from prescribed properties
(Torquato, 2001). Fig. 4 represents another important class of composite materials, standing for
materials reinforced with short fibers. The two last examples, taken from reference Ghosh et al.
(1995), present anisotropic behavior and the effective properties are not exactly evaluated - the
quality of the approximated results depend strongly on the refinement of the finite elements
mesh.

These three different types of periodic cells were used as benchmarks submitted 10 times to
all versions of code, and the average execution times were used to calculate the speedups. All
the standard deviation are less than 10%.
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6 RESULTS

In all the numerical tests, the sequential and parallel versions of the program generated the
same homogenized effective tensor so, both CPU and GPU numerical results were the same.
This was expected because both codes employ single-precision arithmetic.

The circular inclusion mesh (Fig. 2) was analyzed with a 3, 097 nodes mesh. The mechanical
properties of the components were adopted, for validation purposes, as: matrix elastic modulus
Em = 1, inclusion elastic modulus Ei = 10, matrix Poisson’s ratio νm = 0.3 and inclusion
Poisson’s ratio νi = 0.03. The obtained effective isotropic tensor was D11 = D22 = 1.205,
D12 = D21 = 0.0713 and D33 = 0.5582:

The laminated cell (Fig. 3) and the short fibers cell (Fig. 4) properties were taken from
reference Ghosh et al. (1995), where the same multiscale technique was employed to analyze
a composite with the following properties: Em = 72.5GPa, Ei = 400GPa, νm = 0.33 and
νi = 0.2.

Four different meshes were adopted for laminated and six for the short fiber cell with contin-
uous refinement to approximate the results obtained by Ghosh et al. (1995) and it was observed
(Quintela et al., 2010) that the results tend to the reference values. However, this additional
refinement directly impacts performance as the size of the problem is increased.

Tables 1 and 2 present the speedup obtained for each of the analyzed cases. The speedup fig-
ures were obtained by dividing the sequential execution time of HEA2D by its parallel version:
the OpenMP version running on CPU and the CUDA version running on GPGPU. Although
the CPU and GPU architectures differs, the OpenMP speedups were presented for comparison
purposes. The number of threads used for parallel regions in the OpenMP version is equal to
three, so the maximum speedup this version of the code could achieve is 3.

3,097 (circular) 2,775 9,171 10,877 15,445
CUDA 1.31 2.50 6.02 6.60 6.76

OpenMP 1.90 1.94 2.33 2.37 2.37

Table 1: Speedups for the circular and laminated meshes with different refinements. The circular values are
presented in the first column. (number of nodes)

5,175 7,735 15,125 21,903 33,485 45,353
CUDA 6.33 8.50 9.63 17.02 12.44 19.02

OpenMP 2.22 2.35 2.37 2.43 2.47 2.54

Table 2: Speedups for the short fiber meshes with different refinements. (number of nodes)

As indicated in Tables 1 and 2, the OpenMP version of the code achieved better speedup than
the CUDA one only for the circular mesh. For the laminated mesh with 2,775 nodes, OpenMP
also achieved a speedup similar to CUDA. Such result is due to the small number of nodes used
in both meshes: working on the GPU in practices becomes inefficient when only small portions
of data are transferred to the device and kernels are launched frequently, so that the initialization
and data transfers to and from the GPU takes the biggest portion of the compute time. For all
other configurations, the CUDA outperformed OpenMP by at least a factor of 2.5 times.

As one can observe, the more refined the mesh the better is the CUDA speedup. The best
result a speedup of 19 was obtained when using a mesh comprising of 45,353 nodes. This fact
indicates that better speedups may be achieved when larger system configurations are employed.
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A key observation is that the new experiments presented in this work reinforce the initial sus-
picion that the poor OpenMP performance presented in a previous work (Quintela et al., 2010)
was caused by memory contention. In fact, the best OpenMP speedup obtained previously was
1.2 but, it was obtained in a different hardware architecture: a 2 GHz Intel Core 2 Quad proces-
sor (Q8200), with 4 GB RAM and 2 MB L2 cache running Linux kernel 2.6.18. It is important
to notice that the same version of the OpenMP code was executed in both machines. Also,
another work (Xavier et al., 2010) have also identified the same issue and presented additional
experiments that reinforces the suspect that a memory contention hazard affects the Intel Core
2 Quad architecture.

7 CONCLUSIONS

This work, presents a parallel implementation of the asymptotic expansion homogenization
(AEH) technique using GPGPUs. The experiments indicate that the parallelization was effective
in improving the performance, providing gains up to 19 times.

The new results presented in this paper reinforce the idea that the poor OpenMP performance
obtained in previous work (1.2) was due to a memory contention problem related to the internal
Intel Core 2 Quad processor architecture.

We intend to continue this work by developing a 3D version of the asymptotic expansion
homogenization method. We hope that, by using this new parallel 3D version, the code will be
able to analyze more complex and realistic models of composite materials.
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