Mecánica Computacional Vol XXIX, págs. 7481-7502 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010

EFEITOS DE CARGAS LOCALIZADAS EM TRILHOS DE VIGAS DE ROLAMENTO COM ALMA SENOIDAL

Gílson Queiroz, Sandra Pietrani Alpino Silva

Escola de Engenharia da Universidade Federal de Minas Gerais, Avenida Antônio Carlos, 6627, Campus Universitário Pampulha, Belo Horizonte, Brasil, alpinosilva@terra.com.br

Palavras-Chave: Perfis com Alma Senoidal

Resumo. Com os avanços da engenharia estrutural e as diversas vantagens que os perfis de alma senoidal vêm apresentando, dentre elas a economia de material e a possibilidade de fabricação em grande escala e com baixo custo, acredita-se em um aumento de utilização e de investimentos na produção desses perfis em todo o mundo. A utilização viável de tais perfis resulta no interesse por maior conhecimento de seu desempenho em diversas situações de carregamentos, gerando assim a necessidade de mais pesquisas e publicações que complementem as já existentes. Este artigo apresenta um estudo de perfis de alma senoidal usados como vigas de rolamento, sob o efeito de cargas localizadas sobre trilhos. O estudo tem grande importância, pois esse tipo de aplicação ainda não está consolidado. Foram realizadas 192 análises numéricas parametrizadas por meio de modelos de elementos finitos, utilizando-se o programa ANSYS 10.0. Os valores dos parâmetros estabelecidos estão dentro dos limites dos perfis senoidais fabricados no Brasil. Os modelos permitem determinar os efeitos causados no perfil por uma carga localizada sobre um determinado trilho e a interação dessa carga com a força cortante. Os resultados foram utilizados para propor procedimentos de determinação da resistência a cargas localizadas e da interação entre essas cargas e a força cortante. Tais procedimentos foram baseados em ajuste de curvas aos resultados numéricos de todas as análises.

1 INTRODUÇÃO

As corrugações nas almas das vigas de almas senoidais fornecem grande rigidez lateral aumentando consideravelmente a resistência ao cisalhamento, podendo esta atingir a resistência plástica. Assim permitem-se alturas maiores com relação altura/espessura bem superior às dos perfis de alma plana.

Com essas características, são muitas as vantagens do perfil de alma corrugada. Algumas delas são citadas a seguir:

- * Permite vencer grandes vãos, reduzindo o número de pilares da obra;
- * Menor peso próprio da estrutura;
- * Boa resistência à fadiga, com a ausência dos enrijecedores transversais, soldados nas vigas;
- * Baixo custo de fabricação se comparado com as vigas treliçadas, também capazes de vencer grandes vãos com baixo peso, porém com maior mão de obra.

No Brasil, desde 2005, apenas a empresa Codeme Engenharia fabrica o perfil de alma senoidal. São diversas as aplicações desses perfis para a empresa, que devido ao excelente comportamento mecânico e à elevada eficiência estrutural e produtiva deste perfil, além de galpões comerciais, sistemas de cobertura, edificios industriais, vem investindo e aplicando também estes perfis em vigas de rolamentos e vigas mistas para pisos. A fabricação automatizada possibilita a produção em grande escala e com baixo custo, tornando-se assim viável a utilização de tais perfis em diversas obras. O presente trabalho visa a utilização de perfis de alma senoidal como vigas de rolamento, que são sujeitas a forças localizadas móveis.

2 ANÁLISE NUMÉRICA

Para estudar o comportamento das vigas de almas senoidais como vigas de rolamento, sujeitas a forças localizadas sobre trilhos, realiza-se análise parametrizada por meio de modelos de elementos finitos.

Para que os modelos representem adequadamente as vigas e trilhos e suas propriedades, eles são discretizados no programa ANSYS 10.0, utilizando-se o elemento de casca Shell 181, com quatro nós e seis graus de liberdade por nó, nas mesas, alma senoidal e trilhos.

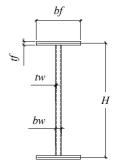
Como o aço é um material homogêneo e praticamente isotrópico, suas características são bem definidas. Desta forma, é possível uma boa aproximação entre seu comportamento estrutural definido teoricamente e o que efetivamente ocorre na prática.

Para a análise não linear geométrica e física é utilizado um material com diagrama tensão-deformação bi-linear, com módulo de elasticidade, E, de 200000 MPa, coeficiente de Poisson de 0,3, módulo de elasticidade tangente, E_t igual a E/10000 e que segue o critério de escoamento de von Mises e regra de encruamento cinemático. Considera-se uma imperfeição inicial de 1 mm, associada ao maior deslocamento do 1º modo de flambagem. Considera-se também que o efeito das tensões residuais pode ser desprezado, porque a alma, elemento mais afetado pelas forças locais, tem espessura muito pequena, com pouca deposição de material de solda.

Os valores dos parâmetros estabelecidos dos perfis de alma senoidal são baseados nas dimensões usuais dos perfis senoidais fabricados no Brasil, descritos adiante. Eles também são definidos de acordo com as características de perfis para possíveis vigas de rolamento, por exemplo, altura mínima de 600 mm. Para este estudo os parâmetros considerados são a altura do perfil, a largura da mesa, a espessura da mesa, a espessura da alma senoidal e o tipo do trilho.

A seguir os parâmetros utilizados, ver Figura 1:

Espessura da Alma, $t_w \rightarrow 2.0 \text{ e } 3.0 \text{ mm}$


Altura da alma, $H \rightarrow 600, 800, 1000 \text{ e } 1200$

Dimensões das Mesas, $t_f x b_f \rightarrow 12,5x150, 12,5x200, 16x150, 16x200,$

16x250, 19x200, 19x250, 19x300

Tipos de Trilhos → barra quadrada50mm, TR-25 e TR-37

Obtendo-se um total de 2x4x8x3=192 vigas

2.1 Discretização do modelo

No processo de definição do modelo mais próximo da prática, entende-se que a discretização do trilho junto à viga é fundamental

Figura 1 Parâmetros

para resultados mais confiáveis e, portanto neste estudo os modelos são necessariamente discretizados com o trilho sobre a viga de alma senoidal.

O contato entre a mesa do perfil e a base do trilho obtém-se através de elementos de contato, definidos no Ansys como TARGET170 para a superfície alvo, sendo esta a região da mesa da viga em contato com o trilho, e como CONTACT174 para a superfície de contato, a base do trilho.

Define-se o comprimento da viga aproximadamente igual ao dobro da altura do perfil, já que este estudo não considera as solicitações devidas ao momento fletor. O comprimento adotado é suficiente para que a determinação da resistência última a forças localizadas e da interação entre essas forças e a força cortante.

A alma senoidal é modelada com as dimensões mostradas na Figura 2.



Figura 2 – Dimensões da senóide para as almas das vigas pesquisadas, em mm

Apesar de algumas dimensões sofrerem alterações para a alma com espessura de 3,0 mm nos perfis de fabricação brasileira, este trabalho visa apenas uma geometria de senóide para as duas espessuras. O valor de b_w , igual a 40 mm, é definido para o programa Ansys, que estabelece essa cota de eixo a eixo.

Em todos os modelos os valores de f_y , resistência ao escoamento do aço, são de 350 MPa para as mesas e 300 MPa para a alma, fixados conforme propriedades de perfis produzidos no Brasil. Para os trilhos foi considerado um valor elevado para f_y de forma que eles sempre fiquem no regime elástico.

A Figura 3 mostra alma, mesas e trilhos de uma viga modelada no Ansys.

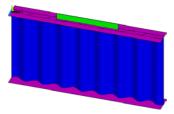


Figura 3 – Viga discretizada no Ansys

Outro fator fundamental na discretização dos modelos é a definição de uma malha apropriada. Alguns testes foram realizados com diferentes malhas e os resultados obtidos apresentaram, como de se esperar, menores resistências nos resultados do modelo com a malha mais refinada, ou seja, elementos finitos com dimensões menores. A Figura 4 apresenta a malha adotada para a alma senoidal.

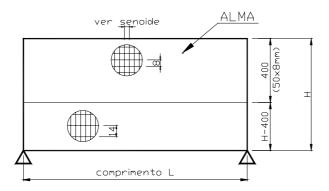


Figura 4 - Malha da Alma, dimensões em mm

Com o mesmo intuito de fazer um refinamento que resulte em resultados mais corretos, os elementos da mesa da viga terão menores dimensões próximo a entrada de forças, aqui definida na região da senóide (ver Figura 5).

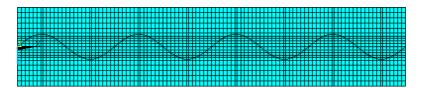


Figura 5 – Elementos da mesa com malha mais refinada na região da senóide

Como dito anteriormente, depois de gerada a mesa superior, esta é simplesmente copiada para gerar a mesa inferior. Portanto, mesmo sem necessidade para este estudo, a mesa inferior tem o mesmo refinamento utilizado na mesa superior, para facilitar a criação do préprocessador.

Na busca de um modelo próximo do real, modela-se também o trilho sobre a mesa superior da viga que, como já dito, é imprescindível para resultados mais corretos. Procurando simplificar a entrada de dados no Ansys, desenvolve-se um modelo de trilho que mantenha apenas as propriedades mais importantes.

Adotando um perfil T invertido e considerando que a altura do trilho é fundamental no espraiamento da força localizada, utiliza-se essa altura e as demais dimensões são definidas de forma que o momento de inércia real seja preservado:

Por motivos de agilidade e padronização na execução dos pré-processadores, as larguras das bases dos trilhos foram consideradas iguais à largura da projeção da senóide, 43 mm, e sua espessura fixada em 19 mm. Ver Figura 6.

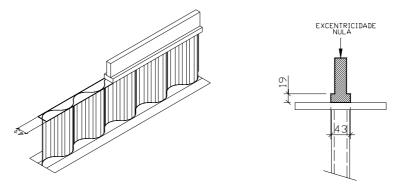


Figura 6 – Trilhos em forma de T sobre as vigas.

Na Figura 7 são definidas as dimensões adotadas para a entrada dos trilhos no programa Ansys, em forma de T.

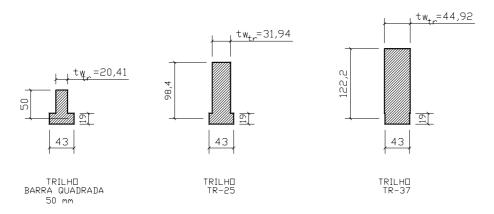


Figura 7 – Dimensões dos trilhos para entrada no Ansys, em mm

Para a discretização do trilho, como não há necessidade de um refinamento especial, geram-se elementos com dimensões maiores. Para a base do T adotam-se elementos de $10 \times 7,17 \text{ mm}$ e para a alma $10 \times 10 \text{ mm}$.

Em princípio os trilhos deveriam ter o comprimento total da viga. Entretanto, como o contato com a mesa superior não se daria em toda a extensão, e para reduzir o tempo de processamento, estimou-se um comprimento de cada trilho de forma que a região de contato não fosse reduzida. Após o processamento obteve-se a confirmação dessa premissa.

2.2 Condições de contorno

Conforme mostrado na Figura 8, considera-se como condições de contorno para ambas as extremidades das vigas, o impedimento das translações verticais (direção y) e das translações transversais (direção z) dos nós da alma. Desta forma o giro em torno do eixo x é evitado, dispensando a discretização de enrijecedores extremos para garantir esse impedimento de torção. Para que não haja deslocamento de corpo rígido na direção longitudinal da viga, considera-se uma restrição no nó central da mesa superior da viga, impedindo a translação na direção x. O sistema de eixos cartesianos também é mostrado na Figura 8, para a identificação dos eixos x, y e z.

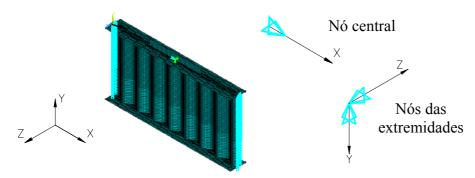


Figura 8 – Condições de apoio das vigas

Sendo objetivo deste estudo buscar resultados que levem à resistência a forças localizadas das vigas de almas senoidais, claramente o carregamento aplicado às vigas deve ser uma força localizada. Essa força é aplicada no centro do vão da viga, porém em 3 nós adjacentes conforme mostrado na Figura 9. Observa-se que a distância entre os nós é muito pequena, podendo a força continuar sendo considerada uma força localizada.

Inicialmente, para a análise estática linear, adota-se o valor dessa força igual a 1000 kN.

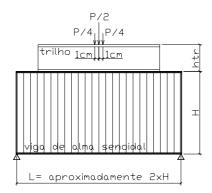


Figura 9 – Carregamento aplicado nas vigas modeladas

3 RESULTADOS

Feitas as análises, todas as vigas são verificadas cuidadosamente de forma que sejam conhecidos os valores das tensões atuantes nas mesas, trilhos e principalmente nas almas, bem como as forças últimas atingidas.

As tensões de von Mises nas mesas é logicamente máxima na mesa superior onde a força localizada foi aplicada e não excede 350 MPa, assim como na alma essa tensão não excede 300 MPa, resistências ao escoamento do aço desses elementos.

Para os trilhos atenta-se para que as tensões não ultrapassem o valor da resistência ao escoamento fornecido ao Ansys, um valor elevado para que não ocorra um estado limite no trilho.

As Tabelas 1, 2 e 3 mostram as forças aplicadas e os resultados do último passo convergido do Ansys, em termos de forças últimas e tensões na mesa e no trilho. Em todas as vigas, as tensões na alma atingiram a resistência ao escoamento de 300 MPa.

]	DADOS	DA VIC	iΑ		Į.	ANÁLISE PLÁ	STICA			Ι	ADOS:	DA VIG	ŀΑ		ANÁLISE PLÁSTICA		
e (mm)	t _w (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises " mesa" (kN/cm²)	Tensão von Mises "trilho" (kN/cm²)		e (mm)	t _w (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises " mesa" (kN/cm²)	Tensão von Mises "trilho" (kN/cm²)
					600	245	32,94	67,49							600	356	34,91	92,30
			12.50	150	800	246	32,82	69,10						150	800	391	34,93	106,41
				(153)	1000	247	32,82	69,34						(153)	1000	418	35,00	124,49
					1200	251	33,12	68,26					12,50		1200	408	34,96	116,19
			12,50		600	246	32,98	67,15					12,30		600	358	34,64	91,54
				200	800	247	32,90	67,67						200	800	373	34,82	97,25
				(209)	1000	248	32,83	68,45						(209)	1000	409	34,96	114,97
					1200	255	33,31	68,12							1200	425	34,97	127,91
					600	252	34,70	67,90							600	365	34,94	91,85
				150	800	247	34,34	64,11						150	800	369	34,95	94,50
				(153)	1000	247	34,37	64,78						(153)	1000	429	35,00	127,33
					1200	247	34,39	64,65							1200	429	35,00	121,78
					600	254	34,69	66,57							600	368	34,89	90,71
			16,00	200	800	255	34,71	67,38					16,00	200	800	373	34,90	93,04
			16,00	(209)	1000	256	34,67	68,11					16,00	(209)	1000	434	34,99	121,60
	20	barra			1200	249	34,47	63,88		0	2.0	barra			1200	443	34,99	127,28
0	2,0	50			600	261	34,86	71,93		U	3,0	50			600	369	34,88	89,96
				250	800	256	34,71	66,76						250	800	374	34,89	92,51
				(237)	1000	257	34,66	67,41						(237)	1000	433	34,99	120,43
					1200	251	34,30	64,23							1200	442	34,99	124,94
					600	275	34,93	75,93							600	391	34,97	98,02
				200	800	263	34,92	65,93						200	800	383	34,93	90,37
				(209)	1000	258	34,75	62,96						(209)	1000	452	35,00	125,28
					1200	258	34,77	63,39							1200	450	34,99	118,42
					600	276	34,93	74,30							600	387	34,96	95,20
				250	800	264	34,92	65,46					10.00	250	800	385	34,89	89,90
			19,00	(237)	1000	265	34,88	66,38					19,00	(237)	1000	452	34,99	117,43
					1200	260	34,76	63,13							1200	450	34,98	117,24
					600	282	34,93	75,68							600	402	34,97	102,37
				300	800	273	34,92	69,26						300	800	402	34,96	97,72
				(293)	1000	268	34,87	63,67						(293)	1000	466	34,99	123,73
					1200	269	34,92	66,35							1200	470	34,99	123,60

Tabela 1 – Resultados retirados do Ansys – trilho barra quadrada 50 mm

	DADOS DA VIGA						MÁLISE PLÁ	STICA			I)ADOS :	DA VIG	ŀΑ		análise plástica		
e (mm)	tw (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises "mesa" (kN/cm²)	Tensão von Mises "trilho" (kN/cm²)		e (mm)	t _w (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises " mesa" (kN/cm ²)	Tensão von Mises "trilho" (kN/cm²)
					600	422	32,05	46,42							600	624	32,05	46,42
			12.50	150	800	440	31,15	48,58						150	800	701	31,15	48,58
				(153)	1000	460	31,19	51,83						(153)	1000	705	31,19	51,83
					1200	461	31,15	51,86					10.50		1200	701	31,15	51,86
			12,50		600	421	31,60	46,11					12,50	200 (209)	600	632	31,60	46,11
				200	800	459	28,73	52,28							800	710	28,73	52,28
				(209)	1000	467	29,40	53,12							1000	745	29,40	53,12
					1200	462	30,61	51,65							1200	735	30,61	51,65
					600	423	29,97	46,16						150	600	630	29,97	46,16
				150	800	440	29,69	48,28							800	702	29,69	48,28
				(153)	1000	449	31,36	49,34						(153)	1000	720	31,36	49,34
					1200	454	30,10	50,21							1200	747	30,10	50,21
					600	422	29,63	45,92							600	633	29,63	45,92
			16,00	200	800	439	29,27	48,04					16,00	200	800	712	29,27	48,04
			10,00	(209)	1000	430	29,55	46,93					16,00	(209)	1000	746	29,55	46,93
0	2,0	TR-25			1200	454	29,65	49,97		0	3,0	TR-25			1200	757	29,65	49,97
"	2,0	IR-23			600	422	29,58	45,85			3,0	1125			600	633	29,58	45,85
				250	800	439	29,20	47,97						250	800	726	29,20	47,97
				(237)	1000	439	28,41	48,61						(237)	1000	722	28,41	48,61
					1200	458	29,52	50,32							1200	782	29,52	50,32
					600	424	27,94	45,84							600	635	27,94	45,84
				200	800	441	27,69	47,97						200	800	720	27,69	47,97
				(209)	1000	440	27,44	48,36						(209)	1000	709	27,44	48,36
					1200	456	28,12	49,77							1200	774	28,12	49,77
					600	424	27,98	45,78							600	635	27,98	45,78
			19,00	250	800	441	27,76	47,89					19,00	250	800	715	27,76	47,89
			19,00	(237)	1000	440	27,44	48,29					19,00	(237)	1000	738	27,44	48,29
					1200	459	28,17	50,06							1200	735	28,17	50,06
				300 (293)	600	424	28,13	45,72							600	636	28,13	45,72
					800	441	27,91	47,80						300 (293)	800	694	27,91	47,80
					1000	441	27,59	48,16							1000	717	27,59	48,16
					1200	447	28,75	48,05							1200	769	28,75	48,05

 $Tabela\ 2-Resultados\ retirados\ do\ Ansys-trilho\ TR-25$

]	DADOS	DA VIO	iA.		A	NÁLISE PLÁ	STICA			I)ADOS :	DA VIG	A		análise plástica			
e (mm)	tw (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises "mesa" (kN/cm²)	Tensão von Mises "trilho" (kN/cm²)		e (mm)	t _w (mm)	tipo trilho	t _f (mm)	ь _f (тт)	H (mm)	F _u (kN)	Tensão von Mises " mesa" (kN/cm²)	Tensão von Mises "trilho" (kN/cm²)	
					600	451	33,58	42,56							600	658	33,58	42,56	
			12,50	150	800	535	30,03	52,44						150	800	765	30,03	52,44	
				(153)	1000	536	31,08	51,84						(153)	1000	764	31,08	51,84	
					1200	552	29,98	54,42					10.50		1200	746	29,98	54,42	
					600	448	33,09	42,18					12,50	200 (209)	600	653	33,09	42,18	
				200	800	518	30,66	49,28							800	787	30,66	49,28	
				(209)	1000	548	29,83	53,21							1000	796	29,83	53,21	
					1200	534	30,28	51,13							1200	774	30,28	51,13	
					600	449	30,28	42,18						150 (153)	600	678	30,28	42,18	
				150	800	519	28,81	49,42							800	806	28,81	49,42	
				(153)	1000	543	30,21	52,51							1000	782	30,21	52,51	
					1200	541	28,49	52,49							1200	772	28,49	52,49	
					600	448	29,94	41,89							600	662	29,94	41,89	
			16,00	200	800	518	28,13	49,14					16,00	200	800	792	28,13	49,14	
			10,00	(209)	1000	520	30,42	49,06					10,00	(209)	1000	813	30,42	49,06	
0	2,0	TR-37			1200	539	28,54	51,49		0	3,0	TR-37			1200	835	28,54	51,49	
	2,0	11(-5)			600	447	29,85	41,81		,	3,0	11(-5)			600	654	29,85	41,81	
				250	800	517	27,99	49,05						250	800	808	27,99	49,05	
				(237)	1000	532	29,51	50,50						(237)	1000	832	29,51	50,50	
					1200	523	29,27	49,23							1200	852	29,27	49,23	
					600	470	26,96	44,58							600	677	26,96	44,58	
				200	800	517	26,37	48,89						200	800	814	26,37	48,89	
				(209)	1000	541	27,44	51,49						(209)	1000	848	27,44	51,49	
					1200	537	26,86	50,93							1200	887	26,86	50,93	
					600	448	27,56	41,67							600	667	27,56	41,67	
			19,00	250	800	517	26,35	48,81					19,00	250	800	791	26,35	48,81	
			13,00	(237)	1000	519	28,25	48,54					13,00	(237)	1000	823	28,25	48,54	
					1200	548	25,95	52,54							1200	857	25,95	52,54	
					600	448	27,62	41,59							600	647	27,62	41,59	
				300	800	511	26,94	47,82						300	800	809	26,94	47,82	
				(293)	1000	525	28,17	49,12						(293)	1000	838	28,17	49,12	
					1200	534	26,85	50,35							1200	874	26,85	50,35	

Tabela 3 – Resultados retirados do Ansys – trilho TR-37

3.1 Interação com a força cortante

Analisando vigas com parâmetros idênticos, porém com alturas diferentes, em alguns casos observa-se um crescimento da força última com a altura. Como o escoamento da alma ou o enrugamento da alma ou a flambagem global da alma não apresentam essa tendência, isto é, crescimento da força com aumento da altura, conclui-se que a razão para o aumento da força

última com a altura é a interação entre os efeitos da força local aplicada e da força cortante gerada. Essa interação é apresentada na forma da Eq. (1).

$$\left(\frac{P_S}{P_R}\right)^{\alpha} + \left(\frac{V_S}{V_R}\right)^{\beta} = C \tag{1}$$

Sendo assim, é necessário que se conheçam as resistências à força cortante das vigas, V_R , para que se consiga determinar P_R . Esse procedimento é adotado conforme PLAIS (2009), documento técnico da Codeme Engenharia e SIOKOLA (1999), documento técnico da Zeman & Co. A força cortante resistente para a alma senoidal é dada pela Eq. (2):

$$V_{Rk} = \kappa_t \frac{f_{yw}}{\sqrt{3}} t_w H \tag{2}$$

Onde: $t_w =$ espessura da alma senoidal

 f_{yw} = resistência ao escoamento do aço da alma senoidal

H = altura da viga

 κ_t = coeficiente de redução, função do índice de esbeltez reduzido, λ_{ν}

Segundo o documento técnico da Zeman, SIOKOLA (1999):

Para
$$\overline{\lambda}_p < 1.0$$
 $\rightarrow \kappa_t = 1.0$

Para
$$\overline{\lambda}_p > 1,0$$

$$\Rightarrow \kappa_t = \frac{1}{\overline{\lambda}_p^{1,5}}$$

sendo,
$$\overline{\lambda}_p = \text{indice de esbeltez reduzido} = \overline{\lambda}_p = \sqrt{\frac{f_{yw}}{\sqrt{3}\tau_{pi,g}}}$$
 (3)

onde,
$$\tau_{pi,g} = \text{tensão de flambagem crítica} = \tau_{pi,g} = \frac{32,4}{t_w H^2} \sqrt[4]{D_x D_y^3}$$
 (4)

$$D_x = \frac{Et_w^3}{12} \frac{w}{s} \qquad \qquad e \qquad \qquad D_y = \frac{EI_{wy}}{w} \tag{5}$$

Onde: E= módulo de elasticidade do aço= 200.000 MPa

w= comprimento de onda de uma senóide, ver Figura 10

s= comprimento desenvolvido de uma senóide, ver Figura 10

 I_{wv} momento de inércia de uma senóide em relação ao eixo longitudinal

$$I_{wy} = 0.158t_w w^3 \left(\frac{b_w}{w}\right)^{2.12}$$
 (no caso da Figura 10 a notação correta seria I_{wx})

 b_w = dobro da amplitude da senóide

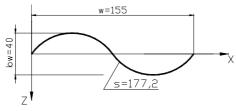


Figura 10 – Dimensões de uma senóide, em mm

Para a definição da força cortante solicitante observa-se pela Figura 11 que a força cortante tem uma redução igual ao valor da força concentrada P_S em um comprimento L' e, portanto, reduz-se aproximadamente à metade de P_S entre a seção onde atua VI e a seção por onde passa a resultante da força concentrada. Assim, entre os valores $VI=P_S/2$ e zero, tomou-se como o valor da força cortante solicitante, V_S , que interage com a força localizada solicitante, P_S , igual a $VI - P_S/4$, do lado da segurança (uma vez que o valor médio seria zero).

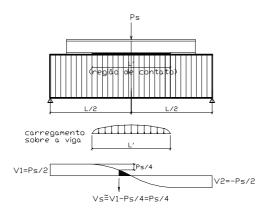


Figura 11 – Força cortante solicitante, V_S , considerada na interação no estudo

Para um caso geral, esta força cortante solicitante é apresentada no diagrama de força cortante mostrado na Figura 12 e seu valor igual a V_{max} -P/4.

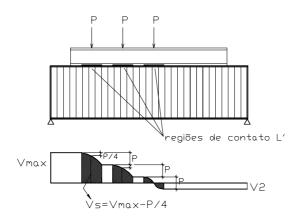


Figura 12 – Força cortante solicitante, V_S , considerada na interação para casos gerais

3.2 Resistência à força localizada

Conhecido o valor de P_S , força última retirada do Ansys, e da relação V_S/V_R , diversas análises e considerações são necessárias para se chegar aos valores de α , β e C e consequentemente da força localizada resistente, P_R , da Eq. (1). Para isso isola-se essa força como na Eq. (6):

$$P_{R} = \sqrt[\alpha]{\frac{P_{S}^{\alpha}}{C - \left(\sqrt[V_{S}]{V_{R}}\right)^{\beta}}}$$
 (6)

Para as forças últimas retiradas do Ansys, P_S , estabelece-se uma redução de 5% dos valores, admitindo que para uma malha mais refinada que a adotada neste trabalho, os valores

obtidos das forças últimas poderiam ser da ordem de 5% inferiores aos obtidos com a malha utilizada.

Admite-se que as vigas onde a relação entre a força cortante solicitante máxima e a resistente, V_{max}/V_R , apresenta valores maiores que 0,94, não devem ser levadas em conta no decorrer da pesquisa, devido ao fato de a viga poder falhar essencialmente devido ao cisalhamento da alma.

3.2.1 Resistência ao escoamento local da alma

Na expectativa de que as vigas com falha ocorrida por escoamento da alma apresentem valores coerentes de resistência à força localizada isolada, P_R , de forma que, para vigas com todos os parâmetros idênticos, porém com alturas diferentes, estes valores de P_R sejam praticamente os mesmos, define-se a equação de interação, Eq. (7).

$$\left(\frac{P_S}{P_R}\right)^{1,25} + \left(\frac{V_S}{V_R}\right)^{1,25} = 1 \tag{7}$$

Para estabelecer estes expoentes e encontrar o valor de P_R para as vigas onde a falha se deu por escoamento da alma, foram feitas diversas tentativas com subsequente análise de resultados, por meio do programa Excel, de forma que, conforme dito anteriormente, os valores dessas resistências se igualassem para um grupo de vigas com mesmos parâmetros, porém com alturas diferentes.

Para o escoamento da alma, o melhor ajuste encontrado entre as resistências P_R obtidas com a Eq. (7), para as vigas de um mesmo grupo, resultou em um afastamento de aproximadamente \pm 8,5% entre os valores extremos e o valor médio, para que fosse resguardada a coerência nas conclusões. Ver Tabelas 4 a 6.

A Figura 13 mostra a deformada de uma viga com modo de falha escoamento da alma.

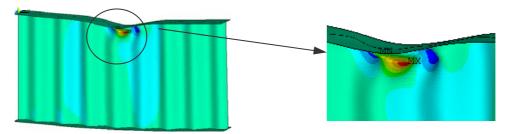


Figura 13 – Modo de falha escoamento da alma

3.2.2 Resistência ao enrugamento da alma

O enrugamento da alma acontece com uma resistência à força localizada inferior ou aproximadamente igual à do escoamento. Com essa premissa, após avaliação dos resultados, conclui-se que a interação desse fenômeno com a força cortante apresenta-se bem mais discreta. Para isso, a equação de interação para o caso de enrugamento fica definida conforme a Eq. (8)

$$\left(\frac{P_S}{P_R}\right) + \left(\frac{V_S}{V_R}\right)^3 = 1$$
(8)

A Figura 14 mostra a deformada de uma viga com modo de falha enrugamento da alma.

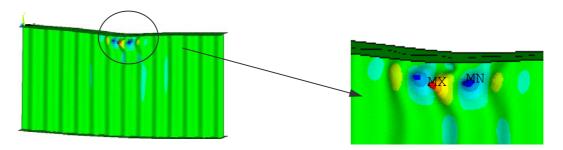


Figura 14 – Modo de falha enrugamento da alma

Para o enrugamento, encontra-se uma dispersão máxima de \pm 5,5% das resistências extremas com relação a média das resistências P_R , obtidas com a Eq. (8), para vigas do mesmo grupo, com variação da altura. Ver Tabelas 4 a 6.

3.2.3 Resistência a flambagem global da alma

Outro modo de falha também encontrado, flambagem global da alma, desenvolve-se em vigas com alturas e trilhos maiores. A flambagem global da alma acontece em vigas mais altas solicitadas por forças aplicadas sobre o trilho TR-37, pelo fato deste trilho possuir uma altura maior e então a força aplicada localizada chegar à viga com uma abrangência maior, reduzindo a ocorrência de problemas localizados. A deformada para este modo de falha é mostrada na Figura 15.

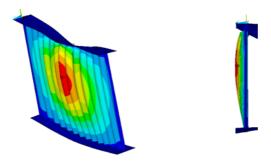


Figura 15 – Modo de falha flambagem global da alma

Para a flambagem global da alma as resistências P_R obtidas devem ser inferiores às resistências ao enrugamento e consequentemente ao escoamento.

Admite-se que não haja interação com a força cortante nesse caso.

3.3 Resultados finais

As Tabelas 4, 5 e 6 apresentam todos os modos de falhas, identificados após diversas análises dos resultados, e os valores calculados de P_R para cada viga por meio dos resultados do Ansys e das equações de interação.

DA	ADOS	DA V	IGA		t _w =	2,0 mm	<i>t</i> _w =3,0 mm				
Tipo Trilho	t _f (mm)	$^{\circ}$. . $^{\circ}$. $(Amsys)$		P_S (kN)	Interação P _R (kN)	Modo de Falha	P _S (kN)	Interação P _R (kN)	Modo de Falha		
			610	233	237	ENRUGAMENTO	338	399	ESCOAMENTO		
			806	234	236	ENRUGAMENTO	371	423	ESCOAMENTO		
		153	1002	235	236	ENRUGAMENTO	397	441	ESCOAMENTO		
			1198	239	240	ENRUGAMENTO	388	421	ESCOAMENTO		
	12,50	209	610	234	239	ENRUGAMENTO	340	401	ESCOAMENTO		
			806	235	237	ENRUGAMENTO	355	400	ESCOAMENTO		
			1002	236	237	ENRUGAMENTO	389	431	ESCOAMENTO		
			1198	242	243	ENRUGAMENTO	404	440	ESCOAMENTO		
			610	239	244	ENRUGAMENTO	346	410	ESCOAMENTO		
		153	806	234	236	ENRUGAMENTO	351	395	ESCOAMENTO		
			1002	235	236	ENRUGAMENTO	408	455	ESCOAMENTO		
			1198	234	235	ENRUGAMENTO	408	445	ESCOAMENTO		
			610	242	247	ENRUGAMENTO	350	415	ESCOAMENTO		
		209	806	242	244	ENRUGAMENTO	354	399	ESCOAMENTO		
	16,00	209	1002	243	244	ENRUGAMENTO	412	460	ESCOAMENTO		
barra			1198	237	237	ENRUGAMENTO	420	460	ESCOAMENTO		
50			610	248	254	ENRUGAMENTO	351	417	ESCOAMENTO		
		237	806	243	245	ENRUGAMENTO	355	401	ESCOAMENTO		
			1002	244	245	ENRUGAMENTO	411	459	ESCOAMENTO		
			1198	239	239	ENRUGAMENTO	420	460	ESCOAMENTO		
			610	261	268	ENRUGAMENTO	372	447	ESCOAMENTO		
		200	806	250	252	ENRUGAMENTO	364	412	ESCOAMENTO		
		209	1002	245	246	ENRUGAMENTO	429	482	ESCOAMENTO		
			1198	245	246	ENRUGAMENTO	427	468	ESCOAMENTO		
			610	262	270	ENRUGAMENTO	368	442	ESCOAMENTO		
		227	806	251	254	ENRUGAMENTO	366	415	ESCOAMENTO		
	19,00	237	1002	252	253	ENRUGAMENTO	429	482	ESCOAMENTO		
			1198	247	248	ENRUGAMENTO	427	468	ESCOAMENTO		
			610	268	276	ENRUGAMENTO	382	464	ESCOAMENTO		
		202	806	259	262	ENRUGAMENTO	382	436	ESCOAMENTO		
		293	1002	25#	256	ENRUGAMENTO	442	499	ESCOAMENTO		
			1198	2 5 6	257	ENRUGAMENTO	446	492	ESCOAMENTO		

Tabela 4 – Identificação final dos modos de Falhas - para trilho barra quadrada 50 mm

dispersão máx. com relação à média do grupo = ± 8,5% (para escoamento)

dispersão máx. com relação a média do grupo = $\pm 5,5\%$ (para enrugamento)

DA	ADOS	DA V	IGA		£ w=	2,0 mm		£ , =3	3,0 mm
Tipo Trilho	t_f (mm)	ь _f (тт)	H (Ansys) (mm)	$\mathbf{\textit{P}}_{\scriptscriptstyle S}$ (kN)	Interação P _R (kN)	Modo de Falha	P_S (kN)	Interação P _R (kN)	Modo de Falha
			610	401	446	ENRUGAMENTO	593	865	ESCOAMENTO
		153	806	418	440	ENRUGAMENTO	666	895	ESCOAMENTO
		155	1002	437	451	ENRUGAMENTO	669	691	ENRUGAMENTO
	12.50		1198	438	446	ENRUGAMENTO	666	678	ENRUGAMENTO
	12,50		610	400	445	ENRUGAMENTO	601	884	ESCOAMENTO
		209	806	436	462	ENRUGAMENTO	674	912	ESCOAMENTO
		209	1002	443	458	ENRUGAMENTO	708	736	ENRUGAMENTO
			1198	439	447	ENRUGAMENTO	698	713	ENRUGAMENTO
			610	401	446	ENRUGAMENTO	599	877	ESCOAMENTO
		153	806	418	440	ENRUGAMENTO	667	895	ESCOAMENTO
		100	1002	426	438	ENRUGAMENTO	684	708	ENRUGAMENTO
			1198	431	439	ENRUGAMENTO	709	726	ENRUGAMENTO
			610	401	445	ENRUGAMENTO	601	882	ESCOAMENTO
	16,00	209	806	417	439	ENRUGAMENTO	677	915	ESCOAMENTO
	10,00	209	1002	408	419	ENRUGAMENTO	709	737	ENRUGAMENTO
TR-25			1198	432	439	ENRUGAMENTO	719	736	ENRUGAMENTO
1 K-25		237	610	401	445	ENRUGAMENTO	601	882	ESCOAMENTO
			806	417	439	ENRUGAMENTO	690	941	ESCOAMENTO
			1002	417	428	ENRUGAMENTO	685	710	ENRUGAMENTO
			1198	435	443	ENRUGAMENTO	743	762	ENRUGAMENTO
			610	402	446	ENRUGAMENTO	603	883	ESCOAMENTO
		209	806	419	440	ENRUGAMENTO	684	928	ESCOAMENTO
		209	1002	418	429	ENRUGAMENTO	674	696	ENRUGAMENTO
			1198	433	441	ENRUGAMENTO	736	754	ENRUGAMENTO
			610	403	446	ENRUGAMENTO	603	884	ESCOAMENTO
	10.00	227	806	419	440	ENRUGAMENTO	679	918	ESCOAMENTO
	19,00	237	1002	418	429	ENRUGAMENTO	701	727	ENRUGAMENTO
			1198	436	444	ENRUGAMENTO	698	713	ENRUGAMENTO
			610	403	447	ENRUGAMENTO	604	885	ESCOAMENTO
		202	806	419	441	ENRUGAMENTO	659	879	ESCOAMENTO
		293	1002	419	430	ENRUGAMENTO	681	704	ENRUGAMENTO
			1198	425	431	ENRUGAMENTO	731	749	ENRUGAMENTO

Tabela 5 – Identificação final dos modos de Falhas - para trilho TR-25

DA	ADOS	DA V	IGA		t w=	2,0 mm	t ,,=3,0 mm				
Tipo Trilho	t _f (mm)	ь _f (тт)	H (Ansys) (mm)	$m{P}_{\mathcal{S}}$ (kN)	Interação P _R (kN)	Modo de Falha	P_S (kN)	Interação P _R (kN)	Modo de Falha		
_			(mm) 610 806 1002 1198 610 806 1002 1198 610 806 1002 1198 610 806 1002 1198 610 806 1002 1198 610 806 1002 1198 610 806 1002 1198 610 806 1002	(kN) 428 508 509 524 426 492 521 507 427 493 516 514 425 492 494 512 425 492 505 497 446 491 510 426	558 534 524 536 549 507 537 543 514 535 517 512 534 530 497	de Falha FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE	(kN) 625 726 726 709 621 747 756 735 644 766 743 734 629 753 772 793 621 767 791 810 643 773 806 842 633	(kN) 1019 726 709 1065 756 735 1104 743 734 1074 811 793 1107 834 810 1118 852 842	de Falha FORÇA CORTANTE ESCOAMENTO FLAMBAGEM FLAMBAGEM FORÇA CORTANTE ESCOAMENTO FLAMBAGEM FLAMBAGEM FORÇA CORTANTE ESCOAMENTO FLAMBAGEM FLAMBAGEM FLAMBAGEM FLAMBAGEM FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO ENRUGAMENTO FLAMBAGEM FORÇA CORTANTE		
	19,00	237	806 1002 1198	491 493 521	533 515 521	ENRUGAMENTO ENRUGAMENTO FLAMBAGEM	751 782 814	1068 823 814	ESCOAMENTO ENRUGAMENTO FLAMBAGEM		
		293	610 806 1002 1198	425 485 499 508	526 522 508	FORÇA CORTANTE ENRUGAMENTO ENRUGAMENTO FLAMBAGEM	615 768 797 831	1106 841 831	FORÇA CORTANTE ESCOAMENTO ENRUGAMENTO FLAMBAGEM		

Tabela 6 – Identificação final dos modos de Falhas - para trilho TR-37

3.3.1 Forças limites no regime elástico

Até aqui, o presente estudo visa o dimensionamento de uma viga, sujeita a forças localizadas, considerando os estados limites últimos já mencionados previamente. Porém a solicitação de uma viga de rolamento em um determinado ponto é totalmente variável dependendo da posição da ponte rolante. Sob repetidos ciclos de carregamento e descarregamento podem ocorrer mudanças nas propriedades dos materiais conduzindo a viga à fadiga. "Essas mudanças causam uma falha prematura e inesperada sob níveis de tensões abaixo dos estabelecidos em projeto." (TEIXEIRA, 2004, p.2).

A fadiga poderia levar a viga à ruptura decorrente do crescimento instável de fissuras, principalmente em ligações soldadas, por serem pontos críticos de concentração de tensões. Na viga de alma senoidal, a redução da necessidade de enrijecedores e a execução da solda de

composição do perfil com alta qualidade e desempenho cooperam para a redução da fadiga. Entretanto, altos níveis de concentração de tensões sob forças localizadas variáveis podem determinar o redimensionamento da estrutura.

É importante que, por meio de estudos mais detalhados, se pesquise a resistência à fadiga de vigas de rolamento de almas senoidais. Para efeito de fadiga é importante que as tensões de cálculo não atinjam a resistência ao escoamento de cálculo do material.

Analisando as forças localizadas F_{es} correspondentes ao início do escoamento da alma, retiradas das análises numéricas, conclui-se que as forças F_{es} são iguais a aproximadamente 40% das forças últimas F_u .

4 PROPOSIÇÕES DE MÉTODOS DE CÁLCULO

Concluídas as análises dos resultados obtidos via análise numérica das vigas modeladas no Ansys, neste item são apresentadas novas propostas para verificação dos estados limites últimos causados por forças localizadas aplicadas em trilhos sobre vigas de rolamento com almas senoidais.

Os métodos de cálculo propostos neste item são limitados à vigas com forças localizadas distantes das extremidades pelo menos metade do comprimento de distribuição sobre a viga, L'.

4.1 Escoamento local da alma

O escoamento da alma ou esmagamento da alma por compressão, consiste em escoamento na direção vertical, seguido de enrugamento. As tensões na alma são predominantemente de membrana.

A força localizada resistente da alma, proposta para o estado limite escoamento da alma é dada pela Eq. (9):

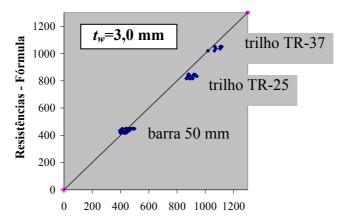
$$P_{R} = f_{yw} \times t_{w} \times \frac{s}{w} \times L_{es}$$
 (9)

Onde: f_{yw} = resistência ao escoamento do aço da alma senoidal = 300 MPa

 t_w = espessura da alma senoidal

s= comprimento desenvolvido de uma senóide = 177,2 mm

w= comprimento de onda de uma senóide = 155 mm


 L'_{es} = comprimento de distribuição da força sobre a viga para o caso de escoamento local da alma, dado pela Eq. (10):

$$L_{es}' = 4.5t_f + 7h_{tr} \left(\frac{h_{tr}}{h_{ref}}\right)^{0.10}$$
 (10)

Sendo: h_{ref} = altura do trilho de referência definido como a barra quadrada 50 = 5 cm h_{tr} = altura do trilho utilizado

O gráfico da Figura 16, mostra a comparação dos resultados da análise numérica realizada via Ansys com os resultados da fórmula proposta para o escoamento da alma.

Traça-se uma reta a 45° e loca-se pontos que associem as resistências obtidas pela fórmula proposta e as obtidas pela análise numérica (Ansys). Registra-se uma variação entre 0,91 e 1,02 nas comparações entre os resultados $P_{RF}/mediaP_R$ do grupo.

Resistências - Ansys (considerando Interação)

Figura 16 – Resultados numéricos x Resultados fórmula - Escoamento da alma

4.2 Enrugamento da alma

O enrugamento da alma ("web crippling") consiste em deformações localizadas de flexão local da alma junto à mesa onde é aplicada a força localizada. As tensões verticais na alma são de membrana e de placa (predominantemente).

A força localizada resistente da alma proposta para o estado limite enrugamento da alma é baseada na ABNT NBR 8800:2008 e dada pela Eq. (11):

$$P_{R} = t_{w}^{2} \left(\frac{t_{f,ref}}{t_{f}}\right)^{0.5} \left[1 + 4.9 \left(\frac{L_{en}}{L_{ref}}\right)^{0.92} \left(\frac{t_{w,ref}}{t_{w}}\right)^{0.45}\right] \sqrt{\frac{Ef_{yw}t_{f}}{t_{w}}}$$
(11)

onde: t_w = espessura da alma senoidal

 t_f = espessura da mesa carregada

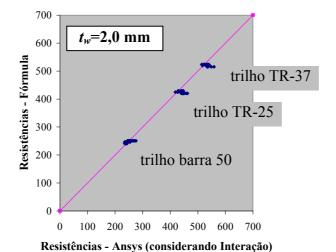
 t_{fref} = espessura de mesa de 12,5 mm = 1,25 cm

 $t_{w,ref}$ = espessura da alma de 2,0 mm = 0,2 cm

 $L_{ref} = 100 \text{ cm}$

 f_{vw} = resistência ao escoamento do aço da alma senoidal = 300 MPa

E = módulo de elasticidade do aço = 200.000 MPa


 L'_{en} = comprimento de distribuição da força sobre a viga para o caso de enrugamento da alma, dado na Eq. (12).

$$\dot{L}_{en} = 4t_f + 7h_{tr} \left(\frac{h_{tr}}{h_{ref}}\right)^{0.30} \tag{12}$$

Sendo: h_{ref} = altura do trilho de referência definido como a barra quadrada 50 = 5 cm h_{tr} = altura do trilho utilizado

A seguir, também através do gráfico da Figura 17, mostram-se a comparação dos resultados da análise numérica realizada via Ansys com os resultados da fórmula proposta para o enrugamento da alma.

Para o enrugamento da alma registra-se uma variação entre 0,92 e 1,03 nas comparações entre os resultados $P_{RF}/mediaP_R$ do grupo.

1000 800 t_w=3,0 mm trilho TR-37 400 0 200 400 600 800 1000

Figura 17 – Resultados numéricos x Resultados fórmula - Enrugamento da alma

Resistências - Ansys (considerando Interação)

4.3 Flambagem global da alma

A flambagem global da alma ocorre em certas situações nas vigas com alma senoidal.

A força localizada resistente, proposta para o estado limite flambagem global da alma é dada pela Eq. (13), baseada na fórmula para a força axial de compressão resistente, item 5.3.2, da ABNT NBR8800:2008.

$$P_{R} = \left(\chi Q A_{g} f_{yw}\right) \tag{13}$$

Onde: χ = fator de redução associado à resistência à compressão, visto mais adiante

 ${\it Q}$ = fator de redução associado à flambagem local. Adotado igual a 1,0 para vigas de almas senoidais

 f_{yw} = resistência ao escoamento do aço da alma senoidal = 300 MPa A_g = área da seção longitudinal da alma senoidal, descrita na Eq. (14).

$$A_g = t_w \dot{L}_{fl} \frac{s}{w} \tag{14}$$

Sendo: L'_{fl} = comprimento de distribuição da força sobre a viga, para o caso de flambagem global da alma, adotada igual L'_{en} (ver Eq. 12).

O fator de redução, χ , para o trilho TR-37, é dado pela Eq. 15 (baseado na ABNT NBR 8800:2008).

$$\chi = 0.635^{\lambda_0^2} \quad \Rightarrow \quad \text{para trilho TR-37}$$
 (15)

Onde λ_o é o índice de esbeltez reduzido determinado com base na ABNT NBR8800:2008, item 5.3.3.2, dado por:

$$\lambda_o = \sqrt{\frac{QA_g f_{yw}}{N_e}} \tag{16}$$

sendo N_e a força axial de flambagem elástica (baseada no Anexo E da ABNT NBR8800:2008)

$$N_e = \frac{\pi^2 E I_{wx}}{\left(KL\right)^2} \frac{L_f}{w} \tag{17}$$

onde: E = módulo de elasticidade do aço = 200.000 MPa

 I_{wx} = momento de inércia de uma senóide em relação ao eixo longitudinal comprimento de flambagem por flexão em relação ao eixo longitudinal Adota-se K=1,0 e L= altura da viga de eixo a eixo de mesas, igual a H.

Os gráficos da Figura 18 mostram a comparação dos resultados da análise numérica realizada via Ansys com os resultados da fórmula proposta para a flambagem global da alma.

Para a flambagem global da alma registra-se uma variação entre 0,86 e 1,14 nas comparações entre os resultados P_{RF}/P_{R} .

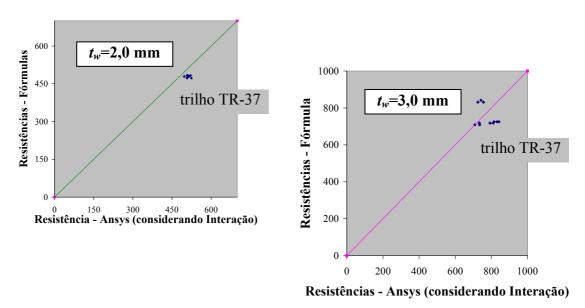


Figura 18 – Resultados numéricos x Resultados fórmula - Flambagem global da alma

5 CONCLUSÕES

De posse dos resultados do Ansys, primeiramente conclui-se que a razão para o aumento da força última com a altura (mantida a espessura da alma), em geral, é a interação entre os efeitos da força local aplicada e da força cortante gerada.

Conclui-se que no caso de escoamento da alma a interação com a força cortante é mais forte. Para o enrugamento da alma essa interação é muito menor e para flambagem global da alma não há interação com a força cortante.

Quanto maior a altura do trilho, maior o comprimento de distribuição da força sobre a viga, ou seja, maior a região onde ocorre pressão de contato entre o trilho e a viga.

Para vigas com as mesmas características, quanto menor a altura do trilho, menor o valor da força F_{fl} de flambagem elástica, em geral. Isso também acontece com as forças últimas F_u .

Quanto menor a altura do trilho, menor é o comprimento de distribuição da força sobre a viga e, portanto, desenvolve-se uma solicitação mais concentrada na viga. Assim, para trilhos baixos há maiores possibilidades de ocorrerem falhas locais, como o escoamento e o enrugamento da alma. Já a flambagem global da alma tem maior probabilidade de ocorrer em vigas com trilhos de alturas maiores, devido ao maior comprimento de distribuição da força sobre a viga.

Para vigas com t_w =3,0mm e trilho barra quadrada 50 mm, o presente estudo só é válido para resistência ao escoamento do aço do trilho maior que a tensão de von Mises alcançada nos resultados. Como esse nível de resistência ao escoamento não é usual, conclui-se que a resistência a forças localizadas, para esses casos, é limitada pelo trilho.

A altura da viga, H, tem influência no estado limite flambagem global da alma. É fisicamente lógico que a flambagem global ocorra em vigas com grandes alturas.

Para o escoamento da alma, as equações de interação propostas apresentaram valores de resistência à força localizada isolada (P_R), bastante próximos entre si, ou seja, praticamente sem influência da altura. Algumas diferenças ocorreram, atribuídas a imprecisões das análises numéricas.

Conclui-se também, com relação à variação de altura das vigas, para grupos de vigas com mesmos parâmetros variando somente a altura, onde ocorrem estados limites diferentes, que as vigas com menores alturas sofrem escoamento local da alma e as com maiores alturas sofrem enrugamento ou flambagem global antes do escoamento. Esse fato é fisicamente evidente devido à menor rigidez lateral da alma das vigas mais altas.

Na grande maioria dos casos as mesas não atingem sua resistência ao escoamento, considerada igual a 350 MPa. Para as vigas com espessura de alma de 3,0 mm com os trilhos barra quadrada de 50 mm, as tensões nas mesas aproximam-se desse limite chegando mesmo a atingi-lo. Ocorre que, após a alma atingir seu estado limite último, ela deixa de dar sustentação para a mesa, que se deforma e atinge seu escoamento. Verificando-se um passo anterior ao considerado último, encontra-se a alma já no escoamento e a mesa abaixo do escoamento.

Na fórmula para o enrugamento da alma dada na ABNT NBR8800:2008 considera-se a espessura da mesa influenciando a resistência de forma acentuada. Esse aumento considerável da resistência com o aumento da espessura da mesa não é observado nos resultados obtidos para as vigas de alma senoidal, devido à presença dos trilhos em todos os casos analisados. Para corrigir essa diferença, estabelece-se um fator de redução na formulação proposta.

O maior resultado de somatório das equações de interação, C, obtido com as resistências P_{RF} dadas para os três estados limites, corresponde ao modo de falha crítico da viga.

As previsões dos valores de P_R , por meio das formulações propostas, apresentam boa conformidade com os valores obtidos por meio das equações de interação também propostas e

dos resultados das análises numéricas, para todos os casos de falha - escoamento da alma, enrugamento da alma e flambagem global da alma.

Todos os procedimentos recomendados são para casos de vigas com forças localizadas afastadas do apoio pelo menos da metade do comprimento de distribuição, L', da força sobre a viga.

Finalmente conclui-se que almas senoidais de 3 mm têm uma capacidade local apreciável e que o desenvolvimento dessa capacidade depende do uso de um trilho com resistência superior ao das barras quadradas usuais de 50 mm. Por outro lado, conclui-se também que, na maioria dos casos, o uso de trilhos superiores ao TR-25 não traz vantagem adicional porque o ganho de resistência não seria de grande relevância.

6 REFERÊNCIAS BIBLIOGRÁFICAS

ABNT NBR 8800:2008. Associação Brasileira de Normas Técnicas. *Projeto de Estrutura de Aço de Estrutura Mista de Aço e Concreto de Edificios*. Rio de Janeiro.

Plais, W. "Perfis de Alma Senoidal" – Documento Técnico Codeme Engenharia S.A.

Siokola, W. "Corrugated Web Beam: Technical Documentation" – 4th Edition – Zeman & Co. 1999.

Teixeira, R.S. "Metodologia de Análise de Fadiga em Componentes Estruturais de Aço baseada na Mecânica da Fratura" – Dissertação de Mestrado, 2004. Universidade Federal de Minas Gerais, Belo Horizonte.