Asociación Argentina

de Mecánica Computacional

Mecánica Computacional Vol XXIX, págs. 7571-7581 (artículo completo) Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.) Buenos Aires, Argentina, 15-18 Noviembre 2010

DETERMINAÇÃO DA TENSÃO DE FLAMBAGEM EM PERFIS DE CHAPA DOBRADA A FRIO ATRAVÉS DE REDES NEURAIS ARTIFICIAIS

Fellipe P. Santos^a, Koji J. Nagahama^b e Anderson S. M. Gadéa^b

^aGraduando em Engenharia Civil da Universidade Estadual de Feira de Santana

^bPrograma de Pós-Graduação em Engenharia Civil e Ambiental (PPGECEA), Universidade Estadual de Feira de Santana, Avenida Transnordestina S/N - Novo Horizonte, Feira de Santana-Ba, Brasil, koji@uefs.br, http://ppgecea.uefs.br/

Palavras Chave: Redes Neurais Artificiais; Flambagem; Modo Distorcional; Chapas Dobradas.

Resumo.

Este trabalho apresenta a predição da tensão de flambagem (modo distorcional – MD), em perfis de chapa dobrada a frio, através da utilização de redes neurais artificiais (RNA). A norma brasileira NBR14672 determina, através de várias formulações, a tensão crítica de instabilidade para os perfis de aço formados a frio, fletidos e comprimidos, porém o objetivo principal desse trabalho é, a partir da RNA, aproximar equações para predição das tensões de flambagem. Os resultados são comparados com outros obtidos da literatura e preditos através de outras formulações tais como método dos elementos finitos (MEF) e faixas finitas (MFF). Tais comparações demonstram o potencial da RNA pelos bons coeficientes de correlação encontrados.

1 INTRODUÇÃO

Grande parte dos perfis de aço formados a frio tem seções abertas formadas por paredes muito esbeltas, o que os torna suscetíveis aos fenômenos da (i) flambagem local de placa (FLP) e (ii) flambagem distorcional (FD), caracterizados pela ocorrência de deformações no plano da seção transversal, permanecendo o eixo do perfil indeformado. Entretanto, existem apenas deslocamentos de flexão na FLP, enquanto na FD, além dos deslocamentos de flexão, existem os deslocamentos de membrana e as deformações de linhas de dobra (bordas longitudinais internas), o que implica na distorção das seções transversais. A Figura 1 mostra as configurações deformadas de segmentos de coluna com seção U enrijecido e que exibem flambagem local de placa (FLP) e distorcional (FD), respectivamente, sendo esta última sob compressão uniforme e flexão pura.

Figura 1: Ilustração da flambagem em um perfil U enrijecido

Além disso, como vários perfis de aço formados a frio de uso corrente possuem seções transversais (forma e dimensões) e comprimentos que conduzem a tensões críticas de flambagem local e/ou global (flexão ou flexo-torção) bastante semelhantes, o seu comportamento estrutural também é afetado pela interação modal, i.e., o acoplamento entre modos (i) locais de placa e distorcionais ou (ii) locais e globais (neste caso, a natureza do modo local envolvido depende sobretudo da geometria de seção transversal). Devido à complexidade para a determinação do comportamento de tais seções transversais na presença desta interação modal, os códigos de dimensionamento referem-se às tensões críticas de flambagem considerando-se a estabilidade elástica.

No caso da FLP, a equação diferencial de placa submetida a esforços normais, obtida da teoria de placas, permite a determinação da tensão crítica. Além disso, pode-se aplicar também o método das larguras efetivas e o método das áreas efetivas (Batista, 2010). Quando se trata da tensão crítica devido à FD, diversos métodos têm sido empregados para se determinar essas tensões, a exemplo dos métodos numéricos, dentre os quais se destacam o método das faixas finitas (Nagahama, 2003) e método dos elementos finitos (Schafer e Peköz, 1998, 1999). Além dos métodos numéricos, outras metodologias podem ser empregadas, como a teoria generalizada de vigas (Silvestre e Camotim, 2004a,b) e modelos aproximados como os apresentados por Davies e Jiang (1996); Schafer e Peköz (1998, 1999). Mais recentemente as redes neurais artificiais (RNA) tornaram-se ferramentas para a determinação das referidas tensões (Pala, 2006). A RNA caracteriza-se por uma modelagem não-paramétrica que utiliza apenas amostragens de valores de entrada e saída do sistema apresentando-se assim como uma alternativa de menor complexidade para a construção de modelos de predição. Nesse estudo as RNA são aplicadas para, a partir da sua topologia e funções de transferência, formular uma equação para a predição das tensões de flambagem, no modo distorcional.

2 METODOLOGIA

A idéia de se utilizar redes neurais para a obtenção de uma única equação que forneça os valores das tensões de flambagem distorcional de perfis não é uma tarefa trivial. Ao longo deste trabalho foram necessárias execução das seguintes etapas:

- Definição do problema;
- Identificação dos parâmetros de treinamento da rede;
- Geração dos dados e treinamento da rede;
- Definição e averiguação da Equação obtida

2.1 Definição do problema

Neste trabalho optou-se por utilizar seções do tipo U enrijecido tal qual ilustrado na Figura 2. A opção pela adoção deste perfil foi motivada: (i) pelo mesmo apresentar o fenômeno da flambagem distorcional; (ii) por ser um dos perfis de chapa dobrada a frio mais utilizados e (iii) por ser um dos mais citados pelos autores que estudam a flambagem distorcional, servindo para a aferição dos resultados obtidos.

Figura 2: Ilustração de um perfil U enrijecido

onde:

bw – Altura da seção;

- bf Largura do flange;
- *l* Comprimento do enrijecedor;
- t Espessura da seção.

Para este estudo consideram-se os perfis simplesmente apoiados nas extremidades e com empenamento livre, que é a condição mais desfavorável em termos de tensão crítica de flambagem. Considerou-se também um gradiente uniforme de tensões de compressão representando uma compressão uniforme.

2.2 Identificação dos parâmetros de treinamento da rede

Para a identificação dos parâmetros necessários para a montagem da rede deve-se buscar o menor número possível de variáveis que consigam representar bem o problema estudado. Assim, como primeira abordagem, buscou-se trabalhar com relações entre os parâmetros que exprimem a geometria da seção; isto é: bf/t, bw/t, l/bf. Em tese, estas 3 variáveis representariam plenamente o problema. Porém, a medida que um estudo preliminar foi executado, descobriu-se que apenas estas variáveis não seriam suficientes. Assim, optou-se por trabalhar com todas as quatro variáveis disponíveis; isto é, bw, bf, l e t. Cabe salientar que uma menor quantidade de variáveis implica uma equação mais compacta.

2.3 Geração dos dados e treinamento da rede

Os dados necessários ao treinamento da rede foram gerados através do programa Inslod (Nagahama, 2003). Cabe salientar que apenas uma solução computacional permite uma avaliação plena da estabilidade de um perfil de chapa dobrada, permitindo a correta identificação dos distintos modos e as faixas de comprimentos onde há predominância dos modos locais de placa, distorcional e modos globais (flexão e flexo-torção). Na Figura 3 pode ser observado um gráfico com um resultado típico de saída do programa Inslod.

Figura 3: Curva tensão de flambagem x comprimento considerando apenas o primeiro harmônico.

	valor mínimo	valor máximo	incremento
bw	100	300	50
bf	50	150	10
l	10	30	5
t	1	5	1

Os limites estabelecidos para as seções foram:

Tabela 1: Limites utilizados para a geração das seções (mm).

A varredura para identificação dos modos de flambagem foi feita variando-se o comprimento do perfil de 50mm a 2000mm, com o módulo de elasticidade 200GPa. Ao todo, foram geradas 1375 seções, as quais foram simuladas através do Inslod para a obtenção dos valores das tensões críticas. No conjunto dos dados analisados, verificaram-se perfis que, ao longo dos comprimentos analisados, apresentam variação nos modos de flambagem em função das relações entre os entes geométricos que definem as seções, como pode ser visto na Figura 4.

Figura 4: (a) modo local de placa, (b) do modo distorcional e (c) modo acoplado.

De modo geral, segundo Nagahama (2003), em perfis do tipo U enrijecido, verifica-se a tendência ao aparecimento do modo distorcional para os flanges maiores e menores rigidezes rotacionais na junção alma/flange. Já para os enrijecedores maiores, tem-se uma tendência de surgimento do modo local de placa. Como esta pesquisa ainda se encontra em fase preliminar, foram retirados aqueles perfis que não apresentavam modos distorcionais ou nos quais o modo distorcional aparecia acoplado ao modo local de placa. Desta forma, o conjunto dos dados válidos apresentou um total de 116 seções.

A natureza do problema a ser resolvido normalmente define restrições em relação aos tipos de RNA e algoritmos de aprendizagem possíveis. Neste trabalho, a rede neural é treinada com o algoritmo de aprendizagem Levenberg-Marquardt (Hagan e Menhaj, 1994). Em seu treinamento foi utilizada a totalidade dos dados simulados. Em tempo, este trabalho intenciona apenas o ajuste das tensões das seções simuladas, explorando a possibilidade de utilização das RNA na modelagem deste tipo de problema. A quantidade de camadas e o número de neurônios por camadas foram definidos através de tentativa e erro.

Para cada uma das topologias de rede testadas, foram avaliadas as funções sigmóide e tangente hiperbólica para representação das energias de ativação dos neurônios. De maneira geral, observou-se que a função tangente hiperbólica permite melhores ajustes para a rede.

3 DEFINIÇÃO E AVERIGUAÇÃO DA EQUAÇÃO OBTIDA

As equações mais simples são aquelas cujas redes apresentam o menor número de camadas intermediárias e o menor número de neurônios por camadas. Dentre os casos testados, não foi possível a obtenção de um ajuste viável com um único neurônio, nem com dois neurônios na camada intermediária. As correlações encontradas para os ajustes realizados com três e quatro neurônios são apresentados na Tabela 2.

neurônios na	
camada intermediária	R^2
3	0.958
4	0.960

Tabela 2: Coeficientes de correlação obtidos para os melhores ajustes.

7575

Neste contexto, a melhor solução foi a rede com três neurônios na camada intermediária cuja ilustração é mostrada na Figura 5.

Figura 5: Ilustração da rede utilizada

A rede adotada tem uma camada intermediária com três neurônios. A camada de entrada possui quatro neurônios que representam as variáveis do problema (bw, bf, l e t), enquanto a camada de saída possui apenas um neurônio correspondente à tensão crítica de flambagem do modo distorcional. O melhor ajuste obtido pode ser observado na Figura 6.

Figura 6: Ajuste obtido pela rede escolhida.

Após a realização dos ajustes, tornou-se possível a obtenção dos pesos e biases de cada neurônio. Assim a equação representativa do problema pôde ser montada (Eq 1).

$$\sigma = -\frac{406729}{1181} * tanh(k1) - \frac{26323}{5609} * tanh(k2) - \frac{596356}{3495} * tanh(k3) + \frac{1091446}{2123}$$
(1)

onde:

$$k1 = \frac{1779}{578809} * bw + \frac{18082}{81309} * bf - \frac{65219}{51638} * l - \frac{31301}{51611} * t - \frac{327368}{121313}$$

$$k2 = \frac{15815}{408298} * bw + \frac{196473}{35495} * bf - \frac{60761}{1791} * l - \frac{429393}{6416} * t - \frac{150855}{4586}$$

$$k3 = \frac{1574}{640837} * bw + \frac{11943}{1776260} * bf - \frac{4721}{153127} * l - \frac{25033}{62924} * t + \frac{100719}{255764}$$

Faixa de Erro (%)	Número de Amostras	Amostras (%)
0 - 5	54	46.55
5 - 10	29	25.00
10 - 15	16	13.79
15 - 20	10	8.62
20 - 25	6	5.17
25 - 30	1	0.86
-Total-	116	100.00

Na Tabela 3, apresenta-se a distribuição dos erros obtidos com a equação de ajuste. Nota-se que apesar do ajuste com bom índice de correlação, existem 7 estimativas com erros entre 20% e 30%. A maior parte dos erros, no entanto, foi inferior a 5%.

Tabela 3: Distribuição dos erros na estimativa das tensões para os perfis simulados.

Os resultados sugerem que há necessidade de se buscar um ajuste ainda mais preciso. Talvez seja necessária a inclusão de novos parâmetros de entrada para o treinamento da rede e a averiguação de novas topologias. Estudos preliminares sugerem que equações simplificadas não serão capazes de representar o problema com erros inferiores aos obtidos neste trabalho. Devese destacar ainda que o conjunto de dados utilizado nesta pesquisa não levou em consideração no acoplamento dos modos distorcional e local de placa, restringindo-se a uma faixa de seções. A rede treinada por Pala (2006) para predição das tensões de flambagem distorcional obteve índice de correlação melhor que o alcançado neste trabalho, entretanto o erro máximo foi de 43%. Posteriormente, Pala (2008) apresentou uma nova formulação baseada na Programação Genética na qual obteve erro máximo de 38%. Deve-se destacar que o valor inferior para o erro máximo alcançado neste trabalho se deve ao fato da rede não ter caráter preditivo, mas sim de ajuste, porque todos os dados foram utilizados no treinamento da mesma.

Na Tabela 4 é possível a comparação entre todos os resultados simulados e os obtidos a partir da equação ajustada.

bw(mm)	bf(mm)	l(mm)	t(mm)	Inslod(MPa)	A justado(MPa)	Erro(%)
100	80	10	1	88.993	99.07	11.32
100	80	10	2	202.103	191.23	5.38
100	80	10	4	508.805	510.37	0.31
100	90	10	2	166.239	150.93	9.21
100	100	10	1	61.18	72.70	18.83
100	100	10	2	138.601	130.06	6.16
100	100	15	2	613.015	613.30	0.05
100	100	15	3	825.784	824.82	0.12
100	110	10	1	51.667	64.88	25.57
150	80	10	1	68.766	80.74	17.42
150	80	10	2	160.826	163.16	1.45
150	80	10	3	278.802	276.58	0.80
150	90	10	1	59.127	66.27	12.08
150	90	10	2	137.575	130.58	5.09
continua na próxima página.						

Tabela 4: Comparação entre os dados gerados e ajustados.

bw(mm)	bf(mm)	l(mm)	t(mm)	Inslod(MPa)	A justado(MPa)	Erro(%)
150	100	10	1	50.731	58.87	16.04
150	100	10	2	117.625	110.58	5.99
150	110	10	1	43.666	52.13	19.37
150	110	10	2	101.012	100.50	0.51
150	110	15	1	64.968	71.72	10.39
150	110	15	2	142.055	144.49	1.71
150	110	15	3	236.043	235.71	0.14
150	120	10	1	37.793	45.96	21.61
150	120	10	2	87.302	90.93	4.15
150	120	15	1	56.754	60.99	7.46
150	120	15	2	123.915	123.12	0.64
150	120	15	3	202.114	189.63	6.18
150	130	10	1	32.921	40.34	22.55
150	130	15	1	49.837	54.04	8.43
150	130	15	2	108.699	103.40	4.87
150	130	15	3	177.163	177.76	0.34
150	140	10	1	28.863	35.25	22.14
150	140	15	1	44.003	47.71	8.41
150	140	15	2	95.905	93.67	2.33
150	140	15	3	156.248	156.90	0.42
150	140	20	1	61.6	64.76	5.14
150	150	10	1	25.467	30.66	20.38
150	150	15	1	39.066	41.93	7.33
150	150	15	2	85.103	84.48	0.73
150	150	20	1	52.433	56.02	6.84
150	150	20	2	111.312	115.79	4.02
150	150	20	3	176.941	181.32	2.48
200	90	10	1	44.531	53.31	19.72
200	90	10	2	106.82	107.50	0.64
200	100	10	1	40.329	46.99	16.51
200	100	10	2	96.051	92.55	3.64
200	100	10	3	168.563	164.93	2.15
200	110	10	1	36.031	41.28	14.57
200	110	10	2	85.371	83.42	2.29
200	110	15	1	53.707	57.60	7.25
200	120	10	1	32.014	36.10	12.76
200	120	10	2	75.563	74.86	0.93
200	120	15	1	47.842	48.79	1.99
200	120	15	2	105.956	104.80	1.09
200	120	15	3	174.939	168.60	3.63
200	120	15	4	255.356	234.67	8.10
200	130	10	1	28.415	31.42	10.58
200	130	10	2	66.891	66.89	0.01
200	130	15	1	42.78	42.89	0.27

Tabela 4 – continuação da página anterior.

continua na próxima página.

bw(mm)	bf(mm)	l(mm)	t(mm)	Inslod(MPa)	Ajustado(MPa)	Erro(%)
200	130	15	2	94.541	86.04	9.00
200	130	15	3	155.823	156.87	0.67
200	140	10	1	25.262	27.21	7.71
200	140	10	2	59.352	59.50	0.26
200	140	15	1	38.289	37.56	1.90
200	140	15	2	84.478	77.30	8.49
200	140	15	3	139.062	136.22	2.04
200	150	10	1	22.523	23.43	4.03
200	150	10	2	52.853	52.71	0.27
200	150	15	1	34.349	32.74	4.68
200	150	15	2	75.685	69.16	8.62
200	150	15	3	124.471	125.22	0.60
200	150	20	2	98.502	98.13	0.38
200	150	20	3	157.739	160.35	1.66
200	150	20	4	224.004	226.87	1.28
250	110	10	1	28.02	32.20	14.91
250	110	10	2	68.25	68.23	0.04
250	120	10	1	25.986	27.91	7.40
250	120	10	2	62.872	60.74	3.39
250	120	15	1	38.804	38.47	0.86
250	120	15	2	87.327	87.94	0.70
250	120	15	3	146.175	147.78	1.10
250	120	15	4	219.238	215.23	1.83
250	130	10	1	23.807	24.06	1.05
250	130	10	2	57.309	53.85	6.04
250	130	15	1	35.741	33.54	6.15
250	130	15	2	80.151	70.53	12.00
250	130	15	3	133.766	136.49	2.04
250	130	15	4	197.086	203.45	3.23
250	140	10	1	21.669	20.61	4.88
250	140	10	2	51.96	47.53	8.52
250	140	15	1	32.711	29.12	10.99
250	140	15	2	73.153	62.87	14.06
250	140	15	3	121.806	116.37	4.46
250	140	15	4	179.106	192.19	7.31
250	150	10	1	19.668	17.54	10.84
250	150	10	2	47.022	41.77	11.16
250	150	15	1	29.85	25.14	15.77
250	150	15	2	66.598	55.80	16.21
250	150	15	3	110.691	106.05	4.19
250	150	15	4	162.542	171.40	5.45
250	150	20	2	86.315	82.30	4.65
250	150	20	3	139.329	139.81	0.35
250	150	20	4	202.376	207.08	2.32
					continua na próxi	ma página.

Tabela 4 – continuação da página anterior.

					unterion	
bw(mm)	bf(mm)	l(mm)	t(mm)	Inslod(MPa)	A justado(MPa)	Erro(%)
300	120	15	2	68.198	67.90	0.43
300	130	15	2	65.095	56.99	12.45
300	130	15	3	110.178	117.20	6.37
300	130	15	4	164.324	182.77	11.23
300	140	10	1	17.897	15.25	14.79
300	140	15	2	61.258	50.41	17.72
300	140	15	3	103.313	97.86	5.27
300	140	15	4	153.604	171.30	11.52
300	150	10	2	40.729	32.61	19.94
300	150	15	2	57.124	44.39	22.29
300	150	15	3	96.062	88.43	7.94
300	150	15	4	142.474	150.48	5.62
300	150	20	1	33.866	26.95	20.43
300	150	20	2	74.297	68.43	7.90

Tabela 4 – continuação da página anterior.

4 CONCLUSÕES

Este trabalho apresentou uma metodologia para ajustar uma equação com vistas à predição de tensão crítica de flambagem do modo distorcional de perfis U enrijecidos submetidos à compressão uniforme com condições de apoio que simulam articulações e empenamento livre.

A obtenção de uma expressão para predição das cargas críticas de flambagem distorcional pode tornar muito mais ágil o processo de dimensionamento de perfis de chapa dobrada de paredes finas. Com base nos resultados apresentados, pode-se afirmar que, qualitativamente, a rede obteve um bom desempenho, porque o objetivo principal não é encontrar uma rede ajustada à predição de cargas críticas, mas, formular uma equação viável à predição. Isto implica em redes muito simples e com poucos neurônios. Neste sentido, há que se melhorar a modelagem do problema para a obtenção de resultados que tenham ampla utilização. Contudo, percebe-se que a equação encontrada é satisfatória para representar o conjunto dos dados testados, diante da complexidade do problema.

REFERÊNCIAS

- Batista E.M. Effective section method: A general direct method for the design of steel cold-formed members under local-global buckling iteration. *Thin-Walled Structures*, 48:345–356, 2010.
- Davies J.M. e Jiang C. Design of thin-walled columns for distortional buckling. *Coupled Instabilities in Metal Structures (CIMS'96)*, 1:165–172, 1996.
- Hagan M.T. e Menhaj M.B. Training feedforward networks with the marquardt algorithm. *IEEE Transactions on Neural Networks*, 5:989–993, 1994.
- Nagahama K.J. Análise de Estabilidade Local em Perfis de Seção Aberta em Aço e em Resina Reforçada com Fibra de Vidro. D.Sc. Tese, COPPE-UFRJ, 2003.
- Pala M. A new formulation for distortional buckling stress in cold-formed steel members. *Journal of Constructional Steel Research*, 62:716–722, 2006.
- Pala M. Genetic programming-based formulation for distortional buckling stress of cold-formed steel members. *Journal of Constructional Steel Research*, 64:1495–1504, 2008.

- Schafer B.W. e Peköz T. Computational modeling of cold-formed steel: characterizing geometric imperfections and residual stresses. *Journal of Constructional Steel Research*, 47:193–210, 1998.
- Schafer B.W. e Peköz T. Laterally braced cold-formed steel members with edge stiffened flanges. *Journal of Structural Engineering (ASCE)*, 125:118–127, 1999.
- Silvestre N. e Camotim D. Distortional buckling formulae for cold-formed steel c-and z-section members: part i-derivation. *Thin-Walled Structures*, 42:1567–1597, 2004a.
- Silvestre N. e Camotim D. Distortional buckling formulae for cold-formed steel c-and z-section members: part ii-validation and application. *Thin-Walled Structures*, 42:1599–1629, 2004b.