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Abstract. Application of adhesives in bonded joints is increasing. Therefore, there is a specific need 

for analysis and design tools that can provide physical insight and accurate results for bonded joints 

applications. These tools would be very useful for preliminary design purposes, which would reduce 

costly tests. Several analytical methods for calculations of stress distributions in adhesively bonded 

joints are available in literature. However, implementation and use of analytic models are usually 

difficult, since they are complex non-linear functions of material properties and geometry. This paper 

presents a Matlab® implementation of analytic solutions in a user-friendly software. Software permits 

calculation of stress distributions using each analytical solution individually, comparisons among 

different analytic solutions results and failure criteria analysis. The ABAQUS®, a commercial finite 

element software, was used for the numerical validation. For the experimental validation, predicted 

strengths were compared with test data obtained by several tests performed according to the American 

Society for Testing and Materials (ASTM). Finally a failure criterion was implemented.  
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1 INTRODUCTION 

 
Development of new materials and processes is followed by considerable advances in 

structural design. Optimized design of structures frequently requires the usage of dissimilar 

materials together. Sometimes materials cannot be welded, in other cases structures do not 

admit bolted or riveted connections. As an alternative, application of adhesives in bonded 

joints is increasing. Therefore, there is a specific need for analysis and design tools that can 

provide physical insight and accurate results for bonded joints applications. This paper 

presents the development of an interactive tool for analysis of stress distribution in adhesively 

bonded joints. Initially, it is shown a review of the main analytical methods found in 

literature. Further, the implementation of the software is described. Finally, implemented 

models are validated by comparing its result against numerical and experimental results. 

Numerical results were obtained by using the commercial finite element software ABAQUS. 

Experimental results were obtained from tests carried according to the American Society for 

Testing and Materials (ASTM). 

 

2 ANALYTICAL MODELS 
 

2.1 Volkersen 
 

     The first analytical method known in literature for the stress analysis of bonded joints was 

developed by Volkersen (1938). Volkersen method, also known as the “shear-lag model”, 

introduced the concept of differential shear. The bending effect due to the eccentric load path 

is not considered. The adhesive shear stress distribution τ  is given by: 
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The reciprocal of  ω  has units of length and is the characteristic shear-lag distance, a 

measure of how quickly the load is transferred from one adherend to the other. tt  is the top 

adherend thickness, bt  is the bottom adherend thickness, at  is the adhesive thickness, b  is the 

bonded area width, l  is the bonded area length, E  is the adherend modulus, aG  is the 

adhesive shear modulus and P is the force applied to the inner adherend. The origin of x  is 

the middle of the overlap and is shown in Figure 1. 

 

Figure 1: Volkersen model 
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2.2  Goland & Reissner 
 

Goland & Reissner (1944) were the first to consider the effects due to rotation of the 

adherends, Figure 2. They divided the problem into two parts: (a) determination of the loads 

at the edges of the joints, using the finite deflection theory of cylindrically bent plates and (b) 

determination of joints stresses due to the applied loads.  

 

Figure 2: Goland & Reissner model 

The adhesive shear stress distribution τ  found by Goland & Reissner is given by: 
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where, P  is the applied tensile load per unit width, c  is half of the overlap length, t  is the 

adherend thickness and k  is the bending moment factor given by (Goland & Reissner, 1944): 
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The adhesive peel stress distribution σ  is given by: 
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where k ′  is the transverse force factor. 
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( ) ( ) ( ) ( )λλλλ cossinhsincosh1 +=R ; ( ) ( ) ( ) ( )2 cosh sin sinh cosR λ λ λ λ= − +  

2.3 Hart-Smith 
 

In contrast with Volkersen or Goland & Reissner, Hart-Smith (1973) considered adhesive 

plasticity. In their work, they divided the problem in four main steps. First step main goal is 

obtaining the bending moment M induced at the end of the joint by off-center load. This 

quantity defines the peak shear and peel stresses in the adhesive. Second step considered the 

influence of the bending stress on the strength of the adherends. Third step presents the 

analysis of adhesive shear stress distribution using the elastic-plastic adhesive formulation. 

Finally, fourth step discusses the problem of peel stresses. 

 

According to Hart-Smith, the adhesive elastic shear stress distribution ( )x
τ  is given by: 
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and D  is the adherend bending stiffness is given by: 
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Variables P , aG , at , E , ν , t , c  has the same meaning as presented by Volkersen and 

Goland & Reissner models. The adhesive peel stress distribution ( )x
σ  is given by: 
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and 
a

E  is the Young modulus of the adhesive. 

Hart-Smith also considered adhesive shear stress plasticity. The shear stress was modeled 

using a bi-linear elastic-perfectly plastic approximation. The overlap is divided into three 

regions, a central elastic region of length d  and two outer plastic regions. Coordinates x  and 

x′  are defined as shown in Figure 3. Failure of the bonded joint starts as soon as the elastic 

zone start to plastificate. This take place when 
p

τ  equals to the shear yield strength. This 

would be the failure criteria considered for the Hart-Smith elastic-plastic model. 
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Figure 3:  Regions considered by Hart-Smith 

The problem is solved in the elastic region in terms of the shear stress according to: 
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and the shear strain in the plastic region according to: 
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where pτ  is the plastic adhesive shear stress and 
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K  and d  are solved by an iterative approach using the following equations: 
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where, eγ  and pγ are the elastic and plastic adhesive shear strain. 

 

2.4 Ojalvo & Eidinoff 
 

Ojalvo & Eidinoff (1978) model is based on Goland & Reissner model. They modified 

some coefficients in the shear stress equations by adding new terms in the differential 

equation and considering new boundary conditions for bond peel stress calculation. Their 

leading work was the first in predicting the variation of shear stress through the bond 

thickness. The adhesive nondimensional shear stress distribution *τ  found by Ojalvo & 

Eidinoff is given by: 

( )( )2* *2 6 1Acosh x Bτ λ β= + + +                                            (11) 
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where *E = E  for adherends in plane stress and ( )21E ν−  for adherends in plane strain. 
a

G , 

c , E , t  are the same variables as defined previously and h  is the adhesive thickness. k  is 

the bending moment factor as seen in Hart-Smith model. The maximum nondimensional 

stress at the bond/adherend interfaces is given by: 
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The solution for the nondimensional peel stress *σ  is given by: 
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Constants C and D are obtained upon substitution of the derivatives of Eq. (13)  into Eqs. 

(14) and (15) 
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3 SOFTWARE IMPLEMENTATIONS 

Several analytical methods for the stress distribution calculation in adhesively bonded 

joints are available in literature. However, implementation and use of analytic models are 

usually difficult due to its complex non-linear functions of material properties and geometry. 

This work presents implementation of two softwares. The first one is the implementation of 

the four models aforementioned the second one is the implementation of the failure criteria 

for each analytical method. As a consequence, we obtain the failure load for each case and an 

experimental comparison is finally possible. 
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3.1 Analytical Methods Analysis 

Using the first software we analyzed the four analytical solutions presented. Figure 4 

shows the flow diagram of first software. Analysis data are input manually by using a GUI or 

by reading an internal data base (Figure 5). After defining all the bonded joint required data, 

an individual analysis is possible, (Figure 6a). The software not only features individual 

analysis for each analytical model, but also features comparisons between methods, (Figure 

6b). Finally, results are shown on the screen as graphics and tables, printing results in a *.txt 

archive is also possible.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4:  Flow Diagram of first software 
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Figure 5:  Data input window. 

  

Figure 6:  (a) Individual method analysis, (b) Comparison between methods. 

3.2 Failure Criteria Analysis 

Second software analyzes different failure criteria for each analytical method. Main 

objective of failure criteria is to obtain a failure load and compare it with the experimental 

failure load. The flow diagram of this second software is shown in Figure 7. 

 

 

 

 

 

  

 

 

     

 

 

 
 

Figure 7:  Flow diagram of second software. 
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4 EXPERIMENTAL VALIDATION 
 

Experimental validation was carried out according to ASTM D1002 standard (Figure 8). 

 

4.1 MATERIALS 
 

The adhesive used was the AF 163-2K.045WT from 3M Company. This adhesive has an 

ultimate shear strength of 6950 psi, an ultimate peel strength of 7000 psi, a yield strength of 

5255 psi and a nominal thickness of 7.5 mils (0.19mm). The adherend used was aluminum 

2024-T3, which have an elasticity modulus of 73.1 GPa and a Poisson ratio of 0.33. 

 

4.2 TEST SPECIMENS 
 

Form and dimensions of test specimens are shown in Figure 8. The recommended 

thickness of adherends is mm125.062.1 ± . The recommended length of overlap is 

mm125.07.12 ± . The test speed was 1.30 mm/min. 

 

Figure 8: Form and dimensions of test specimens 

4.3 TEST RESULTS 
 

For the experimental validation were tested 6 specimens in accordance with the ASTM 

D1002 standard. For comparisons we considered the mean value of the six specimens tested. 

The mean failure load was 11284N. 

 

 

Figure 9:  Test specimen before and after testing – junction details. 

5 ANALYTICAL COMPARISON 

 
Analytical methods implemented in the software were validated with experimental results. 

Failure criteria can be seen in Table 1 (Da Silva et al., 2009, c; Rodriguez et al., 2010). For 

each implemented model was obtained a failure load, then this value was compared with the 

ultimate load found experimentally, Figure 10. 
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Analytical Method Type of analysis Failure Criterion 

Volkersen Elastic analysis aτ τ>  

Goland & Reissner Elastic analysis aτ τ>  or aσ σ>  

Hart–Smith Elastic analysis aτ τ>  or aσ σ>  

Hart–Smith Elasto-plastic analysis YSτ τ>
 

Ojalvo & Eidinoff Elastic analysis aτ τ>  or aσ σ>  

Table 1: Failure Criterion of each analytical method. 

in Table 1, 
a

τ  is the shear strength of the adhesive, 
a

σ  is the peel strength of the adhesive and 

YS
τ  is the shear yield strength of the adhesive 

 

Note: As seen in the Hart-Smith elastic-plastic model, failure will start when the elastic zone 

start to plastificate. 
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Figure 10:  Failure loads of each implemented analytical method. 

6 NUMERICAL COMPARISON 

Using the first software we can obtain stress distributions for each analytical method. We 

used geometry and material properties as seen in Sections 4.1 and 4.2. For the numerical 

validation we used the commercial software ABAQUS®. Were analyzed two types of 3D 

elements: The linear eight node brick element C3D8 and the quadratic twenty node brick 

element C3D20. Minimum and maximum values for each case, including analytical results, 

are shown in Table 2. Figure 11 shows the analytical distribution of Goland & Reissner and 

Figure 12 shows the Abaqus model used for the numerical comparison. Figure 13 shows 

comparison among implemented analytical methods results and numerical results for shear 

stress. Similarly, Figure 14 shows comparison between analytical and numerical results for 

peel stress. 
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Figure 11:  Shear and Peel distributions calculated by Goland & Reissner analytical model 

 

 

Figure 12:  Abaqus mesh of the bonded joint 

 

Figure 13:  Shear comparison between analytical models and numerical results 
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Figure 14:  Peeling comparison between analytical models and numerical results 

METHOD 
Shear (MPa) Peeling (MPa) 

Minimum  Maximum Minimum Maximum 

Volkersen 27.55 50.96 --- --- 

Goland & Reissner 21.43  70.10 -14.09 83.34 

Hart-Smith (elástico) 21.52 69.21 -13.75 67.91 

Hart-Smith (elasto-plástico) 26.55 40.06 --- --- 

Ojalvo & Eidinoff 21.96 69.14 -14.34 89.63 

ABAQUS C3D8 10.06 53.88 -17.32 88.48 

ABAQUS C3D20 11.48 66.79 -16.96 92.98 

Table 2: Minimum and maximum stress values. 

7 CONCLUSIONS 

There exist many analytical methods available in literature for bonded joint analysis. 

However, in this paper were implemented only four analytical methods. Methods 

implemented were considered sufficient to achieve a consistent result, which would be useful 

for preliminary design purposes and as a consequence would reduce costly tests.  

 

This paper presented a Matlab® implementation of four analytic solutions in a user-

friendly software, which features not only individual analysis of each stress distribution, but 

also a suitable failure criterion and the possibility of comparisons among different methods. 

 

For the validation of the analytical methods implemented were used experimental data in 

accordance with the ASTM D1002 standard and numerical results obtained by ABAQUS®.  

 

The method whose failure load best approximated to the experimental failure load was the 

Hart-Smith elastic-plastic model and the method which best approximated to numerical 
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results was the Ojalvo & Eidinoff model. As a result, the best combination of methods for 

bonded joint analysis would be Hart Smith elastic-plastic model for shear and Ojalvo & 

Eidinoff for peeling.  
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