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Abstract. This work presents a numerical method for solving three-dimensional viscoelastic
free surface flows governed by the Oldroyd-B constitutive equation. It is an extension to three
dimensions of the technique introduced by Tomé et al.1 The governing equations are solved by
a finite difference method on a 3D-staggered grid. Marker particles are employed to describe
the fluid providing the visualization and the location of the fluid free surface. As currently im-
plemented, the numerical method presented in this work can simulate three-dimensional free
surface flows of an Oldroyd-B fluid. The numerical technique presented in this paper is val-
idated by using an exact solution of the flow of an Oldroyd-B fluid inside a pipe. Numerical
simulation of the extrudated swell is given.
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1 INTRODUCTION

The numerical treatment of free surface flows is an area that has attracted the attention of many
researchers over the last two decades and still presents several challenges: the flow is transient,
non-isothermal, non-Newtonian and possess multiple free surfaces. Nonetheless, a number of
researchers have developed numerical methods capable of simulating free surface flows that can
be applied to the design and manufacture of many industrial processes. Among the numerical
techniques employed the finite difference method has been employed by various researchers.2–5

The development of numerical methods for simulating viscoelastic flows has been in area of
intense research. However, the majority of papers published can only cope with confined flows
such as the numerical simulation of the flow in a abrupt contraction (see Yoo and Na,3 Mompean
and Deville,6 Xue et al.,7 Pinho,8 Phillips and Williams9) which has been investigated in 2 and
3 dimensions. Numerical methods for viscoelastic flows with a free surface have also been
investigated.10–13 However, due to the complexity of these flows, only problems having a small
free surface deformation or steady state problems are usually treated. Recently, Tomé et al.1

developed a numerical method for solving time-dependent viscoelastic free surface flows. More
precisely, Tomé et al.1 presented a numerical technique for simulating two-dimensional free
surface flows of a fluid described by the Oldroyd-B constitutive equation. Numerical results for
the extrudate swell and the jet buckling for high Weissenberg numbers were obtained. In this
work we use the ideas presented by Tomé et al.1 and develop a numerical method for solving
the governing equations for the three-dimensional flow of an Oldroyd-B fluid. The technique
employs the finite difference method on a staggered grid and the fluid free surface is modelled
by the Marker-and-Cell method. The numerical method presented in this paper is validated by
simulating the flow of an Oldroyd-B fluid in pipe and compared with its analytic solution.

2 GOVERNING EQUATIONS

The governing equations of incompressible flows are the mass conservation equation and the
equation of motion which can be written as

∂vi

∂xi
= 0 , (1)

ρ
Dvi

Dt
= − ∂p

∂xi
+
∂σik

∂xk
+ ρgi , (2)

where t is the time, vi = (u, v, w)T is the velocity vector, xi = (x, y, z)T is the position vector,
p is the pressure, σik is the extra-stress tensor, ρ is the fluid density and gi = (gx, gy, gz)

T is the
gravity field. In this work the fluid is described by the Oldroyd-B model so that we employ the
following constitutive equation for σik

σik + λ1
5
σik= 2µ0

(
dik+

5

dik

)
, (3)
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where dik is the rate-of-deformation tensor

dik =
1

2

(
∂vi

∂xk
+
∂vk

∂xi

)
, (4)

µ0 is the fluid viscosity, λ1, λ2 are time constants defining the Oldroyd-B model and (
5•) repre-

sents the upper convected derivative defined by

5
σik=

∂σik

∂t
+
∂vmσik

∂xm
− ∂vi

∂xm
σmk −

∂vk

∂xm
σim . (5)

To solve equations (1)-(3) we employ the change of variables (known as EVSS method14)

σik = 2µ0

(
λ2

λ1

)
dik + Sik (6)

where Sik represents the non-Newtonian contribution to the extra-stress tensor. Introducing (6)
into equations (2) and (3) we obtain the following equations (we employed the non-dimensional
form where vi = Uv̄i, p = (ρU2)p̄, Sik = (ρU2)S̄ik, t = (L/U)t̄, xi = Lx̄i, the bars have been
dropped for clarity)

ρ
Dvi

Dt
= − ∂p

∂xi
+

1

Re

(
λ2

λ1

)
∂

∂xk

(
∂vi

∂xk

)
+
∂Sik

∂xk
+ ρgi (7)

and

Sik +We
5

Sik=
2

Re

(
1− λ2

λ1

)
dik . (8)

where Re = ρUL
µ

, Fr = U√
Lg

and We = λ1
U
L

are the Reynolds, Froude and Weissenberg num-
bers, respectively. We consider three-dimensional flows. Thus, the mass equation (1) together
with the momentum equation (7) and the Oldroyd-B constitutive equation (8), consist of a sys-
tem of partial differential equations with 10 equations for the unknowns u, v, w, p, Sxx, Sxy,
Sxz, Syy, Syz, Szz. By using Cartesian coordinates, the mass conservation equation (1) becomes

∂u

∂x
+

∂v

∂y
+

∂w

∂z
= 0 , (9)

while the x-component of equations (7) and (8) can be written as

∂u

∂t
+

∂(u2)

∂x
+

∂(vu)

∂y
+

∂(wu)

∂z
= −∂p

∂x
+

1

Re

(
λ2

λ1

)[
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2

]

+
∂Sxx

∂x
+

∂Sxy

∂y
+

∂Sxz

∂z
+

1

Fr2
gx , (10)

Sxx + We

[
∂Sxx

∂t
+

∂(uSxx)

∂x
+

∂(vSxx)

∂y
+

∂(wSxx)

∂z
− 2

(
∂u

∂x
Sxx +

∂u

∂y
Sxy +

∂u

∂z
Sxz

)]
=

2

Re

(
1 − λ2

λ1

)
∂u

∂x
, (11)

respectively. Similarly, the other components of (7) and (8) can be easily obtained.
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2.1 Boundary Conditions

In order to solve equations (7)-(8) it is necessary to impose boundary conditions for the velocity
field on mesh boundaries. For rigid boundaries we employ the no-slip condition u = 0 while
at fluid entrances (inflows) the normal velocity is specified by un = Uinf and the tangential ve-
locities are set to zero, namely, um1 = um2 = 0, where m1 and m2 denote tangential directions
to the inflow. At fluid exits (outflows) the Neumann condition ∂u

∂n
= 0 is adopted. We consider

a viscous fluid flowing in a passive atmosphere so that if we neglect surface tension forces then
on the free surface the correct boundary condition is given by (see Batchelor,15 page 153)

ni · (πij · nj) = 0 , (12)

m1i · (πij · nj) = 0 , (13)

m2i · (πij · nj) = 0 , (14)

where ni is the outward unit normal vector to the free surface and m1i, m2i are unit tangential
vectors and πij is the stress tensor πij = −pδij + σij .

2.2 Computation of the non-Newtonian tensor Sik on mesh boundaries

When solving equations (8) we shall apply a high order upwind method to approximate the
convective terms. This will require the values of the non-Newtonian stress tensor on the mesh
boundaries. Following the ideas presented by Tome et al.,1 the values of Sik are obtained as
follows.
Computation of the non-Newtonian tensor Sik on inflow boundaries: On these type of
boundaries the components of the non-Newtonian tensor Sik are set to zero, namely, Sik =
0, i, k = 1, 2, 3.
Computation of the non-Newtonian tensor Sik on outflow boundaries: Here we employ
the homogeneous Neumann condition for Sik: ∂Sik

∂n
= 0, i, k = 1, 2, 3, where n represents the

normal direction to the outflow.
Computation of the non-Newtonian tensor Sik on solid boundaries: As rigid boundaries
may be regarded as caracteristics the components of the non-Newtonian tensor Sik can be com-
puted as follows.

First, by introducing the change of variables S̄ik = e−(t/We)S̃ik into (8) it reduces to

5

S̃ik=
2

Re

(
1− λ2

λ1

)
e(t/We)dik . (15)

If we consider rigid boundaries which are parallel to one of the coordinate axis then in 3 dimen-
sions the rigid boundaries can be represented by 6 planes. These planes are easily identified as
the faces of the unit cubic. For instance, considering the plane shown in figure 1 we can see
that there are 2 planes corresponding to the z-axis, one has the normal vector pointing to the
positive z-direction and the other is pointing to the negative z-direction. The computation of the
non-Newtonian tensor Sik on these planes can be easily calculated. For example, if we consider
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Figure 1: Rigid boundary parallel to the xy-plane.

the rigid boundary represented by the xy-plane shown in figure 1, then the no-slip condition
applied to the velocity field produces ∂

∂x
= ∂

∂y
= 0 and using the mass conservation equation

implies that ∂w
∂z

= 0. Thus, only the terms ∂u
∂z

and ∂v
∂z

are non-zero. In this case, equation (15)
reduce to the following equations

∂S̃xx

∂t
= 2

∂u

∂z
S̃xz ;

∂S̃yy

∂t
= 2

∂v

∂z
S̃yz ;

∂S̃zz

∂t
= 0 ; (16)

∂S̃xy

∂t
=

∂v

∂z
S̃xz +

∂u

∂z
S̃yz ; (17)

∂S̃xz

∂t
=

∂u

∂z
S̃zz +

1

Re

1

We
e(t/We)

(
1− λ2

λ1

)
∂u

∂z
; (18)

∂S̃yz

∂t
=

∂v

∂z
S̃zz +

1

Re

1

We
e(t/We)

(
1− λ2

λ1

)
∂v

∂z
. (19)

If we assume the initial condition Sik = 0 then following the ideas of Tome et al.,1 equations
(16)-(19) can be solved for the components of Sik and are found to be

Sxx(t + δt) = e−(δt/We)Sxx(t) + δt

[
Sxz(t+ δt)

∂u

∂z
(t+ δt) + e−(δt/We)Sxz(t)

∂u

∂z
(t)

]
,(20)

Sxy(t + δt) = e−(δt/We)Sxy(t) +
δt

2

[
Sxz(t + δt)

∂v

∂z
(t + δt) + Syz(t+ δt)

∂u

∂z
(t + δt)

+

(
Sxz(t)

∂v

∂z
(t) + Syz(t)

∂u

∂z
(t)

)
e−(δt/We)

]
, (21)

Sxz(t + δt) = e−(δt/We)Sxz(t) +
1

Re

(
1− λ2

λ1

)
∂u

∂z
(t∗)

[
1− e(−δt/We)

]
, (22)

Syy(t + δt) = e−(δt/We)Syy(t) + δt

[
Syz(t + δt)

∂v

∂z
(t + δt) + e−(δt/We)Syz(t)

∂v

∂z
(t)

]
,(23)

Syz(t + δt) = e−(δt/We)Syz(t) +
1

Re

(
1− λ2

λ1

)
∂v

∂z
(t∗∗)

[
1− e−(δt/We)

]
. (24)
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For rigid boundaries represented by planes which are parallel to the xz- or yz-planes, the equa-
tions for calculating the components of the non-Newtonian tensor Sik are obtained in a manner
similar to the case of rigid boundaries parallel to the xy-plane.

3 METHOD OF SOLUTION

To solve equations (1), (7) and (8) together with the equations defining the boundary conditions
we follow a procedure similar to that employed by Tome et al.1 for two-dimensional viscoelastic
flows governed by the Oldroyd-B model.

Suppose that ui(xj, tn), Sik(xj, tn) are known and boundary conditions for velocity and pres-
sure are given. Then ui(xj, tn+1) and Sik(xj, tn+1), where tn+1 = tn + δt, can be obtained as
follows:

Step 1: Let p̃(xj, tn) be a pressure field which satisfies the correct pressure condition on
the free surface. This pressure field is computed from the normal stress condition (35).

Step 2: Compute the intermediate velocity field, ũi(xj, tn+1):

∂ũi

∂t
=
∂(ukui)

∂xk

− ∂p̃

∂xi

+
1

Re

(
λ2

λ1

)
∂

∂xk

(
∂ui

∂xk

)
+
∂Sik

∂xk

+
1

Fr2
gi . (25)

with ũi(xj, tn) = ui(xj, tn) using the correct boundary conditions for ui(xj, tn). These
equations are solved by a finite difference method which is usually, but not necessarily,
explicit.

Step 3: Solve the Poisson equation

∂

∂xk

(
∂ψ

∂xk

)
=
∂ũk(xj, tn+1)

∂xk
. (26)

The appropriate boundary conditions for this equation are2

∂ψ

∂n
= 0 on rigid boundaries and ψ = 0 on the free surface.

Step 4: Compute the final velocity field

ui(xj, tn+1) = ũi(xj, tn+1)−
∂ψ(xj , tn+1)

∂xi
. (27)

Step 5: Compute the pressure

p(xj, tn+1) = p̃(xj, tn) +
ψ(xj, tn+1)

δt
. (28)

M. Tomé, A. Castelo, F. Federson, J. Cuminato

1936



Step 6: Update the components of the non-Newtonian extra-stress tensor on inflows and
outflows.

Step 7: Update the components of the non-Newtonian extra-stress tensor on rigid bound-
aries

Step 8: Compute the components of the non-Newtonian extra-stress tensor from:

Sik +We
5

Sik=
2

Re

(
1− λ2

λ1

)
dik . (29)

Equation (29) is solved by finite differences.

Step 9: Update the markers positions: The last step in the calculation is to move the
markers to their new positions.

dxi

dt
= ui , (30)

for each particle. The fluid surface is defined by a piecewise linear surface composed of
triangles and quadrilaterals having these marker particles on their vertices.

4 FINITE DIFFERENCE DISCRETIZATION
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Figure 2: Staggered grid and types of cells used by Freeflow3D.

For solving Steps 1 to 9 of the procedure presented in the previous Section we employ the fol-
lowing approach. A staggered grid is used. A typical cell is shown in figure 2a. The variables
pi,j,k, the potential function ψi,j,k and the non-Newtonian tensor Si,j,k are positioned at a cell
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centre while the components of the velocity field ui,j,k, vi,j,k and wi,j,k are staggered by a trans-
lation of δx/2, δy/2 and δz/2, respectively. A scheme for identifying the free surface and the
fluid region is employed. To accomodate this, the cells within the mesh are defined as empty
cells (E)-cells which do no contain fluid; full cells (F)-cells which have fluid and do not have
any face contiguous with empty cell faces; surface cells (S)-cells which contain fluid and have
at least one face contiguous with an empty cell face; and boundary cells (B)-cell which define a
rigid boundary; inflow cells (I)-cells which define an inflow boundary. An illustration of these
type of cells is provided in figure 2b.

The momentum equation (25) is discretized and applied at u−, v− and w−nodes respec-
tively. The time derivative is discretized explicitly while the Laplacian is approximated by
second order differences. The pressure gradient and the divergence of Sik are discretized by
central differences. The convective terms are approximated by a high order upwind method. In
this work we employ the VONOS method.16 Full details of the implementation of the VONOS
method for three-dimensional flows can be found in Ferreira et al.17 For example, if we con-
sider the x-component equation (25) (see eq. (10)), it is approximated by the following finite
difference equation

ũi+ 1

2
,j,k = ui+ 1

2
,j,k + δt

[
−conv(uu)− conv(vu)− conv(wu)− p̃i+1,j,k − p̃i,j,k

δx

+
1

Re

(
λ2

λ1

)(
ui− 1

2
,j,k − 2ui+ 1

2
,j,kui+ 3

2
,j,k

δx2
+
ui+ 1

2
,j−1,k − 2ui+ 1

2
,j,k + ui+ 1

2
,j+1,k

δy2

+
ui+ 1

2
,j,k−1 − 2ui+ 1

2
,j,k + ui+ 1

2
,j,k+1

δz2

)
+
Sxx

i+1,j,k − Sxx
i,j,k

δx
+
Syx

i+ 1

2
,j+ 1

2
,k
− Syx

i+ 1

2
,j− 1

2
,k

δy

+
Szx

i+ 1

2
,j,k+ 1

2

− Szx
i+ 1

2
,j,k− 1

2

δz
+

1

Fr2
gx

]
, (31)

where the convective terms conv(uu), conv(vu) and conv(wu) are approximated by the
VONOS method. Terms like Syx

i+ 1

2
,j+ 1

2
,k

are obtained by averaging the nearest neigbours, for

instance,

Syx

i+ 1

2
,j+ 1

2
,k

=
Syx

i,j,k + Syx
i+1,j,k + Syx

i,j+1,k + Syx
i+1,j+1,k

4
.

The Poisson equation (26) is discretized at cell centres using the seven-point Laplacian, namely,

ψi+1,j,k − 2ψi,j,k + ψi−1,j,k

δx2
+
ψi,j+1,k − 2ψi,j,k + ψi,j−1,k

δy2
+
ψi,j,k+1 − 2ψi,j,k + ψi,j,k−1

δz2
=

ũi+ 1

2
,j,k − ũi− 1

2
,j,k

δx
+
ṽi,j+ 1

2
,k − ṽi,j− 1

2
,k

δy
+
w̃i,j,k+ 1

2

− w̃i,j,k− 1

2

δz
. (32)

Equation (32) leads to a symmetric and positive definite linear system for ψi,j,k. In order to solve
this linear system we employ the conjugate gradient method as implemented in GENSMAC3D
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(see Tome et al.5). The final velocities are obtained by discretizing (27) at the respective nodes,
giving






ui+ 1

2
,j,k = ũi+ 1

2
,j,k −

(
ψi+1,j,k − ψi,j,k

δx

)
,

vi,j+ 1

2
,k = ṽi,j+ 1

2
,k −

(
ψi,j+1,k − ψi,j,k

δy

)
,

wi,j,k+ 1

2

= w̃i,j,k+ 1

2

−
(
ψi,j,k+1 − ψi,j,k

δz

)
.

(33)

The constitutive equation (29) is approximated by finite differences and applied at cell cen-
tres. The time derivative is discretized by the explicit Euler method. The linear spatial deriva-
tives are approximated by central differences while the convective terms are discretized by us-
ing the high order upwind VONOS method.16 For instance, the x-component of the constitutive
equation (29) as given by equation (11) is approximated by the finite difference equation

(Sxx)n+1
i,j,k = Sxx

i,j,k + δt {−conv(uSxx)i,j,k − conv(vSxx)i,j,k − conv(wSxx)i,j,k

+2

[(
∂u

∂x

)

i,j,k

Sxx
i,j,k +

(
∂u

∂y

)

i,j,k

Sxy
i,j,k +

(
∂u

∂z

)

i,j,k

Sxz
i,j,k

]}
. (34)

where

∂u

∂x

∣∣∣∣
i,j,k

=
ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
,
∂u

∂y

∣∣∣∣
i,j,k

=
ui,j+ 1

2
,k − ui,j− 1

2
,k

δy
,
∂u

∂z

∣∣∣∣
i,j,k

=
ui,j,k+ 1

2

− ui,j,k− 1

2

δz
.

Expressions like conv(uSxx)i,j,k represent the convective terms in (11) and are approximated
by the VONOS16 scheme. The other components of Sik are obtained in a similar manner.

4.1 Application of the free surface stress conditions

By using Cartesian coordinates, the boundary condition on the free surface can be written as
(according to equations (12)-(14))

p̃ =
2

Re

(
λ2

λ1

)[
∂u

∂x
n2

x +
∂v

∂y
n2

y +
∂w

∂z
n2

z +

(
∂v

∂x
+
∂u

∂y

)
nxny +

(
∂w

∂x
+
∂u

∂z

)
nxnz

+

(
∂w

∂y
+
∂v

∂z

)
nynz

]
+ Sxxn2

x + Syyn2
y + Szzn2

z + 2Sxynxny + 2Sxznxnz + 2Syznynz (35)

1

Re

(
λ2

λ1

)[
2
∂u

∂x
nxm1x + 2

∂v

∂y
nym1y + 2

∂w

∂z
nzm1z +

(
∂v

∂x
+
∂u

∂y

)
(m1xny +m1ynx)

+

(
∂w

∂x
+
∂u

∂z

)
(m1xnz +m1znx) +

(
∂w

∂y
+
∂v

∂z

)
(m1ynz +m1zny)

]

+Sxxnxm1x + Syynym1y + Szznzm1z + Sxy (m1xny +m1ynx)

+Sxz (m1xnz +m1znx) + Syz (m1ynz +m1znx) = 0 (36)
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1

Re

(
λ2

λ1

)[
2
∂u

∂x
nxm2x + 2

∂v

∂y
nym2y + 2

∂w

∂z
nzm2z +

(
∂v

∂x
+
∂u

∂y

)
(m2xny +m2ynx)

+

(
∂w

∂x
+
∂u

∂z

)
(m2xnz +m2znx) +

(
∂w

∂y
+
∂v

∂z

)
(m2ynz +m2zny)

]

+Sxxnxm2x + Syynym2y + Szznzm2z + Sxy (m2xny +m2ynx)

+Sxz (m2xnz +m2znx) + Syz (m2ynz +m2znx) = 0 (37)

To approximate these conditions we follow the ideas employed by Tome et al.5 We suppose
that the mesh spacing is small so that, locally, the free surface can be approximated by a planar
surface. We consider three types of planar surfaces: 1D-planar surfaces, 2D-planar surfaces
and 3D-planar surfaces. 1D-planar surfaces are surfaces which are perpendicular to one of
the coordinate axis (x-, y- or z-axis) while 2D and 3D-planar surfaces are 450 and 600-sloped
surfaces, respectively (see figure 3). Details are given as follows:

a) b) c)

o45

n
60 no

Figure 3: Types of planar surfaces: a) 1D-planar surface; b) 2D-planar surface; c)3D-planar surface.

i) 1D-Planar surfaces: these surfaces have the normal vector pointing either to the x or y or
z-direction. These surfaces are identified by surface cells having only one face in contact with
an empty cell face. In these surfaces the normal vector takes the form of (±1 0 0)T or (0 ±1 0)T

or (0 0 ± 1)T . For instance, if a surface cell has the (k + 1
2
)-face or the (k − 1

2
)-face in contact

with an empty cell face (see figure 2) then we assume the free surface is parallel to the xy-plane.
In this case thep normal vector points to the z-direction. Regarding figure 3a, the normal vector
takes the form n = [0 0 ± 1]T and we take the tangential vectors to be m1 = [0 1 0]T and
m2 = [1 0 0]T. In this case, the stress conditions (35)-(37) reduce to

p̃− 2

Re

(
λ2

λ1

)
∂w

∂z
+ Szz = 0 (38)

1

Re

(
λ2

λ1

)(
∂v

∂z
+
∂w

∂y

)
+ Syz = 0 (39)
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p
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E

Figure 4: Surface cell having only the (k − 1

2
) and the (k + 1

2
)–face in contact with an empty cell face.

1

Re

(
λ2

λ1

)(
∂u

∂z
+
∂w

∂x

)
+ Sxz = 0 (40)

For instapnce, if we consider the surface cell shown in figure 4a the value of the pressure
pi,j,k and the values of the velocities wi,j,k+ 1

2

, ui+ 1

2
,j,k+1 and vi,j+ 1

2
,k+1 are required. These are

obtained as follows. By imposing mass conservation for the surface cell we obtain
ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
+
vi,j+ 1

2
,k − vi,j− 1

2
,k

δy
+
wi,j,k+ 1

2

− wi,j,k− 1

2

δz
= 0 . (41)

Now, discretizing (40) at position (i+ 1
2
, j, k + 1

2
) we have

ui+ 1

2
,j,k+1 − ui+ 1

2
,j,k

δz
+
wi+1,j,k+ 1

2

− wi,j,k+ 1

2

δx
= Re

(
λ1

λ2

)
Sxz

i+ 1

2
,j,k+ 1

2

(42)

and applying a similar discretization to (40) at position (i, j + 1
2
, k + 1

2
) we obatin

vi,j+ 1

2
,k+1 − vi,j+ 1

2
,k

δz
+
wi,j+1,k+ 1

2

− wi,j,k+ 1

2

δy
= Re

(
λ1

λ2

)
Syz

i,j+ 1

2
,k+ 1

2

. (43)

Equations (41)-(43) provide 3 equations for wi,j,k+ 1

2

, ui+ 1

2
,j,k+1 and vi,j+ 1

2
,k+1 giving

wi,j,k+ 1

2

= wi,j,k− 1

2

− δz

δx

(
ui+ 1

2
,j,k − ui− 1

2
,j,k

)
− δz

δy

(
vi,j+ 1

2
,k − vi,j− 1

2
,k

)
(44)

ui+ 1

2
,j,k+1 = ui+ 1

2
,j,k −

δz

δx

(
wi+1,j,k+ 1

2

− wi,j,k+ 1

2

)
− δzRe

(
λ1

λ2

)
Sxz

i+ 1

2
,j,k+ 1

2

(45)

vi,j+ 1

2
,k+1 = vi,j+ 1

2
,k −

δz

δz

(
wi,j+1,k+ 1

2

− wi,j,k+ 1

2

)
− δzRe

(
λ2

λ1

)
Syz

i,j+ 1

2
,k+ 1

2

(46)
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Once the velocities have been obtained, the pressure at the surface cell centre is computed from
(38) yielding

p̃i,j,k =
2

Re

(
λ2

λ1

)(
wi,j,k+ 1

2

− wi,j,k− 1

2

δz

)
+ Szz

i,j,k . (47)

If the surface cell has only the (k − 1
2
)-face in contact with an empty cell face (see figure 4b)

the values of the velocities and the pressure are obtained similarly and are given by

wi,j,k− 1

2

= wi,j,k+ 1

2

+
δz

δx

(
ui+ 1

2
,j,k − ui− 1

2
,j,k

)
+
δz

δy

(
vi,j+ 1

2
,k − vi,j− 1

2
,k

)
(48)

ui+ 1

2
,j,k−1 = ui+ 1

2
,j,k +

δz

δx

(
wi+1,j,k− 1

2

− wi,j,k− 1

2

)
+ δzRe

(
λ1

λ2

)
Sxz

i+ 1

2
,j,k− 1

2

(49)

vi,j+ 1

2
,k−1 = vi,j+ 1

2
,k +

δz

δy

(
wi,j+1,k− 1

2

− wi,j,k− 1

2

)
+ δzRe

(
λ2

λ1

)
Syz

i,j+ 1

2
,k− 1

2

. (50)

The application of the free surface boundary conditions for other types of 1D planar surfaces is
performed similarly.
ii) 2D-Planar surfaces: These are surfaces that make a 450 with two coordinate axes. These
surfaces are identified by surface cells having two adjacent faces in contact with empty cell
faces. In these cells we assume that the normal vector is pointing at a direction which makes
450 with two axes, e.g. x and y or x and z or y and z and therefore we suppose that the normal

vector takes the form of n =
(
±
√

2
2
,±

√
2

2
, 0
)

or n =
(
±
√

2
2
, 0,±

√
2

2

)
or n =

(
0,±

√
2

2
,±

√
2

2

)
.

To illustrate the application of the free stress conditions for this type of surfaces we take the
case of a surface cell having the (i+ 1

2
) and (k + 1

2
)-faces in contact with empty cell faces (see

figure 5). For these cells we assume that the unit normal takes the form n = (
√

2
2
, 0,

√
2

2
) and the

tangential vectors are taken to be:

m1 =

(√
2

2
, 0,−

√
2

2

)
) and m2 = (0, 1, 0) .

Introducing these vectors into equations (35)–(36) we obtain

p̃ =
1

Re

(
λ2

λ1

)[
∂u

∂x
+
∂w

∂z
+
∂u

∂z
+
∂w

∂x

]
+

1

2
Sxx +

1

2
Syy + Sxy , (51)

1

Re

(
λ2

λ1

)[
∂u

∂x
− ∂w

∂z

]
+ Sxy + Syz = 0 (52)

respectively. As we can see in figure 5, the values of ui+ 1

2
,j,k, wi,j,k+ 1

2

at the empty-cell faces and
the pressure p̃i,j,k are required. These are obtained by applying (52) and the mass conservation
equation at the surface cell centre in which case we obtain

1

Re

(
λ2

λ1

)[
ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
−
wi,j,k+ 1

2

− wi,j,k− 1

2

δz

]
+ Sxy + Syz = 0 (53)
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Figure 5: Surface cell with (i + 1

2
) and (k + 1

2
)-faces contiguous with E–cells.

ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
+
wi,j,k+ 1

2

− wi,j,k− 1

2

δz
= −

(
vi,j+ 1

2
,k − vi,j− 1

2
,k

δy

)
(54)

respectively. Solving (53) and (54) for ui+ 1

2
,j,k and wi,j,k+ 1

2

we obtain

ui+ 1

2
,j,k = ui− 1

2
,j,k −

1

2

δx

δy

(
vi,j+ 1

2
,k − vi,j− 1

2
,k

)
+
δx

4

λ1

λ2

1

Re

(
Szz

i,j,k − Szz
i,j,k

)
(55)

and

wi,j,k+ 1

2

= wi,j,k− 1

2

− 1

2

δz

δy

(
vi,j+ 1

2
,k − vi,j− 1

2
,k

)
+
δz

4

λ1

λ2

1

Re

(
Sxx

i,j,k − Szz
i,j,k

)
. (56)

Once the velocities at the empty-cell faces have been computed the pressure at the surface cell
centre is calculated by (51), namely

p̃i,j,k =
1

Re

(
λ2

λ1

)[
ui+ 1

2
,j,k − ui− 1

2
,j,k

δx
+
wi,j,k+ 1

2

− wi,j,k− 1

2

δz

+
1

2

(
ui+ 1

2
,j,k + ui− 1

2
,j,k − ui+ 1

2
,j,k−1 − ui− 1

2
,j,k−1

δz

+
wi,j,k+ 1

2

+ wi,j,k− 1

2

− wi−1,j,k+ 1

2

− wi−1,j,k− 1

2

δx

)]
+

1

2
Sxx

i,j,k +
1

2
Syy

i,j,k + Sxy
i,j,k . (57)

Other configurations of surface cells having only two adjacents faces in contact with empty cell
faces are treated similarly.
iii) 3D-Planar surfaces: 60

0–sloped planar surface: These surfaces are defined to have the
local unit vector making 60

0 with the coordinate axes. They are identified by surface cells
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S
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E
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Figure 6: An example of a S-cell having the (i + 1

2
) and (j + 1

2
) and (k + 1

2
)-faces contiguous with E-cell faces.

having three adjacent faces contiguous with empty cell faces (see figure 6). For these surfaces

the normal vector takes the form n =

(
±
√

3

3
,±

√
3

3
,±

√
3

3

)
. It can be seen that there are 8

different configurations of these planar surfaces. The approximating equations for one particular
case will be given here; for details of each case see Tomé et al.5 Let us consider the surface cell
in figure 6. For this cell we assume the local unit vectors take the form:

n =

(√
3

3
,

√
3

3
,

√
3

3

)
, m1 =

(
0,

√
2

2
, −

√
2

2

)
, m2 =

(
−2

√
6

6
,

√
6

6
,

√
6

6

)
.

Introducing n, m1 and m2 into (35)–(37) we obtain

p̃ =
2

3Re

(
λ2

λ1

)[
∂u

∂y
+
∂v

∂x
+
∂u

∂z
+
∂w

∂x
+
∂v

∂z
+
∂w

∂y

]
+Sxx+Syy+Szz+2(Sxy+Sxz+Syz), (58)

2
∂v

∂y
− 2

∂w

∂z
+

(
∂u

∂y
+
∂v

∂x

)
−
(
∂u

∂z
+
∂w

∂x

)
= 0 , (59)

−4
∂u

∂x
+ 2

∂v

∂y
+ 2

∂w

∂z
−
(
∂u

∂y
+
∂v

∂x

)
−
(
∂u

∂z
+
∂w

∂x

)
+ 2

(
∂v

∂z
+
∂w

∂y

)
= 0 , (60)

respectively. Mass conservation for these cells also requires

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0 . (61)

The values of ui+ 1

2
,j,k, vi,j+ 1

2
,k and wi,j,k+ 1

2

are needed. They are obtained by applying (59),
(60) and (61) at the surface cell centre. Once the velocities on the surface cell faces are calcu-

M. Tomé, A. Castelo, F. Federson, J. Cuminato

1944



z

y
x

R

R10

Figure 7: Numerical simulation of the flow of an Oldroyd-B fluid in a pipe: 3D case.

lated the pressure is computed by discretizing (58) at the surface cell centre. Details of the finite
difference equations involved can be found in Tomé et al.5

5 VALIDATION RESULTS

The finite difference equations discussed in Section 4 were implemented into the Freeflow3D
code (see Castelo et al.18) in order to simulate unsteady free surface flow of an Oldroyd-B fluid.

To validate the numerical method presented in this paper we simulated the flow of an Oldroyd-
B fluid in a pipe. We considered a pipe of radius R and having a length of 10R (see figure 7)
and impose a steady state parabolic flow at the pipe entrance given by

W (x, y) = 2
[
R2 −

√
x2 + y2

2
]
, u = v = 0 . (62)

In this case, it can be shown that the components of the extra stress tensor Sik are given by

Sxy = 0, Sxz =
1

Re

(
1− λ2

λ1

)
∂w

∂x
, Syz =

1

Re

(
1− λ2

λ1

)
∂w

∂y
, (63)

Sxx = Syy = 0 , Szz = 2
We

Re

(
1− λ2

λ1

)[(
∂w

∂x

)2

+

(
∂w

∂y

)2
]
. (64)

To simulate this problem, the following input data were employed: R = 1m, δx = δy =
δz = 0.1m (mesh size of 20× 20× 200). Gravity was neglected. The scaling parameters were
R = 1m, U = 1ms−1 , ν = 1 m2s−1, λ1 = 1 , λ2 = 0.5, giving Re = 1 and We = 1.

We ran the Freeflow-3D code with the data above. We started with an empty pipe and injected
fluid at the pipe entrance until the pipe was full and the steady state was reached. Figure 8
displays the fluid flow configuration at selected times while figure 9 shows the variation of the
velocity w, the components of the non-Newtonian tensor Sxz and Szz and the first normal stress
difference N1 at the plane xz passing in the centre of the pipe. Figure 9 also shows these values
at the cross-section of the pipe situated at the position z = 2.5. We can observe in figure 9 that
the isolines are all parallel indicating that the steady state was reached.
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Figure 10 displays the numerical and the analytical values of w(x, y), Szz, Sxz and Syz along
the line parallel to the x-axis passing at the center of the cross-section of the pipe situated at
z = 2.5. We can see that the agreement between the two solutions is very good.

a) b) c) d)

Figure 8: Fluid flow configuration computed at different times: a) t = 2.5, b) t = 5.0, c) t = 9.0 and d) t = 20.

a) b) c) d)

Figure 9: Contour lines at t = 20. a) Velocity field, b) Sxz; c) Szz; d) N1.

6 NUMERICAL SIMULATION OF VISCOELASTIC FREE SURFACE FLOWS

To demonstrate that the technique presented in this paper can cope with viscoelastic free surface
flows we applied it to simulate the extrudate swell of an Oldroyd-B fluid. We considered the
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time-dependent flow of an axisymmetric jet flowing inside a tube and then extrudated in air. The
no-slip condition is imposed on the tube walls while fully developed flow is assumed at the tube
entrance (see (62)-(64)). On the fluid free surface the full stress conditions (see Section 4.1) are
applied. The components of the non-Newtonian stress Sik on the wall of the tube are computed
by the equations derived in Section 2.2. The flow domain is the same as that shown in figure 7.
To simulate this problem the following input data were employed: tube radius R = 1cm, tube

a) b)
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 0.6

 0.8
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 1.6

 1.8
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 0.4  0.5  0.6  0.7  0.8  0.9  1  1.1  1.2

Numerical solution (W)
exact solution
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c) d)
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Figure 10: Comparison between the analytic and the numerical solutions at the cross section of the pipe z = 2.5
along the line parallel to the x-axis. a) Velocity field, b) Szz; c) Sxz; d) Syz.

length L = 3R, δx = δy = δz = 0.1cm (20× 100 cells), Poisson tolerance EPS = 10−10. Fluid
definition: ν0 = 0.010 m2s−1, λ1 = 0.01s. The scaling parameters were R, U = 1, ν0 and λ1,
giving Re = U R/ν0 = 1 and We = λ1 U/R = 1. To demonstrate that the code can deal with
the Oldroyd-B model, we used these input data and performed three simulations. In the first
simulation the value of λ2 = 0.9λ1 was used and in the second simulation we used λ2 = 0.75λ1

while in the third simulation we chose λ2 = 0.5λ1. We point out that the effective Weissenberg

number for the Oldroyd-B model is given by (see Yoo and Na3): Weeffect =
(
1− λ2

λ1

)
We .

Thus, in these simulations we used Weeffect = 0.1, 0.25, 0.5, respectively. The results of these

M. Tomé, A. Castelo, F. Federson, J. Cuminato

1947



simulations are shown in figure 11. Figure 11 shows the jet flowing inside the tube and then
being extruded into the air.

Figure 11: Fluid flow visualization of the simulation of the extrudate swell for increasing We effect. Times shown
are (from left to right) t = 0.04s, 0.06s, 0.08s and 0.12s, respectively.

Weeffect = 0.1

Weeffect = 0.25

Weeffect = 0.5

For the time t = 0.04s (first column) the jet is just leaving the tube and the differences
between the three simulations are not noticeable. However, at later times the jet is extruded
into the air and the differences between the three simulations become more noticeable. This is
particularly true for the case of t = 0.12s (last column) where we can observe that the results
for the case of Weeffect = 0.5 present a much larger swelling than the results of the other two
simulations. Indeed, at the time t = 0.12s, the maximum swelling ratio (Sr = Rmax/R) for
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the three simulations were 28% for Weeffect = 0.1, 46% for Weeffect = 0.25 and 59% for
Weeffect = 0.5. These results show that the technique presented in the paper can deal with high
elastic fluids governed by the Oldroyd-B constitutive equation.

CONCLUDING REMARKS

This paper presented a numerical method for solving three-dimensional free surface flows gov-
erned by the Oldroyd-B model. The numerical technique developed herein is based on the finite
difference method and employed the Marker-and-Cell approach to represent the fluid free sur-
face. The finite difference equations developed in this work have been implemented into the
FreeFlow3D code of Castelo et al.18 extending FreeFlow3D to viscoelastic free surface flows.
The numerical method was validated by simulating the flow inside a pipe and compared with
the corresponding analytic solution. The agreement between the two solutions was very good.
In addition, the numerical simulation of the extrudate swell for various values of the effective
Weissenberg number was given.
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