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Abstract. Turbidity currents occur in both natural and man-made situations. In agreement 

with some researchers, most of the world’s oil reserves are stored in hydrocarbon reservoir 

built by turbidity systems. Due to the importance of these currents, this work presents a 

three-dimensional graphics application for numerical simulations of turbidity currents called 

Turb3D. This application is based on a consistent and efficient numerical method for 

simulations of turbidity currents for basin sedimentations predictions in the stratigraphic 

modelling process. The algorithm used in the software is based on Navier-Stokes equations 

that are solved using a depth-averaged procedure. The application user interface provides a 

common, user-friendly, graphical environment for pre-processing, solution and post-

processing. Despite the good computational performance achieved by using this approach, 

experiments should be done in order to validate the proposed numerical method presented 

in this work. 
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1 INTRODUCTION 

Among the types of transport available in nature, water is by far the most 

important transport mechanism. However, this work will concentrate on the 

behaviour of a different transport mechanism: density currents. The main difference 

between these two mechanisms is that water transports individual sediment particles, 

or pieces of rocks, by dragging, saltation or suspension, while density currents consist 

of a sediment-fluid mixture that is under the influence of gravity, which explains the 

denomination gravity current. 

Density current or gravity current occurs in both natural and man-made situations. 

Turbidity currents, debris flows, avalanches, oceanic fronts, pyroclastic flows and lava 

flows are some examples of this type of current. 

Gravity currents are gravitational flows that move according to gravitational forces. 

The density difference between both fluids can be caused by thermal effects, 

dissolved or suspended material into the current, or by a combination of these two 

factors. The current is called conservative if the material is dissolved into the current. 

However, if the material is suspended it is called non-conservative. 

Gravity currents have been discussed in many scientific studies, especially in 

geology. Their importance is due to the fact that these currents have a substantial 

influence on the deep-water depositional system. However, density currents can 

occur not only in submarine environments but also in subaerial environments. 

To generate turbidity currents in a submarine environment, it is indispensable to 

have a solution of sediment and water mixture, which has normally a greater density 

than the surrounding water. The difference in density between two fluids is the 

ignition of gravity currents in general. A difference of only a few percent is enough to 

raise the fluid pressure force that together with the fluid weight component (if on a 

slope), induce the current to propagate. Based on the Reynolds number, it is possible 

to say that this propagation over time, velocity, might affect proportionally the flow 

turbulence (Waltham, 2004). 

There has been extensive research on theoretical and experimental gravity 

currents. These studies have been conducted by many researchers from different 

areas with the objective of understanding the dynamics of these currents. 

Mathematical modelling of gravity currents can provide significant insights into 

current velocity and thickness used to predict turbidite geometries and grain size 

distribution. Mathematical models range of forms from simple hydraulic equations 

and box models to highly complex turbulence models. In particular, mathematical 

models for gravity currents can be divided into four groups: simple model based on 

Chézy’s equation, box models, depth-averaged models, and models incorporating 

turbulence.  

The mathematical model used in this work was based on a depth-averaged 

approach. This approach was chosen because it is not as simple as Chézy’s equation 

and it is not as complex as models incorporating turbulence, which require more CPU 

resources. Despite depth-averaged models unable to model fluid dynamic processes 
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within turbidity currents,  this choice is arguably the best solution; as it produces 

relatively accurate predictions of current evolution and deposition with less demand 

on CPU resources. 

2 MATHEMATICAL MODEL 

2.1 General Gravity Flow Equations 

The starting equations are (Acheson, 1990) the conservation of mass for an 

incompressible fluid given by 

 
𝜕𝑢𝑖

𝜕𝑥𝑖

3

𝑖=1

= 0 (1) 

where ui is velocity in the xi-direction, and the conservation of momentum (Cauchy’s 

equations of motion) given by 

𝜕𝑢𝑗

𝜕𝑡
+  𝑢𝑖

𝜕𝑢𝑗

𝜕𝑥𝑖

3

𝑖=1

= 𝑇𝑗
′ + 𝑔𝑗  (2) 

where j is 1, 2 or 3; t is time; 𝑔𝑗  is gravity and 

𝑇𝑗
′ =

1

𝜌
 

𝜕𝑇𝑖𝑗

𝜕𝑥𝑖

3

𝑖=1

 (3) 

with Tij is stress in the i-direction on the plane perpendicular to the j-direction. 

With depth-averaged equations we will only be interested in j=1 or 2 assuming j=3 

corresponds to the vertical direction.  This removes the gravity term from the right 

hand side of Eq. (2). Integrating Eq. (1) and (2) over the flow depth, h, and using 

Leibniz’s theorem (Abramowitz & Stegun, 1964) then produces: 

 
𝜕

𝜕𝑥𝑖

2

𝑖=1

 𝑕𝑢𝑖  +
𝜕𝑕

𝜕𝑡
= 0 (4) 

And 

𝜕

𝜕𝑡
 𝑕𝑢𝑗  +  

𝜕

𝜕𝑥𝑖
 𝑕𝑢𝑖 𝑢𝑗  

2

𝑖=1

= 𝑕𝑇𝑗′  (5) 

where an overbar indicates a depth-averaged quantity. Finally, combining Eq. (4) and 

(5) gives: 

𝜕

𝜕𝑡
 𝑢𝑗  +  𝑢𝑖 

𝜕

𝜕𝑥𝑖
 𝑢𝑗  

2

𝑖=1

= 𝑇𝑗  (6) 

which is simply a 2D version of Eq. (2). Eq. (4) and (6) are used to model the evolution 

of flow thickness and flow velocity respectively. These expressions are quite general 
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as they make no assumptions concerning rheological properties (e.g. non-zero 

viscosity or yield strength), flow style (e.g. laminar, turbulent or granular) or about 

how flow density varies in time and space.  These factors only enter via the stress 

term on the right hand side of equation (6). 

2.2 Stresses in a Turbulent Newtonian Flow 

A Newtonian fluid is defined by the stress relationship (Acheson, 1990) 

𝑇𝑖𝑗 = −𝑝𝛿𝑖𝑗 + 𝜇  
𝜕𝑢𝑗

𝜕𝑥𝑖
+
𝜕𝑢𝑖

𝜕𝑥𝑗
  (7) 

where p is pressure and  is viscosity. For the turbulent flow case considered in this 

paper, velocities should be understood as being ensemble averages (i.e. averages 

over a large numbers of identical flows) whilst  is the eddy viscosity. For the low-

concentration turbidity current case the flow density is nearly constant (i.e. equal to 

water density, w) so that Eq. (3) and (7) yield 

𝑇𝑗 ≈
1

𝜌
 
𝜕𝑝

𝜕𝑥𝑗

    
+ 𝜇∇2𝑢𝑗      + 𝜏𝑗  𝑕 − 𝜏𝑗  0   (8) 

where ∇2= 𝜕2 𝜕𝑥1
2 + 𝜕2 𝜕𝑥2

2  and 𝜏𝑗 = 𝜇 𝜕𝑢𝑗 𝜕𝑥3  is horizontal shear stress in the j 

direction. 

For a thin flow, in which characteristic horizontal scales are generally much greater 

than flow thickness, a hydrostatic approximation is appropriate for calculation of the 

pressure gradient in Eq.(8). In addition, for simplicity, we assume that flow 

concentration is constant so that 

𝜕𝑃

𝜕𝑥𝑗

    
=

𝜕𝑃

𝜕𝑥𝑗
= ∆𝜌𝑔

𝜕𝑕𝑓

𝜕𝑥𝑗
 (9) 

where  is the density contrast between the flow and the ambient fluid and hf is the 

height of the flow top. 

The eddy-viscosity term in Eq. (8) is formally equivalent to a velocity-diffusion 

equation and this therefore simply smoothes the resulting velocity field. The diffusion 

coefficient is given by w which depends upon the flow speed and could be 

anisotropic.  However, for simplicity, we treat this as a constant modelling parameter 

chosen to ensure numerical stability. 

The horizontal shear stress terms in Eq. (8) can be estimated using mixing-length 

theories (Duncan et al, 1960). We can approximate the relatively small contribution to 

shear-stress from the flow top by using a multiplier with the basal shear stress. The 

next step is to represent the basal stress by an equivalent shearing velocity, 𝑢∗, given 

by: 

𝜏 = −𝜌𝑢∗
2 ≈ −𝜌𝑤𝑢∗

2 (10) 
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in which the negative sign indicates that stress acts in the opposite direction to the 

velocity. Within the turbulent boundary layer, the shearing velocity is related to the 

flow velocity by the law of the wall 

𝑢 =
𝑢∗

𝑘
𝑙𝑛  

𝑧

𝑧0
         𝑧0 < 𝑧 < 𝑧𝑏  (11) 

where k is von Kármán’s constant (NB the clear-water value of ~0.41 is unlikely to be 

greatly in error for the low-concentration flows considered in this paper), z is height 

above channel floor whilst zo and zb define the depth range of the turbulent 

boundary layer. Integration of Eq. (11) yields an average velocity over this boundary 

layer of 

𝑢 𝑏 =
𝑢∗

𝑘
 𝑙𝑛  

𝑧𝑏
𝑧0
 − 1 +  

𝑧0

𝑧𝑏
 ≈

𝑢∗

𝑘
 𝑙𝑛  

𝑧𝑏
𝑧0
 − 1  (12) 

assuming zb>>zo. Above this boundary layer Kneller et al. (1999) showed 

experimentally that the velocity profile approximates well to a cumulative Gaussian 

function.  However, for greater generality as well as mathematical simplicity, the 

average velocity in the upper part of the flow can be represented by the velocity at 

the top of the boundary layer multiplied by a constant, i.e. 

𝑢 𝑡 = 𝑎𝑢 𝑧𝑏 =
𝑎𝑢∗

𝑘
𝑙𝑛  

𝑧𝑏
𝑧0
  (13) 

where tu  is the average velocity in the upper part of the flow and a is of order one. 

Combining Eq. (12) and (13) then gives a depth-averaged velocity through the 

entire flow of 

𝑢 = 𝑓𝑢 𝑏 + (1 − 𝑓)𝑢 𝑡  

𝑢 =
𝑢∗

𝑘
  𝑓 + (1 − 𝑓)𝑎  𝑙𝑛  

𝑧𝑏
𝑧0
 − 𝑓  

𝑢 =
𝑢∗

𝑘
𝑏 𝑙𝑛  

𝑧𝑏
𝑧0
 =

𝑢∗

𝑘
𝑏 𝑙𝑛  

𝑕𝑓

𝑧0
  

(14) 

where f=zb/h is the fractional height of the boundary layer and b = f+(1-f)a is a new 

constant of order one. Eq. (10) and  (14) then combine to give 

𝜏 = −𝜌 
𝑘𝑢 

𝑏𝑙𝑛  
𝑕𝑓
𝑧0

 
 

2

 (15) 

which, for the 2D (after depth-averaging) flows used here, may be generalized to 

𝜏𝑗 = −𝜌𝑢𝑗 𝑉  
𝑘

𝑏𝑙𝑛  
𝑕𝑓
𝑧0

 
 

2

 (16) 

where V is the depth averaged speed (i.e. 2

2

2

1

2 uuV  ). Thus, the basal friction is 
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controlled by two constants; b which we assume is unity and z0/f, which we show 

below to be closely related to the seafloor roughness.  Note that this approach to 

calculating basal shear stress is formally equivalent to using a Chezy-type friction law 

except that the resulting Chezy-coefficient has a weak dependency on flow thickness 

and, more importantly, it is directly related to a potentially quantifiable parameter (i.e. 

the seafloor roughness). 

The depth-averaged gravity current modelling algorithm described above has 

been validated by comparison with flume-tank experiments (Bitton et al, 2007). 

2.3 Particulate Current Modifications 

The preceding algorithm applies to any thin, turbulent gravity underflow and so, to 

complete the description, we need to add processes specifically related to sediment 

suspension and deposition. Our modelling is concerned with deposition from the 

distal parts of the flow so we assume the flow is fully developed in terms of sediment 

and ambient-fluid entrainment and that sediment deposition is therefore the 

dominant process. 

For sediment suspension, the turbulence-generated root-mean-square fluctuations 

in vertical velocity should exceed the fall velocity, vk (where k runs over all grain 

diameters), (Raudkivi 1998 but see Leeder et al. 2005 for a critique) and laboratory 

studies (e.g. Bagnold 1966; Kneller et al. 1999) show that the rms fluctuations are of 

similar magnitude to the shearing velocity. An entirely equivalent suspension criterion 

is that the Rouse number should be less than 2.5 (Rouse, 1937; Allen, 1997) since this 

also leads to the expectation of a suspension threshold when fall-velocity 

approximately equals the shear velocity. The sedimentation rate, sk, is therefore zero 

for 𝑢∗ > 𝑣𝑘  but equal to ckvk (where ck is concentration of the grain size) when the 

flow is stationary. The simplest mathematical model consistent with these end-

members is 

𝑠𝑘 = 𝑐𝑘 𝑣𝑘 − 𝑢∗                   𝑢∗ ≤ 𝑣𝑘  

𝑠𝑘 = 0                                       𝑢∗ > 𝑣𝑘  
(17) 

The still-water fall velocity can be calculated using a large number of different 

formulae but, for the first order model described in this paper, Stokes’s Law is 

adequate.  Each grain diameter is then independently modelled using a modified 

form of Eq. (4) which incorporates sediment loss: 

 
𝜕

𝜕𝑥𝑖

2

𝑖=1

 𝐿𝑘𝑢𝑖  +
𝜕𝐿𝑘
𝜕𝑡

= −sk  (18) 

where Lk is the sediment load associated with grain-size k, i.e. 

𝐿𝑘 = 𝑐𝑘𝑕 (19) 

Flow thickness is then recalculated using 
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𝑕 = 𝑐 𝐿𝑘
𝑘

 (20) 

where the total concentration of suspended sediments is assumed to be fixed for 

consistency with earlier model assumptions. Note that, as a consequence, flows thin 

as they loose sediment rather than become less concentrated. 

3 COMPUTATIONAL MODEL 

This Section shows the approach used for implementation of the governing 

equations presented in the previous section. 

3.1 Governing equations solution 

The summarised mathematical equations for turbidity current proposed in this 

work are given by the following expressions. 

𝜕𝑕

𝜕𝑡
+

𝜕

𝜕𝑥
 𝑕𝑢  +

𝜕

𝜕𝑦
 𝑕𝑣  = −

𝑠𝑘
𝑐𝑘

 (21) 

𝜕𝑢 

𝜕𝑡
+

𝜕

𝜕𝑥
 𝑢 2 +

𝜕

𝜕𝑦
 𝑢𝑣     = −

1

𝜌
 
 
 
 

∆𝜌𝑔
𝜕𝐻

𝜕𝑥
+ 𝜌𝑢  𝑢 2 + 𝑣 2  

𝑘

𝑏𝑙𝑛  
𝑕𝑓
𝑧0

 
 

2

 
 
 
 

 (22) 

𝜕𝑣 

𝜕𝑡
+

𝜕

𝜕𝑦
 𝑣 2 +

𝜕

𝜕𝑥
 𝑢𝑣     = −

1

𝜌
 
 
 
 

∆𝜌𝑔
𝜕𝐻

𝜕𝑦
+ 𝜌𝑣  𝑢 2 + 𝑣 2  

𝑘

𝑏𝑙𝑛  
𝑕𝑓
𝑧0

 
 

2

 
 
 
 

 (23) 

In order to store the mesh variables 𝑕, 𝑢  and 𝑣  a staggered grid scheme was used. 

In this scheme the height of the flow, 𝑕, is stored in the centre of the grid cell. The 

components 𝑢  of the velocity in the x-direction are stored at the left and right faces 

of the grid cells, at a distance of ±∆𝑥 2  from the centre, and the 𝑣  components of 

the velocity in the y-direction are stored at the top and bottom of the grid cell, at a 

distance of ±∆𝑦 2  of the center.  

On a staggered grid the scalar variables (pressure, density, total enthalpy, etc) are 

stored in the cell centres of the control volumes, whereas the velocity or momentum 

variables are located at the cell faces. This is different from a collocated grid 

arrangement, where all variables are stored in the same positions. A staggered 

storage is mainly used on structured grids for incompressible flow simulations. Using 

a staggered grid is a simple way to avoid odd-even decoupling between the pressure 

and velocity. Odd-even decoupling is a discretization error that can occur on 

collocated grids and which leads to checkerboard patterns in the solutions (CFD 

Online, Harlow & Welch, 1965). 

Figure 1 shows a part of the computational domain discretized with staggered grid 
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scheme. The momentum equation in the x-direction, Eq. (22), is discretized at the 

position 𝑖 + 1 2 , 𝑗. Analogously, the momentum equation in the y-direction, Eq. (23), 

is discretized at the position 𝑖, 𝑗 + 1 2 . Lastly, the continuity equation, Eq. (21), is 

discretized at the point i,j located at the centre of the grid cell. 

 

Figure 1: Staggered grid scheme. The height is stored at the centre of the grid and the components of 

velocity are stored at the left, right, top and bottom of the grid cell. 

Consider the momentum equation in the x-direction discretization at the finite 

differences cell, Figure 2. 

 

Figure 2: Discretization of the momentum equation in x-direction. 

The discretization at the point 𝑖 + 1 2 , 𝑗 for the advection and pressure terms are 

done using second order central difference. 
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 𝜕𝐻

𝜕𝑥
 
𝑖+1 2 ,𝑗

≈
𝐻𝑖+1,𝑗 − 𝐻𝑖,𝑗

∆𝑥
 (24) 

 𝜕

𝜕𝑥
 𝑢 2  

𝑖+1 2 ,𝑗
≈

𝑢 2
𝑖+1,𝑗 − 𝑢 2

𝑖,𝑗

∆𝑥
 (25) 

 𝜕

𝜕𝑦
 𝑢𝑣      

𝑖+1 2 ,𝑗

≈
 𝑢𝑣     𝑖+1 2,𝑗 +1 2 −  𝑢𝑣     𝑖+1 2,𝑗 −1 2 

∆𝑦
 (26) 

The terms 𝑢 2
𝑖+1,𝑗 , 𝑢 

2
𝑖,𝑗 ,  𝑢𝑣     𝑖+1 2,𝑗 +1 2  and  𝑢𝑣     𝑖+1 2,𝑗 −1 2  in Eq. (25) and (26) are 

not defined on the grid, and are obtained by linear interpolation of the values of 𝑢  

and 𝑣  located at the cell faces. The value of 𝐻 in Eq. (24) is given by the sum of the 

deposit thickness, 𝑑, the 𝑧 coordinate of the surface and the flow thickness, 𝑕. 

The values of the velocity 𝑣  and the flow thickness 𝑕 also are not defined at the 

point 𝑖 + 1 2 , 𝑗 in the last term of the Eq. (22). Then, the velocity 𝑣  at this point is 

given by the average of the velocities 𝑣  at the adjacents cell faces. 

 𝑣  𝑖+1 2 ,𝑗 ≈
𝑣 𝑖,𝑗−1/2 + 𝑣 𝑖+1,𝑗−1/2 + 𝑣 𝑖,𝑗+1/2 + 𝑣 𝑖+1,𝑗+1/2

4
 (27) 

Finally, the value of the flow thickness 𝑕 at the point 𝑖 + 1 2 , 𝑗 is obtained by the 

average of the values located at the centre of the adjacent cell. 

 𝑕 𝑖+1 2 ,𝑗 ≈
𝑕𝑖+1,𝑗 + 𝑕𝑖,𝑗

2
 (28) 

Analogously, the discretization of the momentum equation in y-direction, Eq. (23), 

at the point 𝑖, 𝑗 + 1 2  is given according to the points showed in the Figure 3. 

 

Figure 3: Discretization of the momentum equation in y-direction. 
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As mentioned before for the momentum equation in x-direction, the terms 𝑣 2𝑖,𝑗+1, 

𝑣 2𝑖,𝑗 ,  𝑢𝑣     𝑖+1 2,𝑗 +1 2  and  𝑢𝑣     𝑖−1 2,𝑗 +1 2  in Eq. (30) and (31) are also not defined on the 

grid, and are obtained by linear interpolation of the values of 𝑢  and 𝑣  located at the 

cell faces. 

 𝜕𝐻

𝜕𝑦
 
𝑖,𝑗+1 2 

≈
𝐻𝑖,𝑗+1 − 𝐻𝑖,𝑗

∆𝑦
 (29) 

 𝜕

𝜕𝑦
 𝑣 2  

𝑖,𝑗+1 2 

≈
𝑣 2𝑖,𝑗+1 − 𝑣 2𝑖,𝑗

∆𝑦
 (30) 

 𝜕

𝜕𝑥
 𝑢𝑣      

𝑖,𝑗+1 2 
≈

 𝑢𝑣     𝑖+1 2,𝑗 +1 2 −  𝑢𝑣     𝑖−1 2,𝑗 +1 2 

∆𝑥
 (31) 

The value of 𝐻 in Eq. (29) is given by the sum of the deposit thickness, 𝑑, the 𝑧 

coordinate of the surface and the flow thickness, 𝑕. The average of velocity 𝑢 , Eq. (23), 

is given by the average of the velocities at the adjacent cell faces. 

 𝑢  𝑖,𝑗+1 2 ≈
𝑢 𝑖−1/2,𝑗 + 𝑢 𝑖+1,𝑗 + 𝑢 𝑖−1/2,𝑗+1 + 𝑢 𝑖+1/2,𝑗+1

4
 (32) 

The flow thickness, 𝑕, is obtained by the average of the adjacents centre of the 

cells grids. See Eq. (33). 

 𝑕 𝑖,𝑗+1 2 ≈
𝑕𝑖,𝑗+1 + 𝑕𝑖,𝑗

2
 (33) 

The continuity equation, Eq. (21), is calculated using upwind scheme. Upwind 

schemes use an solution-sensitive finite difference stencil to numerically simulate 

more properly the direction of propagation of information in a flow field. The upwind 

schemes attempt to discretize hyperbolic partial differential equations by using 

differencing biased in the direction determined by the sign of the characteristic 

speeds (Wikipedia, Patankar, 1980). For example, at the point 𝑖, 𝑗 the continuity 

equation discretization is given according to the points showed in the Figure 4. 
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Figure 4: Discretization of the continuity equation derivatives. 

The first RHS term of the Eq. (21), which represents the derivative of the function 

with respect to 𝑥, is given by: 

 𝜕

𝜕𝑥
 𝑕𝑢   

𝑖,𝑗
≈

𝑕𝑑𝑢 − 𝑕𝑒𝑢 

∆𝑥
 (34) 

where: 

𝑕𝑑 =  
𝑕𝑖,𝑗 , 𝑢 𝑖−1/2,𝑗 < 0

𝑕𝑖−1,𝑗 , 𝑢 𝑖−1/2,𝑗 ≥ 0
  (35) 

𝑕𝑒 =  
𝑕𝑖+1,𝑗 , 𝑢 𝑖+1/2,𝑗 < 0

𝑕𝑖,𝑗 , 𝑢 𝑖+1/2,𝑗 ≥ 0
  (36) 

And the second RHS term, which represents the derivative of the function with 

respect to 𝑦, is given by: 

 𝜕

𝜕𝑦
 𝑕𝑣   

𝑖,𝑗

≈
𝑕𝑡𝑣 − 𝑕𝑏𝑣 

∆𝑦
 (37) 

where: 

𝑕𝑡 =  
𝑕𝑖,𝑗+1, 𝑣 𝑖 ,𝑗+1/2 < 0

𝑕𝑖,𝑗 , 𝑣 𝑖 ,𝑗+1/2 ≥ 0
  (38) 

𝑕𝑏 =  
𝑕𝑖,𝑗 , 𝑣 𝑖,𝑗−1/2 < 0

𝑕𝑖,𝑗−1, 𝑣 𝑖,𝑗−1/2 ≥ 0
  (39) 

The time discretization of the momentum equations is based on the explicit Euler 

method, where all terms involving the velocity are discretized in time 𝑛. Then the 
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term involving the flow thickness 𝑕 is discretized in time 𝑛 + 1. Thus, after the 

calculation of the velocities 𝑢 𝑛+1 and 𝑣𝑛+1, all the variables have been advanced in 

time. 

The equations are easily calculated in time 𝑛 using explicit methods. However, 

these methods present some stability restrictions, which limit the range of values that 

can be used for the ∆𝑡. On the other hand, implicit discretizations provide a set of 

equations which must be solved together thereby consuming more processing power 

to solve them. Therefore, the time discretization of the continuity equation, Eq. (21), 

at the point 𝑖, 𝑗 of the grid cell is given by: 

𝑕𝑖,𝑗
𝑛+1 − 𝑕𝑖,𝑗

𝑛

∆𝑡
≈ − 

𝑕𝑑𝑢 − 𝑕𝑒𝑢 

∆𝑥
+
𝑕𝑡𝑣 − 𝑕𝑏𝑣 

∆𝑦
 −

𝑠𝑘
𝑐𝑘  

 (40) 

The time discretization of the momentum equations in the directions of x and y at 

the face of the grid cell 𝑖, 𝑗, are obtained by the Eq. (41) and (42), respectively. 

𝑢 𝑖+1/2,𝑗
𝑛+1 − 𝑢 𝑖+1/2,𝑗

𝑛

∆𝑡

≈ −
∆𝜌𝑔

𝜌

𝐻𝑖+1,𝑗 − 𝐻𝑖,𝑗

∆𝑥

−  
𝑢 2

𝑖+1,𝑗 − 𝑢 2
𝑖,𝑗

∆𝑥
+
 𝑢𝑣     𝑖+1 2,𝑗 +1 2 −  𝑢𝑣     𝑖+1 2,𝑗 −1 2 

∆𝑦
 

− 𝑢 𝑖+1/2,𝑗
𝑛   𝑢 𝑖+1/2,𝑗

𝑛  
2

+  𝑣 𝑖+1/2,𝑗
𝑛  

2
 

𝑘

𝑏𝑙𝑛  
𝑕𝑖+1/2,𝑗𝑓

𝑧0
 

 

2

 

(41) 

𝑣 𝑖,𝑗+1/2
𝑛+1 − 𝑣 𝑖,𝑗+1/2

𝑛

∆𝑡

≈
∆𝜌𝑔

𝜌

𝐻𝑖,𝑗+1 − 𝐻𝑖,𝑗

∆𝑦

−  
𝑣 2𝑖,𝑗+1 − 𝑣 2𝑖,𝑗

∆𝑦
+
 𝑢𝑣     𝑖+1 2,𝑗 +1 2 −  𝑢𝑣     𝑖−1 2,𝑗 +1 2 

∆𝑥
 

− 𝑣 𝑖,𝑗+1/2
𝑛   𝑢 𝑖,𝑗+1/2

𝑛  
2

+  𝑣 𝑖,𝑗+1/2
𝑛  

2
 

𝑘

𝑏𝑙𝑛  
𝑕𝑖,𝑗+1/2𝑓

𝑧0
 

 

2

 

(42) 

3.2 Stability 

The numerical method stability is obtained using the Courant-Friedreichs-Lewy 

condition, also known as CFL condition. This condition represents the relation 

between the size of the grid cell, the time step and the inflow velocity, and it ensures 

the solution stability of the explicit methods. 

This condition declares that the numeric wave should propagate as fast as the 
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physic wave, which means that the numeric wave velocity ∆𝑥 ∆𝑡  must be at least as 

fast as the physic wave velocity  𝑢 , i.e. ∆𝑥 ∆𝑡 >  𝑢  (Osher & Fedkiw, 2002). Thus, the 

CFL condition can be written as 

∆𝑡 <
∆𝑥

𝑚𝑎𝑥  𝑢  
 (43) 

The term 𝑚𝑎𝑥  𝑢   is given by the maximum value of the grid velocity. The Eq. 

(43) is usually applied assuming a general number for the CFL constant. 

∆𝑡  
𝑚𝑎𝑥  𝑢  

∆𝑥
 =∝ (44) 

where 0 <∝< 1. According to Osher & Fedkiw (2002), a good choice is ∝= 0.9 or a 

more conservative choice of ∝= 0,5. The CFL condition can also be written as  

∆𝑡  
𝑚𝑎𝑥  𝑉    

𝑚𝑖𝑛 ∆𝑥, ∆𝑦, ∆𝑧 
 =∝ (45) 

4 OVERVIEW OF THE SOFTWARE 

All presented equations were implemented into the software program, Turb3D. It 

can be used to simulate the evolution and deposition of low density turbidity currents 

using multi grain-sizes. This application has a user-friendly GUI for data entry and 

result visualizations, Figure 5. 

 

Figure 5: Turb3D application. 

Turb3D require some inputs in order to start a new simulation. The first step is to 

define an initial surface. It can be done by pressing the “new” button located at the 

toolbar of the application. A new project dialog will then be showed, see Figure 6. In 

this dialog a file containing the x,y,z coordinates of the surface is imported. This file 

consists of three columns of data. The first column represents the x coordinate of the 

surface, the second represents the y coordinate and the third represents de z 

coordinate. The size, length and width of the grid are calculated automatically by the 
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program based on the coordinates information which are read from file. 

 

Figure 6: New project dialog. 

Then, it is necessary to define the inflow channel by pressing the “channel” button, 

Figure 7. In this dialog the height of the channel is specified along with two points 

representing its initial and final coordinates. 

 

Figure 7: Channel dialog. 

The current parameters are specified by pressing the “current” button. Then, the 

current dialog will be displayed as shown in Figure 8. 

 

Figure 8: Current dialog. 

Finally, the sediment parameter is specified as shown in Figure 9. For each grain 

size it is necessary to specify the diameter of the grain and the concentration of the 

grain in the current. For additional information the grain distribution graph is plotted. 
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Figure 9: Sediment dialog. 

After these steps, the simulation can be processed by pressing the “run” button. 

The evolution and deposition of the simulation are rendered in real-time. 

4.1 Examples 

The numerical model proposed must be validated by experiments in order to 

check if the simplifications and assumptions used by this work are valid. In other 

words, it is fundamental to verify whether the results obtained by using the 

application can produce a good prediction of the evolution and deposition of the 

current. Then, two examples of experiments that can be performed in laboratories are 

simulated using Turb3D. 

Simulations are ran using single-grain-size suspensions at 100 and 150 microns 

with concentration of 2% by volume, grain density of 2600 kg/m3 and a 40 l/min 

inflow. The initial surface file used was created considering a tank with dimensions of 

10 m in length, 5 m in width and a 4 degree slope, which generates a file containing 

55 nodes in x-direction and 181 nodes in y-direction for a grid size of 0.05 m. The CFL 

constant used was 0.5. 

Figure 10 shows the 3D contour plot of the surface deposit generated by the 

simulation using single-grain-size at 100 microns. The red colour represents the 

maximum values and the blue colour represents the minimum values. For this 

example the maximum deposit thickness archived was 26.60 mm. 

Mecánica Computacional Vol XXIX, págs. 8633-8649 (2010) 8647

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

Figure 10: Single-grain-size at 100 microns simulation. 

The 3D contour plot of the surface deposit generated by the simulation using 

single-grain-size at 150 microns is shown in Figure 11. Again, the red colour 

represents the maximum values and the blue colour represents the minimum values. 

For this example the maximum deposit thickness archived was 55.90 mm. 

 

Figure 11: Single-grain-size at 150 microns simulation. 

5 CONCLUSIONS 

The main objectives of this work are to propose a consistent numerical model for 

making predictions of the sedimentation processes in stratigraphic modelling which 

requires less CPU resources, and to develop a 3D graphical application for turbidity 

currents simulation. Furthermore, its important to note that the proposed numerical 
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method concentrates only on the simulation of the depositional process and not on 

the complete turbulent flow. 

The numerical model proposed was satisfactory in terms of computational 

resources, it was faster than complex models which can consume days of continuous 

processing  power to solve a single model. The examples presented were ran on a 

computer with a 2.50GHz core duo processor and 2GB of RAM. Each example took 

about 35 seconds to complete the simulation process. 

Despite the good computational performance achieved by using this approach, 

experiments should be done in order to validate the proposed numerical method 

presented in this work. 
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