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Abstract. When a wellbore is drilled, the equilibrium in-situ stress is changed. In order to support the 
stress relief induced by the drilling and to prevent hydrocarbon influx into the cavity, the borehole is 
filled with a fluid. These operations create new stresses configurations.  A main point in wellbore 
projects is the definition of the drilling fluid density to keep the wellbore stable.  The upper bound to 
the fluid density is the collapse stress that is the limit to shearing. The lower bound is the fracture 
stress that limits the tensile failure.  The fluid densities between these limits is named safe mud 
weight window. Conventional wellbore stability analysis usually considers the effects of shear or 
tensile failure.  Recent physical models pointed the possibility of compactive volumetric failure 
around boreholes. Other numerical studies showed that this type of failure may be attained by stress 
level compatible with reservoirs in under production in high porosity rocks. This paper applies 
numerical modeling by finite element method with ANSYS® software to study stability of oil wells.  It 
simulates the compactive behavior of rocks using a cap plasticity model.  The cap model data was 
collected from literature.  Parametric studies were conducted in horizontal wellbores to evaluate the 
conditions of volumetric failure to occur.  The study pointed the tangential stress concentration as a 
critical condition for volumetric failure around boreholes. 
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1 INTRODUCTION 

Hydrocarbon exploitation in marine coast of Brazil requires new technologies for its 
economic feasibility.  Pre-Salt reserves are located in Santos Basin at 290 km from the coast. 
The water depth is about 1900 to 2400 meters and the reservoirs are located at 5000 meters 
underground, below a salt layer that may reach 2000 meters. The exploitation of these reserves 
require unconventional well technologies to make it feasible from an economic point of view. 

The use of directional and horizontal wells has been increased in the last years, following 
the advances in the techniques on drilling and completing these wells.  Horizontal wells 
present advantages in relation to vertical wells, as it has a bigger area exposed to flow.  In 
offshore environments it is an additional advantage, since locating the platform is critical due 
to sea conditions.  

These unconventional environments and well geometries led to the problem of wellbore 
stability analysis and sand prediction.  This kind of problem has a big impact on wellbore 
costs.  

Prediction models for wellbore stability analysis are based on rock mechanics models.  The 
first model based on rock mechanics for this kind of problem was proposed by Bradley 
(1979).  Several models based on continuous mechanics were developed since then.  The 
assumptions of these models vary from simple elastic models to more elaborated elastic-
plastic models.  Morita (2004) proposed an analytical procedure based on elasticity to evaluate 
the stress state around the borehole. The stress level is compared to a compression or tensile 
failure criteria to evaluate stability. The most used failure criteria are Drucker-Prager, Mohr-
Coulomb, modified Lade criterion (Ewy, 1999) or Hoek and Brown (Zhang and Zhu, 2007). 
Tensile criterion usually consists in the comparison of the minimum effective stress to the 
tensile strength of the rock.   

These models are considered very conservative, since attaining the limit stress in a point 
around the borehole does not imply in instability. Numerical methods based on plasticity 
theory, such as finite difference or finite elements methods, present the advantage of showing 
the extent of the damaged region, leading to a better indicator of instability. These models 
usually consider two kinds of failure around the wellbore: shear failure and tensile failure.  
They became more complex, as they incorporated other physics associated to instability: 
poroelastic models (Detournay and Cheng, 1993), thermoporoelastic (Wang and Desseault, 
2003), chemo-thermoporoelastic (Yu et al, 2001) and its versions associated to plasticity 
theory.  Advances in elastic-plastic models to improve stability indicators were developed, 
such as bifurcation theory and localization of deformation along shear bands. The rock 
microstructure has been incorporated through the Cosserat continuum model (Papanastasiou 
and Vardoulakis, 1988, 1989) or gradient elastoplasticity (Zervos et al., 2001), which uses 
terms of strain gradient as state variable.  

The models described above depend on a realistic constitutive model that must be able to 
reproduce the several failure modes around boreholes. Experimental studies show that rocks 
under high confining pressures can reach the hydrostatic stress strength.  Once this limit is 
attained, severe compaction of porous media occur, leading to porosity and permeability 
reduction.  This work names this kind of failure as volumetric failure.  

Coelho et al. (2005) presented a numerical study on a wellbore drilled in a reservoir from 
Brazilian coast and showed that volumetric failure can be reached under those reservoir 
conditions. These results are compatible with experimental studies. Haimson (2007) identified 
a breakout pattern for porous rocks, distinct of those identified for rocks of lower porosity. 
Porous rocks presented a slit mode failure, surrounded by a highly compacted material, 
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suggesting an “empty” compaction band. 
This work presents a study on the conditions for volumetric failure occurrence around 

boreholes.  It uses a constitutive model that is able to predict shear failure, tensile failure and 
compaction failure around boreholes.  The data used in these analyses were taken from 
literature on porous rocks. Parameters that impact on wellbore stability were evaluated.  

The numerical modeling of wellbore stability analysis is made considering small strain and 
small displacement finite element method and classical associated plasticity theory. The 
software used was ANSYS® and the mesh is based on linear triangles. 

The well configuration studied was a horizontal wellbore under plane strain conditions. To 
take advantage of the problem symmetry, the mesh consisted of ¼ of the geometry. The rock 
is treated as an isotropic and homogeneous continuum medium. The constitutive model used 
was the cap model as implemented by ANSYS®.  

2 FAILURE MODES AROUND BOREHOLES 

Wellbore stability during drilling consists on evaluating the drilling fluid weight to mantain 
the borehole wall integrity. It means that pressure on the boreface must be less than formation 
fracture pressure and more than the collapse pressure to avoid fluid losses or borehole 
breakouts. These phenomena are associated to tensile failure (figure 1a) or shear failure 
(figure 1b), respectively. 

Haimson and Song (1998) described two distinct breakout patterns in Berea sandstone 
under drilling in true triaxial laboratory conditions.  For lower porosity (17%), the breakout 
showed dog-ear geometry (figure 1b). For a higher porosity (22.5%), slit-mode breakout 
(figure 1c) was obtained during the drilling.  Haimson and Lee (2004) observed that these 
distinct modes of failure are dependent not only on porosity, but also on sandstone 
composition. Haimson´s work associated these fracture-like breakouts with empty compaction 
bands. This failure mode is not clear under field conditions. 

Triaxial tests on rocks under higher confining pressures are described by Baud et al. (2004, 
2006).  They describe the volumetric behavior of rocks based in the stress-strain curve as 
shown in figure 2 for Tavel limestone. In this figure, compression is positive. At lower 
confining stress, the volumetric strain is dilative until point C’ of mean stress- volumetric 
strain curve (figure 2b). At a confining stress of 100 MPa, the rock first experiences 
compaction and then dilates. Under higher confining pressures the rock shows a compaction 
behavior. These characteristic points are presented in figure 3 in the differential stress-mean 
stress space for Indiana limestone.  It can be seen the contour of a cap that limits the strength 
to rock hydrostatic compression. This graphic delimits different volumetric strain behavior: at 
lower confining pressures, dilation occurs. This region is followed by a brittle-ductile 
transition, and then the compaction cap is attained as confining pressure increases.  
Undergoing further compression, the cap expands in the stress space, until the material is so 
compacted that it returns to a dilation behavior. The micromechanisms associated to these 
failure modes are presented in figure 4.  In the dilation regime, rock fails by the formation of a 
shear band; in the brittle-ductile transition, there is a mixed mode of deformation between 
dilatation and compaction. The cap delimits distinct mechanisms: at higher deviator stresses, 
the so-called shear enhanced compaction occurs, by the development of a compaction band. 
Close to the first stress invariant axis, the dominant deformation mechanism is pore collapse, 
which corresponds to a more diffuse deformation pattern. 
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(a) (b) (c) 

 
 Figure 1: Failure modes around wellbores (a) tensile failure (hydraulic fracturing); (b) dog-ear shape breakout; 

(c) fracture-like breakout.  
 
The most common elastic-plastic constitutive models used in wellbore stability analysis are 

shear failure models such as Drucker-Prager and Mohr-Coulomb, associated to some tensile 
failure criteria. These models are representative of lower porosity rock behavior.  The 
compaction mechanisms can be predicted by cap models (Fjaer et al., 2008). 
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Figure 2: Triaxial tests for Tavel limestone (a)  differential stress-axial strain; (b) Mean stress-volumetric strain 

(from Vajdova et al, 2004) 
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Figure 3: Triaxial tests for Indiana limestone (a)  differential stress-axial strain; (b) Mean stress-volumetric strain 

(from Vajdova et al, 2004) 

M. ZAHN, L. CARVALHO COELHO, L. LANDAU, J.L. DRUMMOND ALVES8840

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

 
Figure 4: Micromechanisms associated to distinct failure modes  

(from: Baud et al, 2008) 

3 STRESS STATE AROUND BOREHOLES 

An underground rock mass is in equilibrium condition under compressive in-situ stress 
state, which can be decomposed in relation to a Cartesian coordinates system as vertical stress, 
parallel to the depth direction and two horizontal stresses: a major horizontal stress ( )HS  and 
a minor horizontal stress ( )hS . Changes in this stresses are introduced by the drilling and 
production operations. 

The governing poroelastic equations for a homogeneous isotropic media, considering the 
absence of body forces and fluid sources, are given by (Wang, 2000): 

 ijijijkkij pG δαεδλεσ Δ−+=Δ 2  (1) 

  ( )kkMp αες −=Δ  (2) 

 0, =jijσ  (3) 

 0, =+ iiq
dt
dς  (4) 

 ii pq ,κ−=  (5) 
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Where tensile stresses are positive, ijσΔ  is the total stress change tensor, ijε , the solid 

strain tensor, Δp is the pore pressure differential, ς is the variation of fluid content, kkε  is the 
volumetric strain, λ and G are the Lamé´s parameter for the porous rock, α is the Biot’s 
effective stress coefficient, M, the Biot modulus and ijδ  is Kronecker delta.  

The parameters that govern balance laws are: 

 
μ

κ k
=  (6) 

κ is the mobility coefficient, k is the permeability coefficient and μ is the fluid viscosity.   
Applying the constitutive relations to the equilibrium condition and expressing the 

deformation term as displacement derivative, the governing equation in terms of 
displacements is given by: 
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Under steady state conditions, the the equation governing the pore pressure field uncouples 
(Detournay and Cheng, 1993): 

 αεMp −=Δ  (8) 

As the well is drilled and material is removed, a stress relief occurs.  If the cavity is not 
fulfilled with fluid, the equilibrium is attained by tangential stress concentration.  The drilling 
fluid introduces a radial pressure against the borehole wall. This pressure acts as a support to 
the boreface and relieves the generated tangential stress. 

The stress state around the borehole may vary according to its radius and inclination angle. 
This variation depends on many factors as the wellbore direction related to in-situ stresses, the 
in-situ stresses magnitude, the rheology of the rocks and wellbore geometry. 

As one moves from the borehole into the formation, the stresses tend to reach the in-situ 
stresses.  According to Rocha and Azevedo (2009), the usual stress configuration around the 
well is: tangential stress is the major principal stress; axial stress is the intermediate stress 
although in lower depths it may become the major stress and radial stress is the minor 
principal stress. 

4 ELASTIC PLASTIC MODEL 

 
Figure 5: Cap model plasticity yield surface; tensile stress is positive (from  Release 11.0 Documentation for 

ANSYS) 
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The analyses were made using ANSYS® cap model (figure 5). The formulation of this 

model is described in Theory Reference for Ansys and Ansys Workbench from Ansys 
documentation and is briefly summarized here. 

It consists on a shear failure surface associated to an elliptical cap for compressive 
volumetric failure and a tensile cap, described by the following equation: 

 
),(),(),,(),(

),,,,(),,(
01

2
010012

2
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stc−ΨΓ=
=

 (9)  

where : 
Γ :   Lode’s angle function,  

cY :  compressive cap function 

tY :  tensile cap function  

sY :  shear failure surface  
 

 
Figure 6: Shear yield function (from  Release 11.0 Documentation for ANSYS) 

 
The shear failure surface (figure 6) is described by: 
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In the above expressions, 1I  is the first stress invariant, oσ  is a constant associated to 
cohesion, β,A  and α are constants obtained from experiments, cR  and tR  is the ratio 
between the main axis in 1I   direction and main axis in 2J  direction of the compressive cap 
and tensile cap, respectively. The parameter oK  is the value of 1I  at intersection point 
between the shear failure surface and the elliptical cap.  Function H is the Heaviside function, 
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which assumes the values: 
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The parameters 0K  and 0X  are associated by: 

 ),( 0000 σKYRXK sc+=  (14)  

The function cY  is an elliptical function associated to Heaviside function, as show figure 7(a).  

 
(a) 

 
(b) 

Figure 7: (a) Elliptical compressive cap; (b) Elliptical tensile cap (from  Release 11.0 Documentation for 
ANSYS) 

 
The tensile cap (figure 7(b) is similar to the compressive cap, but it is fixed in the stress 

space and depends only on the first stress invariant and the cohesive term: 
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The influence of the third deviator stress invariant is introduced by the function of Lode’s 
angle β  and the triaxial compressive strength:  

 ))31(131(
2
1),( βββ sensen −

Ψ
++=ΨΓ  (16)  

Lode’s angle is given by: 
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These relations are shown in figure 8: 
 

  
Figure 8: Failure surface in deviatoric plane (from  Release 11.0 Documentation for ANSYS) 
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This work assumes a perfect elastic-plastic shear surface and a isotropic strain hardening 

compressive cap, defined by: 

 }1{ )))(((
1

0021 −= −−− XiXXiXDDcp
v

cc
eWε  (18)  

The parameter iX  represents actual position of cap parameter X, cW1  is the maximum 

allowed plastic strain, cD1  and cD2  are experimental adjustment parameters for the hardening 
function. 

5 MODELING PROCEDURE 

Two loading steps were considered: the first corresponds to drilling phase and the second 
to steady state production phase. 

Stability during drilling was modeled considering no fluid flow between the wellbore and 
the rock.  The values of far-field effective stresses were applied to the boundaries of the 
model, as well as a pressure on the cavity, which is equivalent to the differential fluid pressure 
between the fluid in the cavity and reservoir pressure. 

To simulate stability during production, the drawdown pressure was applied on the cavity 
face and poroelastic effects were taken into account, induced by fluid flow from the reservoir 
to the wellbore.  In this work, it was assumed that one-phase fluid saturates porous media.  
The model assumes that at the outer boundary the pore pressure remains unaltered.  This 
drainage radius may not be realistic, but it was assumed reasonable for the purpose of 
evaluating the stresses in the vicinity of the wellbore. It must be taken from a qualitative point 
of view. 

To simulate these effects with ANSYS, the approach was to explore the analogy between 
poroelasticity and thermoelasticity. 

5.1 Thermoelasticity and poroelasticity analogy 

Fjaer et al. (2008) showed the analogy between poroelastic stresses, described by equation 
1 (rewritten below) and thermoelastic stresses (equation 19): 

 ijijijkkfrij pG δαεδελσ Δ++= 2  

 ijTijijkkij TKG δαεδλεσ Δ++= 32  (19) 

The term that couples the thermal/pore pressure field to the stress analysis is the parameter 
Tα  (thermal stress expansion coefficient) or α  (Biot´s effective stress coefficient), 

respectively.  Manipulating this term, poroelastic stress may be obtained by a thermoelastic 
analysis by making: 

 
KT 3
αα =  (20)  

where 1/K is the rock compressibility 
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5.2 Procedure validation 

To check the procedure, the hollow poroelastic cylinder was modeled. The geometric 
model consists on a cylinder with a 2 meters internal radius and 10 meters external radius, 
with an internal pressure of 15 MPa. The mesh takes advantage of symmetry and represents ¼ 
of the geometry. It has 4753 nodes and 4608 linear isoparametric elements. Figure 9 shows de 
mesh. A poroelastic analysis was done by analogy with thermoelastic analysis.  The elastic 
parameters used were an elastic modulus of 1200 MPa and Poisson ratio of 0.2.  The thermal 
analysis was coupled to the structural analysis through the compressibility of the rock 
analogous to the thermal expansion coefficient following equation 20. The values adopted for 
Biot effective stress coefficient was 1 and 0005.0=tα . 

Pore pressure field obtained through this analysis is presented in figure 10. It is compared 
to the analytical solution described by Wang (2000), and is shown in figure 11. It presents a 
good agreement between both analysis. The differences in the stresses in the vicinities of the 
wellbore may be attributed to the fact that in finite element analysis they are evaluated at the 
integration point rather then the nodal point at the boreface. 
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Figure 9: Hollow cylinder mesh 
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Figure 10:Pore pressure field  

 

M. ZAHN, L. CARVALHO COELHO, L. LANDAU, J.L. DRUMMOND ALVES8846

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Stresses around a borehole during production
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Figure 11: Comparison between analytical and numerical solution for stress states in the poroelastic hollow 

cylinder (compression is positive)  

6 PARAMETRIC STUDY OF A HORIZONTAL WELLBORE 

6.1 Basic model 

The basic model used for comparison is a open-hole horizontal wellbore, 8.5” diameter, 
drilled in a carbonate from Campos Basin. The data was obtained from Coelho et al (2006). It 
is presented in table 1. 

Horizontal wellbore geometry takes advantage of the symmetry of the problem. The 
wellbore is represented by ¼ of the circle and the external boundary is 50 meters from the 
wellbore axis. The numerical model consists in a mesh with 1671 nodes and 3088 elements 
(figure 12). The in-situ stress state is represented by the introduction of a distributed vertical 
loading on the top of external boundary, which value is equivalent to the vertical in-situ stress 
and a lateral loading on the external boundary which value is the value of in-situ horizontal 
stress. The in-situ stress in the axial direction is simulated by setting an initial stress state 
equivalent to its value The pressure on the wellbore wall is represented by a pressure on the 
bore face. 
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Figure 12: Finite element mesh  

 
It is assumed that the horizontal in-situ stresses are isotropic.  Loading condition used in 

this study assumes two load steps. The first one is the drilling phase, when the far-field in-situ 
stresses are applied to the boundaries as described above.  A pressure at the borehole 
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equivalent to the difference between the fluid in the formation and the fluid in the cavity is set. 
The second load step assumes that the fluid flows into the borehole and poroelastic effects 

are then simulated with the thermoelastic analogy procedure described in 5.2.  The differential 
pore pressure stress at the boreface is considered by applying a tensile stress at this face 
equivalent to this differential. 

Table 2 presents the reservoir data used in this work. 
 

Parameter Value 
Elastic modulus (MPa) 1200. 

Poisson ratio 0.2 
oσ  (MPa) 4.92 
α 0.589707 

Xo (MPa) -108. 
Rc 2.2 
Rt 1.0 
W 0.05 
β 1.0 
A 0.0 

cD1  0.012 
cD2  0.0 

Table 1: Mechanical properties for carbonate rock for Campos basin. 

Vertical effective 
in-situ stress 

(MPa) 

Horizontal 
effective in-situ 

stress 
(MPa) 

Static 
pressure in 
reservoir  
(MPa) 

32.0 8.0 32 
Table 2: Reservoir data. 

To understand the effects of volumetric failure around the wellbore, analysis considering 
only shear failure in the compressive domain and analysis with the cap model were made.  An 
evaluation of the stresses conditions on volumetric failure around the wellbore was done by 
analyses with parametric changes for different in-situ horizontal stress vs vertical stress ratio 
and different values of pressure on the borehole wall. Finally, a poroelastic-plastic analysis to 
simulate production phase under steady-state flow conditions is presented.  

6.2 Shear failure analysis 

Shear failure analysis was conducted by using the same failure surface setting 
10000 =X MPa, such that cap would not be attained under the loading conditions used in this 

work. Figure 13 shows the results in terms of principal stresses and plastic strain intensity for 
drilling phase and figure 14 presents these results for production phase. Failure occurred in 
tensile domain at the top of the wellbore during drilling, and the failed region increases during 
production. Production produces a tensile region at the top of the well, and a high magnitude 
concentration of tangential stress in X symmetry axis, but no failure is seen in this region. 
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Figure 13: Results for shear failure analysis for drilling phase  
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(d) Plastic strain intensity  

Figure 14: Results for steady-state production phase  

Mecánica Computacional Vol XXIX, págs. 8837-8858 (2010) 8849

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



6.3 In-situ stress ratio variation 

The impact of the in-situ stress ratio was evaluated by changing the horizontal in-situ stress 
as presented in table 3. 

 
In-situ vertical 

stress  
(MPa) 

In-situ horizontal 
stress  
(MPa) 

In-situ stress 
ratio 

(MPa) 
32 6,4 0,2 
32 9 0,3 
32 12,8 0,4 
32 16 0,5 

Table 3 In-situ stress changes. 

A summary of the results are presented in the graphic of figure 15. 
The contours of principal sresses are presented in figure 16. Mean stress and plastic strain 

intensity are presented in figure 17. 
The higher the horizontal stress, the higher is the confinement around the borehole. Since 

the cap delimits the confining pressure, it is intuitive to believe that this condition would be 
more critical to volumetric failure. However, the results show that the critical condition is the 
higher difference between the in-situ stresses. As the radial stress is prescribed, the effect of 
the far-field confinement is to relax the tangential stress and reduce plastic strain. It suggests 
that the failure occurs in the domain described previously as “shear enhanced compaction”. 
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Figura 15: Tangential stress x far-filed horizontal stress 
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Figura 16:  Principal stresses for in-situ horizontal stress variation 
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Figura 17:  Mean stress and plastic strain intensity for in-situ horizontal stress variation  
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6.4 Effect of borehole pressure 

The effect of borehole pressure was evaluated by applying different values of pressure on 
the cavity: -2, 0, 2 e 4 MPa. Figure 18 shows the graphic major principal stress vs pressure on 
the boreface. Figures 19 and 20 present the contours of principal stresses, mean stresses and 
plastic strain intensity. 

It can be seen that the reduction on the cavity pressure concentrates tangential stress. This 
increases the volumetric plastic strain at the borehole wall.  As before, the concentration on 
the tangential stresses is associated to the failure around the well. So, the higher the difference 
between the principal stresses is the most critical condition, where it seems to occur shear 
enhanced compaction. 
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Figure 18: Tangential stress vs cavity pressure 

6.5 Production phase 

A numerical study on production phase was conducted assuming that the pore pressure on 
the outer boundaries is equal to the static pressure. At the borehole wall it was assumed a 
drawdown value of 10 MPa differential pressure. 

The changes in pore fluid pressure were evaluated through the poroelastic stresses 
calculated by analogy with thermoelastic stresses. A pore pressure field was evaluated by 
thermal steady state analysis. This field was read by the thermostructural analysis and coupled 
through a compressibility parameter analogous to the thermal expansion coefficient, as 
described by the equation 20. 

In this analysis, the pattern case used in previous models showed instability because both 
tensile failure and compaction failure. The model did not converge.  It was necessary to major 
the tensile strength by setting the tensile cap parameter R as 2.0. The maximum allowed 
plastic compressive strain was also enlarged to 0.5. 

Figure 21 presents the results for a steady-state analysis considering poroelastic effects, 
simulating production. It can be seen that production induces radial tensile stresses at the top 
of the wellbore and compressive stress concentration in the direction normal to the higher in-
situ principal stress.  The compressive stress concentration at this region associated to tensile 
failure at the top lead to a large damaged region by volumetric failure.  
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Figure 19: Principal stresses for pressure changes in the borehole 
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Figure 20: Mean stress and plastic strain intensity pressure changes in the borehole 
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(d) Tangential stress  
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(e) Mean stress 
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(f) Plastic strain intensity 
Figure 21: Results for steady-state production phase 

7 CONCLUSIONS 

The modeling procedure used was able to capture the volumetric compressive behavior of 
the rock around the borehole.  Unlike shear models, as Drucker-Prager or Mohr-Coulomb, 
which have its parameters well defined and available data for correlation in literature. Cap 
models present different formulations.  To use it, it is necessary to work directly on 
experimental data, once different formulations lead to different parameters.  This is the major 
drawback of this model. 

The analyses presented herein pointed that the tangential stress concentration is critical 
condition for volumetric failure in horizontal wellbores.  During drilling, this tangential stress 
concentration is higher under high differential in-situ stresses and lower pressure at the 
boreface.  This suggests that the dominant mechanism is shear enhanced compaction. During 
production, both differential pore-pressure at the bore face and poroelastic effects increase 
tangential stress, increasing the plastic zone. 

Other wellbore configurations and geometries, like directional wellbores or anisotropic 
stress states will be evaluated to a better understanding or volumetric failure.  The role of rock 
anisotropy should be also investigated. 

Elastic-plastic cap plasticity models are able to define a damaged zone. The size of plastic 
zone that induce borehole instability is a matter of research. In the field, this mechanism is not 
completely understood. It is known that plastic compaction disaggregates the material, causing 
debonding and grain breakage. Whether this material will be carried by fluid flow or it will 
produce a compacted region that acts as a barrier to flux should be investigated by more 
refined coupled models.  Localization models, multiscale models or FEM-DEM coupling 
would be helpful in understanding the role of compaction in wellbore instability. 
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