Asociacion Argentina AMCL

de Mecanica Computacional

Mecénica Computacional Vol XXIX, pags. 9107-9124 (articulo completo)
Eduardo Dvorkin, Marcela Goldschmit, Mario Storti (Eds.)
Buenos Aires, Argentina, 15-18 Noviembre 2010

COMPARING TWO WAYS OF INFERRING A DIFFERENTIAL
EQUATION MODEL VIA GRAMMAR-BASED IMMUNE
PROGRAMMING

Heder S. Bernardin@® and Helio J.C. Barbos&

Laboratério Nacional de Computacéo Cientifica,
Av. Getlulio Vargas, 333, 25.651-075, Quitandinha,
Petrépolis—RJ, Brazil

ahedersb@gmail.conttp://www.Incc.br/~hedersb

bhcbm@Incc.br‘nttp://www.In<:c.br/~hcbm

Keywords: artificial immune systems, grammatical evolution, gramivesed immune pro-
gramming, symbolic regression, model inference

Abstract. An ordinary differential equation (ODE) is a mathematicainfi to describe physical or
biological systems composed by time-derivatives of plalgiositions or chemical concentrations as a
function of its current state. Given observed pairs, a eiewmodeling problem is to find the symbolic
expression of a differential equation which mathematjcd#iscribes the concerned phenomenon.

The Grammar-based Immune Programming (GIP) is a method/éiwieg programs in an arbitrary
language by immunological inspiration. A program can be mmater program, a numerical function
in symbolic form, or a candidate design, such as an analegitirGIP can be used to solve symbolic
regression problems in which the objective is to find an aiallyexpression of a function that better fits
a given data set.

At least two ways are available to solve model inference lprab in the case of ordinary differential
equations by means of symbolic regression technigues. i®effie consists in taking numerical deriva-
tives from the given data obtaining a set of approximatioFisen a symbolic regression technique can
be applied to these approximations. Another way is to nurabyiintegrate the ODE corresponding to
the candidate solution and compare the results with therobdelata.

Here, by means of numerical experiments, we compare thivesfserformance of these two ways to
infer models using the GIP method.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

http://www.lncc.br/~hedersb
http://www.lncc.br/~hcbm

9108 H. BERNARDINO, H. BARBOSA

1 INTRODUCTION

Metaheuristics have been applied with success to sevetiahiaption problems. For the
automatic generation of programs, the Genetic Programf@m) paradigm has become very
popular. Smith (198Q 1983 report the first results of the GP technique. The method \&is a
studied by other authors and greatly expande&ya (1992.

The tree structure proposed Bramer(1985 is often used to represent a candidate solu-
tion. That data structure can represent a computer prograramerical function in symbolic
form, or a candidate design, such as an analog circuit. Aeatibg function which translates
a conveniently defined performance index of the candidatgram, function, or design is then
optimized. According ti&koza(1992), “fitness begets structure”, i.e., over a period of tima{ge
erations), fitness induces structure via natural selea@rmhthe effects of gene recombination
and mutation. The reader can find a freely available surveyta®BP inPoli et al.(2008.

There are not many studies in the literature using artifioi@hune systems (AISs) as search
mechanism for this class of problem. An AIS programming psagb inspired by the GP
paradigm can be found ilohnson2003. That method uses a tree-based representation and
was applied to symbolic regression problems (to derive thayécal expression of a func-
tion that better fits a given data set). The Immune Programrfif) technique was proposed
by Musilek et al.(2006 and shown to outperform GP for the considered symbolicesgjon
problems. IP was extended hpu and Musile2009 which have obtained better results than
previously presented in the literature when applied toveval model of disinfection o€ryp-
tosporidium parvumAlso the “elitist Immune ProgrammingCliccazzo et al(2008)], or sim-
ply elP, is inspired by clonal selection and uses the GP machito generate the candidate
solutions. In elP, the best individual of the population @&adhypermuted clone are always kept
in the population. The technique was applied to circuit giesiptimization where it outper-
formed both the standard IP and Koza’s G#®Za et al.(2000]. Finally, the Clonal Selection
Programming (CSP) algorithm, proposed Ggn et al.(2009ha), uses a symbolic string of
fixed length. Fault detection syste@dn et al(20090] as well symbolic regressioiigan et al.
(2009g] problems were used to evaluate and compare the algorititiml®and gene expres-
sion programming (GEPHerreira(2007)].

Grammatical Evolution (GE), proposed Byan et al (1998, is an approach to evolve pro-
grams by means of a user defined grammar. GE uses a Backug-blanrBNF) to express
a grammar which defines the syntax of the language, and ablatength string to represent
the candidate solutions. That work was extende@’iNeill and Ryan(2001) presenting good
results for symbolic regression and integration, and SBatAnt Trail problems. Also, differ-
ent metaheuristics can be found in the literature as itxheamgine: genetic algorithms (GA)
[O’Neill and Ryan(2001)], particle swarm optimization (PSOD[Neill et al. (2004)], differ-
ential evolution (DE) O’Neill and Brabazon(2006], and artificial immune systems (AISs)
[Bernardino and Barboga0090)].

In the AISs field, a co-evolutionary strategy was proposedimarteifio and O’Neill(2005
where a simple GA evolves with the help of an immune inspiredhmd aiming at promot-
ing diversity. The approach was applied to symbolic regoesand multiplexer problems (a
classical GP problem where the objective is to discover ddamoexpression). Another im-
mune approach using GE can be foundMoKinney and Tian(2008 where the grammatical
immunoglobulin hypermutation, an evolutionary operatowhich non-terminals are mutated
to another according to a specified grammar, was proposesgltethnique was applied to the
inference problem of a kinetic model for the oxidative melam of 175-estradiol).

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXIX, pags. 9107-9124 (2010) 9109

Bernardino and Barboga009h 2010 proposed the Grammar-based Immune Programming
(GIP). According to this technique, the candidate solgiare represented as@iNeill and Ryan
(2007 but a new decoding process is performed. The decoding gpuoeereates a tree (based
on the grammar definition) and repairs it (via repair deroratules) when necessary, always
generating valid programs in the evolutionary process. &P applied to symbolic regression
and integration problems, inference of ordinary diffef@r¢quations, and inference of iterated
and discontinuous functions. The results found are bdttar previously found in the literature
for most problems. Also the repair method shown improvegp#réormance also when other
search mechanisms were used, such asBek{ardino and Barbog2010)].

Differently from the symbolic regression problem, when dhgective is to infer an ordinary
differential equation the user must figure out a way to compiae candidate solutions with the
given data set. At least two ways can be thought to solvedklslby means of symbolic regres-
sion techniques, namely: to take the numerical derivatiees the given data or to numerically
integrate the ODE corresponding to the candidate solutiortkis paper, GIP is analyzed with
respect to these two different alternatives to identify aseh model (an ordinary differential
eqguation) from an observed data set.

The remaining of this paper is structured as follows. The <ernative ways to infer or-
dinary differential equations by means of symbolic regmsare presented in Secti@ Sec-
tion 3 describes GE while the Grammar-based Immune Programmicghenrepair method
are described in Sectich Experiments, results, and comparisons can be shown in8éct
Finally, Section6 concludes the paper.

2 INFERENCE OF ORDINARY DIFFERENTIAL EQUATION

A set of ordinary differential equations (ODES) is one forhaenathematical description of
a physical or biological system. They can describe the tiex@vatives of physical positions or
chemical concentrations as a function of its current stathinidt and Lipsoii2008)].

The problem is to find a symbolic form fgfi(x, y) such that the solution of the differential
equationy’ = f(x,y) matches the given data. That is to find a differential equatimdel
which describes the behavior of the observed paifsy;), wherey = y(z),j =1,...,m, and
m is the number of observed values.

There are at least two ways to solve this problem by using sjimbegression techniques.
The first one consists in taking numerical derivatives fréma given data obtaining a set of
approximationgj; ~ y.. Then a symbolic regression technique can be applied irr todend
f(x,y) that minimizes the distance betwegfx, y) andy.. The two- and five-point numerical
differentiation are considered for our study and can be ddfas

s Yi+1 — Yi

yz - h)

__Yi—2 — 8Yi—1 + 8Yir1 — Yir2
Yi 121 ’

for two-point numerical differentiation

for five-point numerical differentiatian

whereh = x;,1 — x; and here this is equal for all possilile

Another way to solve this problem is to numerically integrtite ODEy’ = f(x,y) corre-
sponding to the phenotyp&z, y) of a given candidate solution and compare it to the observed
pairs(z;, y;). Here thel-th order Runge-Kutta method is used to obtain the numencadra-

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9110 H. BERNARDINO, H. BARBOSA

tion ¢ of the candidate solution and can be calculated by

h
Yit1 =Yi + 5 (k1 + 2ky + 2kg + ka)
kv =f (ti, v:)

h h
ko =f <ti + 57??2‘ + §k1)

h h
ks =f <ti+ §>yz‘+§k2)

k:4 :f (tl + h7 gz + hk:?)))

wherey, = 1, is the initial value.

This second approach tends to be more accurate giticerder Runge-Kutta method has
an error of the ordek® while the error using five-point numerical differentiatisrof the order
h*. However, it is also much more computationally expensiveahee a numerical integration
is required in order to evaluate the error of each candiddteaisn (its affinity). Besides we are
interested in infer a model which better represents theregbdgphenomena and, as are shown in
Sectionb, the accuracy of the numerical method used by the searchiteehis not necessarily
proportional to the quality of the solutions.

AlthoughBernardino and Barbog2010 have used the integration of the candidate solution
rather than signal derivation, other works can be found idenisg this last waylpa (2008)].
The objective of this work is evaluate what is the behavidhefsearch mechanism (GIP) over
this class of problem and the influence of the alternativesmayts performance, analyzing not
only the accuracy of the final solutions but also their gelieton.

3 GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) originally used a GA as the skamegine in which the geno-
type is mapped onto terminals by means of a defined grammaxrtddhnique was proposed by
Ryan et al(1998 and extended b@’Neill and Ryan(2001). According toChomsky(2002), a
formal grammali can be

G ={N,X R, S}, (1)

where N is a finite set of non-terminalg; is a finite set of terminals or symbols which can
appear in the language (suchagst, andcos), R is a finite set of rules, anfl € N is the start
symbol. Each rule (or production) from is described in Backus-Naur Form (BNF) as

(UN)'N(ZUN)" == (XUN)", 2)

whereU denotes set union aridis a unary operation widely used for regular expressions in
which if N is a set of symbols or characters, th&m is the set of all strings composed by
symbols in/V.

The context-free grammar, used by standard GE, can be defs®d::= (XU N)". If
the right side of this expression is composed by more thansegaence, the choices are de-
limited by the symbol [". A non-terminal can be expanded into one or more terminats a
non-terminals likewise may self-reference to specify reicun.

A context-free grammar to generate simple mathematicalesspns in scheme language
(one of the two main dialects of the programming language)Lis given by Expressionlf

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXIX, pags. 9107-9124 (2010) 9111

where

N ={< expr >, < op >, < unit.op >, < var >}
E = {87/77/7 COS? log7 exp7 Sq,r‘t7 x? y7 17 27 37 +7 _7 *7 dZU7p0w7 (7)}
S =<expr>

andR is defined as

<expr> = (<op><exrpr><expr>) (0)
| (< unit.op > < expr >) (1)

| <war > (2)

<op> u= + (0)

| - (1)

| (2)

| div (3)

| pow (4)

< unit.op > = sin (0)
| cos (1)

| log (2)

| exp (3)

| sqrt (4)

<wvar > = x (0)
|y (1)

|1 (2)

|2 (3)

|3 (4)

Thus, (+ x (x z y)) and (+ (div 1 z)(sin y)) represent the expressions+ x * y and
1/z + sin(y).

In GE, the genotype is a binary array representation of agertarray in which each value
is encoded by 8 bit]’Neill and Ryan(2001)]. The integer value is used to select a rule from
the set of the grammar’s productions via the following espren

rule = (int)mod(nr)

whereint is an integer number and- is the number of rules for the current non-terminal.

A genotype and its integer array representation are iltestrin Figurel.

Tablel presents the genotype-to-phenotype mapping procesgdenimgj the grammar from
Expression 1) and the candidate solution shown in FigdreThe result of a given row is the
input for the next one in Tabl&.

According toElseth and Baumgardn€t995, degeneracy of the genetic code can be ob-
served, as in biological organisms. It means that it is noessary to use all integer values
from the array to create the phenotype.

Moreover, it is important to notice that during the genotypghenotype mapping process it
may happen that after using all integers in the array a campbgression is still not available.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9112 H. BERNARDINO, H. BARBOSA

[0]o[1]o]ofo]o[1]oofo[1]o[1]oo[ofo]o[1[1][1]o[1]o]o[ofo[1[of1]ofof1]of1[1]0f1]1]
. 7 \. 7 . 7 . 7 . 7

e

[33]20[29]10[91/32/92|66]- -

Figure 1: An example of genotype being mapped into an 8-teger array Bernardino and Barbog2010)].

Input Rule Result
< expr > (33) mod (3) =0 | (< op> < expr> < expr>)
(<op><expr><expr>) | (20)mod (5) =0 (+ < expr> < expr>)
(+ < expr > < expr>) (29) mod (3) = 2 (+ <war > < expr >)
(+ <war > < expr >) (10) mod (5) =0 (+ 2 <expr>)
(+z <expr>) (91) mod (3) =1 | (+ z (< unit.op > < expr >))
(+ z (< unitop > < expr >)) | (32) mod (5) = 2 (+x (exp < expr >))
(+z (exp < expr >)) (92) mod (3) =2 (+x (exp < war >))
(+ x (exp < wvar >)) (66) mod (5) = 1 (+x (expy))

Table 1: Example of the mapping proceBgfnardino and Barbo$2010)].

In this case, the strategy fro®'Neill and Ryan(200]) is to wrap the integer array and reuse its
values (two or more times). Verify that this can not be a gaadtsn since it is possible that
the genotype-to-phenotype mapping process enters artéiop. An integer array composed
by values so thatint)mod(3) = 0 causes an infinite loop when used with the grammar from
Expression) and GE mapping-process will generdte op >< expr >< expr >), (+(<

op >< expr >< expr >) < expr >), ..., indefinitely. However, when this happens, it is
suggested byY’Neill and Ryan(2001) that the fitness of this candidate solution be set to the
worst possible value (GEVA, a well known implementation & Gsesl 0%). It is assumed that
the faulting solutions will be eliminated by the evolutiop@rocess. However, good solutions
can be eliminated and computational time is unnecessgdgitdy using this policy. To solve
this issueBernardino and Barbog2009h 2010 proposed the repair method which generates
only valid solutions from genotype-to-phenotype mappinepss.

4 GRAMMAR-BASED IMMUNE PROGRAMMING

Artificial Immune Systems are intelligent methodologiespimed by the biological immune
system used to solve real world problems. Natural immusitgomposed by innate and adap-
tive immunities. The first one is composed by cells and meshas that defend the host
from attacks by other organisms in a non-specific manner. |atee comprises highly spe-
cialized cells and processes that defend the organism frdigems. Besides, according to
Dasgupta and Ning2008, most immune inspired algorithms are based on the adajptive
munity behavior.de Castro and Timmi€002 suggested that AlSs can be applied to several
classes of problem, such as: pattern recognition, schregjudontrol, machine-learning, infor-
mation systems security, and optimizatiddernardino and Barbog20093 presents a survey
focused in the application of immune inspired algorithmsdtve optimization problems.

There is a selection mechanism which leads to the evolufitreemmune system repertoire.
Also, on binding with a suitable antigen, activation of lylhgeytes occurs. Once activated,
clones of the lymphocyte are produced expressing receftensical to the original lympho-

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 9107-9124 (2010) 9113

initialize
population

v

evaluate
evaluate
‘ Z

stop
criteria
Y

oy

Figure 2: Diagram presenting CLONALG's execution steps.

cyte that encountered the antigen. Any lymphocyte that éesptors specific to molecules of
the host organism are not cloned and die. Thus, only an antiggy cause this clonal expan-
sion. These set of actions are called clonal expansion améicselection theory. The increase
in the average of the affinity between the antibodies andjans came from the somatic hyper-
mutation suffered by the generated clones followed by tbeatlselection.

A clonal selection algorithm (CLONALG) was proposedds/Castro and von Zub€a002
and is the immune method used by the approach used here.ddngtah evolves the antibodies
inspired by the concept of clonal selection where each iddal is cloned, hypermutated, and
those with higher affinity are selected. Normally, the miotatate is inversely proportional to
the affinity of the antibody with respect to the antigen. Mxwer, inspired by the bone marrow
behavior, new candidate solutions could be randomly géserd improve the exploration
capability of the algorithm.

The technique used here uses a binary string to encode eaditdate solution and CLON-
ALG as the search engine. Figu2epresents a diagram describing CLOANLG's execution
flux where “initialize population” randomly generates timdial population, “evaluate” de-
codes and calculates the antibodies’s affinity, “seled€cés individuals to be cloned, “clone”
clones the selected antibodies, “hypermutate” appliesdhgatic hypermutation in generated
clones, and “replace” generates new candidate solutiahsaaate the population of antibod-
ies. Here an antibody is replaced by its best hypermutecdedfaihis better than the original
one [Cutello et al.(2009].

The hypermutation operator used here is the definedeéastro and von Zubgi2002
which defines the mutation rate as

my(i) = e~ Pfn(?)

wherem,.(i) is the mutation rate of theth cell, f,,(7) is the normalized affinity (assuming unity
for the best antibody) of theth candidate solution, anglis a parameter.

Also, to keep the diversity of the population: (i) every &otily in population is selected to
be cloned and (ii) the number of clones is the same for all ickatel solutions.

The procedure “evaluate” must be specially considered.s Ehiwhere each antibody is
transformed from a binary string into a tree (i.e. a symb@aresentation) and evaluated with

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9114 H. BERNARDINO, H. BARBOSA

respect to the objective function in order to define its affinalue. The process to decode an
antibody into a tree is defined in Sectidhand4.1

4.1 The repair method

Considering the CLONALG presented above, it is importanhatice that all antibodies
generate hypermutated clones. It means that a candidaigosolvhich does not belongs to
the language will try to evolve, mostly producing new indadblutions. Graphics showing the
maintenance of invalid solutions by this search mechanigen the evolutionary process can
be found inBernardino and Barbog2010. However, an “invalid" solution phenotype can be
repaired in mapping procedure to always be recognized bgrdmamar.

In order to generate only valid candidate solutions, thairapethod produces a tree in the
genotype-to-phenotype mapping process and fixes it whearthg of integers is exhausted
and the program is not complete. The information about hawépair must operate over a
invalid candidate solution is incorporated to the user @efigrammar which now is defined by
a 5-tuple

G={N,%,R,R,,S}, 3)

whereN, ¥, R, andS are previously defined in the Expressidi. (R, is a set of production
rules, as defined ir2f, to repair the generated tree. Ea€prule is defined as

(CUN)'NEZEUN)'N(ZUN) == (ZBUN)"S(ZUN)*, 4)

This new set of rules must contain a backward step to createdgh when there are no more
integers available. Two constraints must be highlightéeé: new rule must have less subtrees
than the original one and given € R, then the inverse transformationofis in R, or at least
can be reached by this one. It is important since a repairegt@m also must be recognized by
the original grammar.

An example ofRz;, applicable to the grammar given in Expressithgnd used in the com-
putational experiments, can be found following

(<op><expr><expr>):= <expr> | x | y | 1 | 2 | 3
(< unit.op >< expr >) 1= x |y | 1 | 2 |

The repair method is performed unstacking the integer gahsed in the mapping process.
Thus, the first integer in the sequence defines which rule #oitR;;) will be the repair rule.
However, not all possibilities fror®, (R;;) can be considered. The options will be those with a
number of non-terminals not larger than the number of ndhehudren of the invalid sub-tree.
Also, the types of the children must be considered. Thustiidren of the invalid sub-tree can
be used by the new (valid) one.

Figure3 shows how the repair method fixes the supposed “invalidtswiwhile it is con-
structed using the grammar from Expressi8h (n Figure3, the next integer in the sequence
is 91 and1 mod(5) = 1. Thus the terminaj is chosen concluding the generation of the (now)
valid tree.

5 COMPUTATIONAL EXPERIMENTS

In order to study the performance of GIP when solving the lemobof finding the symbolic
expression which better models the given observed data plg tie two alternatives presented

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecéanica Computacional Vol XXIX, pags. 9107-9124 (2010) 9115

/\ i /\ i /\ - /\ /\
GO go0 goe goo 9o
O 00 060 0008
O &

[33]20[29[10]9132) [33j20[29[10]9132] ? [33[20[29[10]9132] 91 mod(5) = 1

* unstacking

” \ 3
() e () ()

Figure 3: The repair metho@grnardino and Barbog2010)].

—»>

Repair Method

here against a suite composed by fifteen problems. Almoptatilems are obtained froimce
(1956 andBernardino and Barbog2010.

In all cases, 21 or 101 observed pafrs, y;) are assumed given, wheretakes equally
spaced values in the range of interfgst|, andy; is the corresponding experimentally observed
value. Here synthetical data are used: the “observed" saleee substituted by the valugs:;)
computed from the exact solution of the target ODE. The fonstwhich define the observed
data and their range of intergat b] are presented in Tab®

To evaluate a candidate solution by integration we usédhtaorder Runge-Kutta method.
The step-sizes = *’*7“ orh = fg—g were considered; the second one corresponding to a more
accurate but also more computationally expensive approach

Considering the alternative of derivation of the observathdwe used two- or five-point
numerical approximations for the derivative in order toessshow the number of points affects
the solution quality.

GIP search mechanism is a clonal selection algorithm (CLOGAwith binary encoding
using population size=50, length of the integer array=£3@h integer encoded with 8 bits (as
suggested b@’Neill and Ryan(2003), number of clones=1; = 5, and percentage of new ran-
domly generated antibodies3%. These parameters were also useBénnardino and Barbosa
(2010 and are the same for all problems with no attempt of fine wnivo GIP variants were
considered according to the use (or not) of the repair metinoécated byR).

The error, to be minimized, is given by

1 2
error = E Zl (yi,e:cact - yi,appromimate>)
where,m is the number of observed data-pairs. Two different valoes#fwere used: 21 and
101.
For all problems the stop condition is 25,000 objective fiorcevaluations, and the grammar
defined by Expressiori) is applied together with th&; presented in Sectiofh 1

m

Copyright © 2010 Asociacion Argentina de Mecénica Computacional http://www.amcaonline.org.ar

9116 H. BERNARDINO, H. BARBOSA

Functions used to generate the observed values Range
Pot y(x) = AzP + Ba? [0, 10]
Po2 y(x) = AeP* + Be?” [0, 2]
Po3 y(x) = Acos(qx) + Bsin(qx) [0, 10]
Pod y(x) = el (Acos(qz) + Bsin(qz)) [0, 2]
Pos y(z) = Acosh (%) [0, 10]
Pos y(z) = 27 (A + Blog(z)) [0, 10]
Por y(z) = €™ (A + Bx) [0,2]
Pos y(x) = (A+ Bz) cos(qz) + (C + Dz)sin(qx) [0, 10]
poo | y(x) = €™ [(A+ Bx) cos(qr) + (C' + Dx)sin(qx)] | [0,2]
Do y(x) = Az cos (% + B) [0, 10]
P11 y(r) = A+e 0 [0, 10]
P12 y(x) = Asin(Cx) [0, 10]
P13 y(x) = Ae™™ [0,10]
jon y(x) =+A+ Bx [0, 10]
Pis y(r) =log(A+z)(A+x) —x [0, 10]

Table 2: Functions used to generate the observed valuegwleehave sel = C =1, B =D = p = 2, and
q=3.

The comparisons are based on the average of the error. Adsvthalternatives to solve
the symbolic regression problem considered here are cadmaluating the final solutions
achieved by the search process on all variations of eachgmolihat is, the solution found
using the numerical derivative is also evaluated integgaitss final solution. It is important not
only to compare both approaches in the same way but alsoifyg thex generalization power of
the final solutions found.

Concluding the comments about the computational expetimemvironment, JScherand
Michael Thomas Flanagan’s Java Scientific Libraaye used by our implementation. JScheme
is a implementation with a very simple interface of the Scedanguage while the second
library has a great collection of numerical methods, intilgdhe Runge-Kutta method consid-
ered here.

5.1 Performance profiles

The most common way of assessing the relative performanaesefl” of variantsv;,i €
{1,...,n,} is to define a seP of representative test-problents j € {1,...,n,} and then
test all variants against all problems measuring the pexdocet, , of variantv € V' when
applied to problenp € P. The performance indicator to be maximized here is the se/ef
the minimum objective function value found by varianin test-probleny averaged over 30
runs.

Now a performance ratio can be defined as

tpw
v T . 7 5
> min{t,, v eV} ®)

It is interesting to be able to assess the performance ofdhiants inV” on a potentially
large set of test-problem® in a compact graphical form. This can be attained following

http://jscheme.sourceforge.net/jscheme/main.html
2http://www.ee.ucl.ac.uk/~mflanaga/java

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

http://jscheme.sourceforge.net/jscheme/main.html
http://www.ee.ucl.ac.uk/~mflanaga/java

Mecéanica Computacional Vol XXIX, pags. 9107-9124 (2010) 9117

Dolan and Mor§2002 and defining

pur) = - P € Py <7}
Np

where|.| denotes the cardinality of a set. Thef(7) is the probability that the performance
ratio r,,, of variantv € S is within a factorr > 1 of the best possible ratio. If the sét
is large and representative of problems yet to be tackled agiants with largep,(7) are
to be preferred. The performance profiles thus defined havemeer of useful properties
[Dolan and Morg2002); Barbosa et al(2010] such as (i)p,(1) is the probability that variant
v will provide the best performance iR among all variants if/. If py;(1) > py2(1) then
variant V1 was the winner in a larger number of problemsAnthan variantl’2, and (ii) a
measure of the reliability of variantis its performance ratio in the problem where it performed
worst: R, = sup{7 : p,(7) < 1}. As aresult, the most reliable variant is the one that minési
R,; that is, it presents the best worst performance in thé’set

= i = i : 1
v arggg‘I}Rv arglvrél‘lflsup{T pu(T) < 1}

5.2 Evaluating the repair method

We first evaluated if the introduction of the repair methothia GIP technique leads to better
results. GIP with and without repair method was applied kprblems presented in Tabk
considering the two alternative ways of solving them (by puwal integration or derivation).
The variation of the number of observed values and interaedrpeters of the numerical al-
gorithms were also considered. Since there are fifteen @mofl two set of data points (21
and 101), and two classes of numerical algorithms (integrand derivative) with two inter-
nal parameters values for each (two valuesif@nd two number of points considered by the
numerical derivative), then we have a totall6fx 23 = 120 different tests to be performed.

Performance profiles (see Sectin) are used to simplify our comparison task and they are
shown in Figurel. Itis easy to see that, as verifiedBernardino and Barbog2010, GIP with
the repair method performs better than without it. Thus #selts obtained by the GIP-R are
used to evaluate the two alternative ways considered henéstoan ODE model.

5.3 Evaluating the two alternative ways inferring ODEs usirg GIP

As presented in Sectidn2, the GIP-R variant performs much better than the one wittiaut
repair method. Thus GIP-R is used to evaluate the two aligenaays to solve the symbolic
regression problem for ODEs.

First we consider solving the inference problem using theenical integration of the can-
didate solutions and comparing the predicted values welotiserved ones. Figubepresents
the performance profiles corresponding to the solutionsdoty/ — 21 — 1 and N7 — 101 — 1
correspond to the use of numerical integration; I"Wa and 21 or 101 observed values, respec-
tively. The same pattern is used for the lab®¥l5— 21 — 10 and N7 — 101 — 10, when adopting
h = fg—yi It is important to notice that it is assumed similarity beem the errors what is not
a strongly assumption since the errors are the averagedesguar in each observed value.
Figure5 shows that for both values a&f few observed values are preferred and results in best
reliability. Whenh = b‘ﬁa the variant with more observed values is the most efficidotvever
this does not happen whén= 2-¢.

To verify the generalization of the solutions found by theiamts using numerical integra-
tion we compared their performance with respect to the aperoach, that is, by numerical

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9118 H. BERNARDINO, H. BARBOSA

1.0
|
|

0.9

0.8
I

0.6

0.5

GIP-R
- - GIP

0.7
I
——m e mm - _ ==

0.4

0 10 20 30 40 50 60 70

Figure 4: Performance profiles comparing the GIP technigtieand without the repair method.

(a) (b)

o _ —me e] -
— l —
|
- l
[}
o ! o _| N
o
Ir=—=-=-=--- ! I
| |
[o0)
© - - |
| o _||
' o
r |
~
s ! !
o |
~ |
| © |
o _{1| |
o
NI-21-1 ! NI-21-10
- - NI-101-1 @ 1 — - NI-101-10
[[[[[[[[[[[[
1.0 1.2 1.4 1.6 1.8 20 22 0 20 40 60 80

Figure 5: Performance profiles comparing the numericabiatiion approach with respectto h = b;}—“ and

h = lfo?ﬁ, are used in plots (a) and (b), respectively.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 9107-9124 (2010) 9119

1.0

0.8

0.4

— ’ NI-21-1

- - NI-21-10
<+« NI-101-1
- = NI-101-10

0 20 40 60 80 100

Figure 6: Performance profiles comparing the generalinatfothe solutions found by GIP-R using numerical
integration. The errors are evaluated against 101 obsealads and a five-point numerical derivative.

derivative. We used the set of user defined parameters wisctts in maximum accuracy: 101
observed values and five-point numerical derivative apprakon. The performance profiles
are presented in Figu@where the problem’s variait/ — 21 — 10 achieved the best perfor-
mance. This result is important because it shows that iti:@cessary to have many observed
values in order to obtain good results using numerical natisgn. Also the combination of a
large amount of data and a smartan result in overfitting.

Figure7 shows the performance profiles corresponding to the solsifmund using numeri-
cal derivative. ND — 21 —2andN D — 101 — 2 correspond to the use of two-point numerical
derivative, and 21 or 101 observed values, respectivelg.sBme pattern is used for the labels
ND — 21 —5and ND — 101 — 5, where a five-point numerical derivative is adopted. As
with numerical integration comparisons, here we also assusimilarity between the errors.
The performance profiles show that the two-point numeriealdtive approximation is better
when few observed values are available while five-point aeéepred otherwise. In both cases,
the best efficiency is achieved with only 21 observed values.

Also, to verify the generalization of the solutions found tme variants using numerical
derivative we compared their performance with respect éodtmer approach, that is, by the
numerical integration. The variants are evaluated usirdgdli3erved values and the five-point
numerical derivative. The performance profiles are preskmt Figure8 where the problem’s
variantN D — 101 — 2 achieved the best performance. Differently from the casggusumerical
integration, here the best result is achieved using 101lrebderalues and with the two-point
numerical derivative approximation.

Since theNI — 21 — 10 and ND — 101 — 2 variants presented the best results in the gen-
eralization test, they are used in the following comparssehere the approaches are evaluated
by both numerical derivative and integration. FigQreresents the performance profiles corre-
sponding to the final solutions found by these variants esatlby numerical integration with
101 observed values artd= fg—yi while Figure10 shows the results evaluating the solutions
with five-point numerical derivative approximation usingllobserved values. According to
these plots varianV/ — 21 — 10 performs better thatw D — 101 — 2 for both cases. That

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9120

1.0

0.9

0.8

0.7

0.6

0.5

0.4

H. BERNARDINO, H. BARBOSA

ND-21-2
= - ND-101-2

2 3 4 5 6 7 8

1.0

0.8

0.6

0.4

ND-21-5
= = ND-101-5

0

50 100 150 200

Figure 7: Performance profiles comparing the numericaldévie approach varying the number of points used in
the numerical derivative approximation in each observédevalwo and five points are used in plots (a) and (b),
respectively.

0.8

0.6

0.4

0.2

...................

.........

—Hf-=-- ND-21-2
| - - ND-21-5
+++ ND-101-2
| - = ND-101-5

I I I I I

0 10 20 30 40

1.0

0.8

0.6

0.4

0.2

|

|

I

1]

|

ir

1

|

|

| ND-21-2

| — - ND-21-5
- ND-101-2

| - = ND-101-5

I I I I

0 500000 1000000 1500000

Figure 8: Performance profiles comparing the generalinatfothe solutions found by GIP-R using numerical

b—a

derivative. The errors are evaluated with 101 observecbgadind al-th order Runge-Kutta method with= 5.

(a) presents the curves withe [1;47] while in (b) 7 € [1; 1.85¢ + 6].

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 9107-9124 (2010) 9121

(a) (b)
o _ e] -
— —
------------- I
|
© ® |
o T c
|
|
© © |
o T (=} _I
ST T T T T |
I I
< <
o |1 c |1
| |
I |
~ | 8
=} NI-21-10 o NI-21-10
| = = ND-101-2 | = = ND-101-2
[[[[[[[[[[[
0 20 40 60 80 100 0e+00 le+15 2e+15 3e+15 4e+15

Figure 9: Performance profiles comparing the varidwfs— 21 — 10 and N D — 101 — 2. The errors are evaluated
with 101 observed values anddath order Runge-Kutta method with = % (a) presents the curves with
7 € [1;105] while in (b) 7 € [1; 4e + 15].

means thafvV/ — 21 — 10 not only is able to infer a solution which better matches thseoved
values by numerical integration but also finds solutionsciviyeneralize to the corresponding
numerical derivative.

6 CONCLUSIONS

This paper presented two alternative ways to solve modetentce problems in the case
of ordinary differential equations (ODE) by means of syniboégression techniques using
Grammar-based Immune Programming (GIP). Also, the useeofdpair method previously
proposed was evaluated in this class of problems showingfticseency of this approach.

The first way to solve the ODE inference problem consists kintanumerical derivatives
from the given data obtaining a set of approximatighsx y. while another way is to nu-
merically integrate the ODE’ = f(x,y) corresponding to the candidate solutipfx, y) and
compare the results with the observed values.

Computational experiments verified that when using nuratin¢egration few observed val-
ues together with a small integration stepchieve better generalized results. When the numer-
ical derivative is used more observed values with a simplererical derivative approximation
(fewer points used) is the best option.

Comparing the best variants with respect to each approlaahist the best using numerical
derivative and integration we could verify that, althougbrenxcomputationally expensive, the
use of numerical integration leads to better results.

We believe that (i) investigating the determination of themerical constants, (ii) guiding
the search by minimizing not only the error but also the caxipy of the solutions, and (iii) to
apply the technique to systems of ODEs are important relseaenues for future work.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9122 H. BERNARDINO, H. BARBOSA

(a) (b)
P = = = = = = = - - - o _]
O’- _ —
o 1 !
I |
[o0)
s 1 I
0
| s 11
~
S] |
©
S] I ©
o |
[Te)
0 |
<
o T <Or_ |
g | NI-21-10 NI-21-10
= = ND-101-2 = = ND-101-2
[[[[[[[[[[[[
0 20 40 60 80 0 20000 40000 60000 80000 100000

Figure 10: Performance profiles comparing the varidhis- 21 — 10 andN D — 101 — 2. The errors are evaluated
using the five-point numerical derivative approximatiorthal01 observed values. (a) presents the curves with
T € [1; 78] while in (b) 7 € [1;1.17e + 5.

REFERENCES

Amarteifio S. and O’Neill M. Coevolving antibodies with alicepresentation of grammat-
ical evolution. In D. Corne, Z. Michalewicz, M. Dorigo, G.l&n, D. Fogel, C. Fonseca,
G. Greenwood, T.K. Chen, G. Raidl, A. Zalzala, S. Lucas, BdAter, J. Willies, J.J.M.
Guervos, E. Eberbach, B. McKay, A. Channon, A. Tiwari, L.@IRért, D. Ashlock, and
M. Schoenauer, editorBroceedings of the 2005 IEEE Congress on Evolutionary Céapu
tion, volume 1, pages 904-911. IEEE Press, Edinburgh, UK, 2@BNI0-7803-9363-5.

Barbosa H.J.C., Bernardino H.S., and Barreto A.M.S. Uskigoomance profiles to analyze
the results of the 2006 CEC constrained optimization cortipet In IEEE World Congress
on Computational Intelligenc@arcelona, Spain, 2010.

Bernardino H.S. and Barbosa H.Blature-Inspired Algorithms for Optimisatipehapter Ar-
tificial Immune Systems for Optimization, pages 389-411rirfgger Berlin / Heidelberg,
2009a.

Bernardino H.S. and Barbosa H.J.C. Grammar-based immugggmming for symbolic re-
gression. InProceedings of the International Conference on Artifici@nune Systems -
ICARIS’09 Lecture Notes in Computer Science, pages 274-287. Spri2@@9b.

Bernardino H.S. and Barbosa H.J.C. Grammar-based immuagegmmming (acceptedNatu-
ral Computing 2010.

Chomsky N.Syntactic StructuresMouton de Gruyter, 2002.

Ciccazzo A., Conca P., Nicosia G., and Stracquadanio G. Amaraskd clonal selection al-
gorithm with ad-hoc network-based hypermutation opesator synthesis of topology and
sizing of analog electrical circuits. In P.J. Bentley, Del.and S. Jung, editorByoceedings
of the International Conference on Artificial Imnmune SystefCARIS 2008volume 5132
of LNCS pages 60-70. Springer, 2008.

Cramer N.L. A representation for the adaptive generatiosimople sequential programs. In

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

Mecénica Computacional Vol XXIX, pags. 9107-9124 (2010) 9123

Proceedings of the 1st International Conference on Gerfdgorithms pages 183-187. L.
Erlbaum Associates Inc., Hillsdale, NJ, USA, 1985.

Cutello V., Narzisi G., Nicosia G., and Pavone M. Clonal setm algorithms: A comparative
case study using effective mutation potential®?taceedings of the International Conference
on Artificial Immune Systems - ICARIS 2006lume 3627 oLNCS pages 13-28. Springer,
2005.

Dasgupta D. and Nino Fimmunological Computation: Theory and ApplicationSuerbach
Publications, Boston, MA, USA, 2008.

de Castro L.N. and Timmis J. An artificial immune network faultrmodal function optimiza-
tion. In Proc. of the 2002 IEEE World Congress on Computational ligiehce volume |,
pages 669—-674. Honolulu, Hawaii, USA, 2002.

de Castro L.N. and von Zuben F.J. Learning and optimizatsamgithe clonal selection princi-
ple. IEEE Trans. Evo. Comp6(3):239-251, 2002.

Dolan E. and Moré J.J. Benchmarking optimization softwaita ywerformance profilesMath.
Programming 91(2):201-213, 2002.

Elseth G.D. and Baumgardner K.Brinciples of Modern Genetic8rooks Cole, 1995.

Ferreira C. Gene Expression Programming: a New Adaptiveityn for Solving Problems.
ArXiv Computer Science e-printa001.

Gan Z., Chow T.W., and Chau W. Clone selection programmigtarapplication to symbolic
regressionExpert Systems with Applicatigr&s(2):3996—-4005, 2009a.

Gan Z., Zhao M.B., and Chow T.W. Induction machine fault dete using clone selection
programming.Expert Systems with Applicatiqr&6(4):8000 — 8012, 2009b.

Iba H. Inference of differential equation models by genptmgramminglinformation Sciences
178(23):4453 — 4468, 2008.

Ince E.L. Ordinary Differential EquationsDover Publications, 1956.

Johnson C.G. Atrtificial immune system programming for syhchegression. IrProceedings
of the 6th European Conference on Genetic Programming - GBr@003 pages 345-353.
2003.

Koza J.R. Genetic Programming: On the Programming of Computers by ndez Natural
Selection (Complex Adaptive Systenid)e MIT Press, 1992.

Koza J.R., Bennett lll F.H., Andre D., and Keane M.A. Synites topology and sizing of
analog electrical circuits by means of genetic programmigmputer Methods in Applied
Mechanics and Engineering86(2-4):459-482, 2000.

Lau A. and Musilek P. Immune programming models of cryptogom parvum inactivation
by ozone and chlorine dioxidénformation Scienced 79(10):1469-1482, 2009.

McKinney B. and Tian D. Grammatical immune system evolutionreverse engineering
nonlinear dynamic bayesian mode@Gancer Informatics6:433-447, 2008.

Musilek P., Lau A., Reformat M., and Wyard-Scott L. Immunegnamming. Information
Sciencesl76(8):972-1002, 2006.

O’Neill M. and Brabazon A. Grammatical differential evatut. In Proceedings of the 2006 In-
ternational Conference on Atrtificial Intelligence - ICAI@E) pages 231-236. CSREA Press,
Las Vegas, Nevada, USA, 2006.

O’Neill M., Brabazon A., and Adley C. The automatic generatof programs for classification
problems with grammatical swarm. @ongress on Evolutionary Computation - CEC 2004
volume 1, pages 104-110. 2004.

O’Neill M. and Ryan C. Grammatical evolutiohEEE Transactions on Evolutionary Compu-
tation, 5(4):349-358, 2001.

Copyright © 2010 Asociacién Argentina de Mecanica Computacional http://www.amcaonline.org.ar

9124 H. BERNARDINO, H. BARBOSA

O’Neill M. and Ryan C.Grammatical Evolution: Evolutionary Automatic Progranmgiin an
Arbitrary Language Kluwer Academic Publishers, 2003.

Poli R., Langdon W.B., and McPhee N A.Field Guide to Genetic Programming008.

Ryan C., Collins J., and Neill M.O. Grammatical evolutionvaving programs for an ar-
bitrary language. ILNCS 1391, Proceedings of the First European Workshop oretBen
Programming pages 83-95. Springer-Verlag, 1998.

Schmidt M.D. and Lipson H. Data-mining dynamical systemsitofated symbolic system
identification for exploratory analysis. FProceedings of the Biennial ASME Conference on
Engineering Systems Design and Analysis - ESDR@#a, Israel, 2008.

Smith S.F.A learning system based on genetic adaptive algoritHphsD. thesis, University of
Pittsburgh, Pittsburgh, PA, USA, 1980.

Smith S.F. Flexible learning of problem solving heuristlo®ugh adaptive search. IWWCAI'83:
Proceedings of the Eighth international joint conferenoeiatificial intelligence pages 422—
425. Morgan Kaufmann Publishers Inc., San Francisco, CA3,U983.

Copyright © 2010 Asociacion Argentina de Mecanica Computacional http://www.amcaonline.org.ar

	INTRODUCTION
	INFERENCE OF ORDINARY DIFFERENTIAL EQUATION
	GRAMMATICAL EVOLUTION
	GRAMMAR-BASED IMMUNE PROGRAMMING
	The repair method

	COMPUTATIONAL EXPERIMENTS
	Performance profiles
	Evaluating the repair method
	Evaluating the two alternative ways inferring ODEs using GIP

	CONCLUSIONS

