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Abstract. An ordinary differential equation (ODE) is a mathematical form to describe physical or
biological systems composed by time-derivatives of physical positions or chemical concentrations as a
function of its current state. Given observed pairs, a relevant modeling problem is to find the symbolic
expression of a differential equation which mathematically describes the concerned phenomenon.

The Grammar-based Immune Programming (GIP) is a method for evolving programs in an arbitrary
language by immunological inspiration. A program can be a computer program, a numerical function
in symbolic form, or a candidate design, such as an analog circuit. GIP can be used to solve symbolic
regression problems in which the objective is to find an analytical expression of a function that better fits
a given data set.

At least two ways are available to solve model inference problems in the case of ordinary differential
equations by means of symbolic regression techniques. The first one consists in taking numerical deriva-
tives from the given data obtaining a set of approximations.Then a symbolic regression technique can
be applied to these approximations. Another way is to numerically integrate the ODE corresponding to
the candidate solution and compare the results with the observed data.

Here, by means of numerical experiments, we compare the relative performance of these two ways to
infer models using the GIP method.
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1 INTRODUCTION

Metaheuristics have been applied with success to several optimization problems. For the
automatic generation of programs, the Genetic Programming(GP) paradigm has become very
popular.Smith(1980, 1983) report the first results of the GP technique. The method was also
studied by other authors and greatly expanded byKoza(1992).

The tree structure proposed byCramer(1985) is often used to represent a candidate solu-
tion. That data structure can represent a computer program,a numerical function in symbolic
form, or a candidate design, such as an analog circuit. An objective function which translates
a conveniently defined performance index of the candidate program, function, or design is then
optimized. According toKoza(1992), “fitness begets structure", i.e., over a period of time (gen-
erations), fitness induces structure via natural selectionand the effects of gene recombination
and mutation. The reader can find a freely available survey about GP inPoli et al.(2008).

There are not many studies in the literature using artificialimmune systems (AISs) as search
mechanism for this class of problem. An AIS programming proposal inspired by the GP
paradigm can be found inJohnson(2003). That method uses a tree-based representation and
was applied to symbolic regression problems (to derive the analytical expression of a func-
tion that better fits a given data set). The Immune Programming (IP) technique was proposed
by Musilek et al.(2006) and shown to outperform GP for the considered symbolic regression
problems. IP was extended byLau and Musilek(2009) which have obtained better results than
previously presented in the literature when applied to evolve a model of disinfection ofCryp-
tosporidium parvum. Also the “elitist Immune Programming" [Ciccazzo et al.(2008)], or sim-
ply eIP, is inspired by clonal selection and uses the GP machinery to generate the candidate
solutions. In eIP, the best individual of the population andits hypermuted clone are always kept
in the population. The technique was applied to circuit design optimization where it outper-
formed both the standard IP and Koza’s GP [Koza et al.(2000)]. Finally, the Clonal Selection
Programming (CSP) algorithm, proposed byGan et al.(2009b,a), uses a symbolic string of
fixed length. Fault detection system [Gan et al.(2009b)] as well symbolic regression [Gan et al.
(2009a)] problems were used to evaluate and compare the algorithm with IP and gene expres-
sion programming (GEP) [Ferreira(2001)].

Grammatical Evolution (GE), proposed byRyan et al.(1998), is an approach to evolve pro-
grams by means of a user defined grammar. GE uses a Backus-NaurForm (BNF) to express
a grammar which defines the syntax of the language, and a variable length string to represent
the candidate solutions. That work was extended inO’Neill and Ryan(2001) presenting good
results for symbolic regression and integration, and SantaFe Ant Trail problems. Also, differ-
ent metaheuristics can be found in the literature as its search engine: genetic algorithms (GA)
[O’Neill and Ryan(2001)], particle swarm optimization (PSO) [O’Neill et al. (2004)], differ-
ential evolution (DE) [O’Neill and Brabazon(2006)], and artificial immune systems (AISs)
[Bernardino and Barbosa(2009b)].

In the AISs field, a co-evolutionary strategy was proposed byAmarteifio and O’Neill(2005)
where a simple GA evolves with the help of an immune inspired method aiming at promot-
ing diversity. The approach was applied to symbolic regression and multiplexer problems (a
classical GP problem where the objective is to discover a boolean expression). Another im-
mune approach using GE can be found inMcKinney and Tian(2008) where the grammatical
immunoglobulin hypermutation, an evolutionary operator in which non-terminals are mutated
to another according to a specified grammar, was proposed. The technique was applied to the
inference problem of a kinetic model for the oxidative metabolism of17β-estradiol (E2).
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Bernardino and Barbosa(2009b, 2010) proposed the Grammar-based Immune Programming
(GIP). According to this technique, the candidate solutions are represented as inO’Neill and Ryan
(2001) but a new decoding process is performed. The decoding procedure creates a tree (based
on the grammar definition) and repairs it (via repair derivation rules) when necessary, always
generating valid programs in the evolutionary process. GIPwas applied to symbolic regression
and integration problems, inference of ordinary differential equations, and inference of iterated
and discontinuous functions. The results found are better than previously found in the literature
for most problems. Also the repair method shown improves theperformance also when other
search mechanisms were used, such as GA [Bernardino and Barbosa(2010)].

Differently from the symbolic regression problem, when theobjective is to infer an ordinary
differential equation the user must figure out a way to compare the candidate solutions with the
given data set. At least two ways can be thought to solve this task by means of symbolic regres-
sion techniques, namely: to take the numerical derivativesfrom the given data or to numerically
integrate the ODE corresponding to the candidate solutions. In this paper, GIP is analyzed with
respect to these two different alternatives to identify a causal model (an ordinary differential
equation) from an observed data set.

The remaining of this paper is structured as follows. The twoalternative ways to infer or-
dinary differential equations by means of symbolic regression are presented in Section2. Sec-
tion 3 describes GE while the Grammar-based Immune Programming and the repair method
are described in Section4. Experiments, results, and comparisons can be shown in Section 5.
Finally, Section6 concludes the paper.

2 INFERENCE OF ORDINARY DIFFERENTIAL EQUATION

A set of ordinary differential equations (ODEs) is one form of a mathematical description of
a physical or biological system. They can describe the time-derivatives of physical positions or
chemical concentrations as a function of its current state [Schmidt and Lipson(2008)].

The problem is to find a symbolic form forf(x, y) such that the solution of the differential
equationy′ = f(x, y) matches the given data. That is to find a differential equation model
which describes the behavior of the observed pairs(xj , yj), wherey = y(x), j = 1, . . . , m, and
m is the number of observed values.

There are at least two ways to solve this problem by using symbolic regression techniques.
The first one consists in taking numerical derivatives from the given data obtaining a set of
approximations̄y′i ≈ y′i. Then a symbolic regression technique can be applied in order to find
f(x, y) that minimizes the distance betweenf(x, y) andȳ′i. The two- and five-point numerical
differentiation are considered for our study and can be defined as

ȳ′i =
yi+1 − yi

h
, for two-point numerical differentiation

ȳ′i =
yi−2 − 8yi−1 + 8yi+1 − yi+2

12h
, for five-point numerical differentiation,

whereh = xi+1 − xi and here this is equal for all possiblei.
Another way to solve this problem is to numerically integrate the ODEy′ = f(x, y) corre-

sponding to the phenotypef(x, y) of a given candidate solution and compare it to the observed
pairs(xi, yi). Here the4-th order Runge-Kutta method is used to obtain the numericalintegra-
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tion ȳ of the candidate solution and can be calculated by

ȳi+1 =ȳi +
h

6
(k1 + 2k2 + 2k3 + k4)

k1 =f (ti, ȳi)

k2 =f

(

ti +
h

2
, ȳi +

h

2
k1

)

k3 =f

(

ti +
h

2
, ȳi +

h

2
k2

)

k4 =f (ti + h, ȳi + hk3) ,

whereȳ0 = y0 is the initial value.
This second approach tends to be more accurate since4-th order Runge-Kutta method has

an error of the orderh5 while the error using five-point numerical differentiationis of the order
h4. However, it is also much more computationally expensive because a numerical integration
is required in order to evaluate the error of each candidate solution (its affinity). Besides we are
interested in infer a model which better represents the observed phenomena and, as are shown in
Section5, the accuracy of the numerical method used by the search technique is not necessarily
proportional to the quality of the solutions.

AlthoughBernardino and Barbosa(2010) have used the integration of the candidate solution
rather than signal derivation, other works can be found considering this last way [Iba (2008)].
The objective of this work is evaluate what is the behavior ofthe search mechanism (GIP) over
this class of problem and the influence of the alternative ways in its performance, analyzing not
only the accuracy of the final solutions but also their generalization.

3 GRAMMATICAL EVOLUTION

Grammatical Evolution (GE) originally used a GA as the search engine in which the geno-
type is mapped onto terminals by means of a defined grammar. This technique was proposed by
Ryan et al.(1998) and extended byO’Neill and Ryan(2001). According toChomsky(2002), a
formal grammarG can be

G = {N,Σ, R, S}, (1)

whereN is a finite set of non-terminals,Σ is a finite set of terminals or symbols which can
appear in the language (such asx, +, andcos), R is a finite set of rules, andS ∈ N is the start
symbol. Each rule (or production) fromR is described in Backus-Naur Form (BNF) as

(Σ ∪N)∗N (Σ ∪N)∗ ::= (Σ ∪N)∗ , (2)

where∪ denotes set union and∗ is a unary operation widely used for regular expressions in
which if N is a set of symbols or characters, thenN∗ is the set of all strings composed by
symbols inN .

The context-free grammar, used by standard GE, can be definedasN ::= (Σ ∪N)∗. If
the right side of this expression is composed by more than onesequence, the choices are de-
limited by the symbol “|". A non-terminal can be expanded into one or more terminals and
non-terminals likewise may self-reference to specify recursion.

A context-free grammar to generate simple mathematical expressions in scheme language
(one of the two main dialects of the programming language Lisp) is given by Expression (1)
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where

N = {< expr >,< op >,< unit op >,< var >}
Σ = {sin, cos, log, exp, sqrt, x, y, 1, 2, 3,+,−, ∗, div, pow, (, )}
S = < expr >

andR is defined as

< expr > ::= (< op > < expr > < expr >) (0)

| (< unit op > < expr >) (1)

| < var > (2)

< op > ::= + (0)

| − (1)

| ∗ (2)

| div (3)

| pow (4)

< unit op > ::= sin (0)

| cos (1)

| log (2)

| exp (3)

| sqrt (4)

< var > ::= x (0)

| y (1)

| 1 (2)

| 2 (3)

| 3 (4)

Thus, (+ x (∗ x y)) and (+ (div 1 x)(sin y)) represent the expressionsx + x ∗ y and
1/x+ sin(y).

In GE, the genotype is a binary array representation of an integer array in which each value
is encoded by 8 bits [O’Neill and Ryan(2001)]. The integer value is used to select a rule from
the set of the grammar’s productions via the following expression

rule = (int)mod(nr)

whereint is an integer number andnr is the number of rules for the current non-terminal.
A genotype and its integer array representation are illustrated in Figure1.
Table1 presents the genotype-to-phenotype mapping process considering the grammar from

Expression (1) and the candidate solution shown in Figure1. The result of a given row is the
input for the next one in Table1.

According toElseth and Baumgardner(1995), degeneracy of the genetic code can be ob-
served, as in biological organisms. It means that it is not necessary to use all integer values
from the array to create the phenotype.

Moreover, it is important to notice that during the genotype-to-phenotype mapping process it
may happen that after using all integers in the array a complete expression is still not available.
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Figure 1: An example of genotype being mapped into an 8-bit integer array [Bernardino and Barbosa(2010)].

Input Rule Result
< expr > (33)mod (3) = 0 (< op > < expr > < expr >)

(< op > < expr > < expr >) (20)mod (5) = 0 (+ < expr > < expr >)
(+ < expr > < expr >) (29)mod (3) = 2 (+ < var > < expr >)
(+ < var > < expr >) (10)mod (5) = 0 (+ x < expr >)

(+ x < expr >) (91)mod (3) = 1 (+ x (< unit op > < expr >))
(+ x (< unit op > < expr >)) (32)mod (5) = 2 (+ x (exp < expr >))

(+ x (exp < expr >)) (92)mod (3) = 2 (+ x (exp < var >))
(+ x (exp < var >)) (66)mod (5) = 1 (+ x (exp y))

Table 1: Example of the mapping process [Bernardino and Barbosa(2010)].

In this case, the strategy fromO’Neill and Ryan(2001) is to wrap the integer array and reuse its
values (two or more times). Verify that this can not be a good solution since it is possible that
the genotype-to-phenotype mapping process enters an infinite loop. An integer array composed
by values so that(int)mod(3) = 0 causes an infinite loop when used with the grammar from
Expression (1) and GE mapping-process will generate(< op >< expr >< expr >), (+(<
op >< expr >< expr >) < expr >), . . . , indefinitely. However, when this happens, it is
suggested byO’Neill and Ryan(2001) that the fitness of this candidate solution be set to the
worst possible value (GEVA, a well known implementation of GE, uses108). It is assumed that
the faulting solutions will be eliminated by the evolutionary process. However, good solutions
can be eliminated and computational time is unnecessarily spent by using this policy. To solve
this issueBernardino and Barbosa(2009b, 2010) proposed the repair method which generates
only valid solutions from genotype-to-phenotype mapping process.

4 GRAMMAR-BASED IMMUNE PROGRAMMING

Artificial Immune Systems are intelligent methodologies inspired by the biological immune
system used to solve real world problems. Natural immunity is composed by innate and adap-
tive immunities. The first one is composed by cells and mechanisms that defend the host
from attacks by other organisms in a non-specific manner. Thelater comprises highly spe-
cialized cells and processes that defend the organism from antigens. Besides, according to
Dasgupta and Nino(2008), most immune inspired algorithms are based on the adaptiveim-
munity behavior.de Castro and Timmis(2002) suggested that AISs can be applied to several
classes of problem, such as: pattern recognition, scheduling, control, machine-learning, infor-
mation systems security, and optimization.Bernardino and Barbosa(2009a) presents a survey
focused in the application of immune inspired algorithms tosolve optimization problems.

There is a selection mechanism which leads to the evolution of the immune system repertoire.
Also, on binding with a suitable antigen, activation of lymphocytes occurs. Once activated,
clones of the lymphocyte are produced expressing receptorsidentical to the original lympho-
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Figure 2: Diagram presenting CLONALG’s execution steps.

cyte that encountered the antigen. Any lymphocyte that has receptors specific to molecules of
the host organism are not cloned and die. Thus, only an antigen may cause this clonal expan-
sion. These set of actions are called clonal expansion and clonal selection theory. The increase
in the average of the affinity between the antibodies and antigens came from the somatic hyper-
mutation suffered by the generated clones followed by the clonal selection.

A clonal selection algorithm (CLONALG) was proposed byde Castro and von Zuben(2002)
and is the immune method used by the approach used here. The algorithm evolves the antibodies
inspired by the concept of clonal selection where each individual is cloned, hypermutated, and
those with higher affinity are selected. Normally, the mutation rate is inversely proportional to
the affinity of the antibody with respect to the antigen. Moreover, inspired by the bone marrow
behavior, new candidate solutions could be randomly generated to improve the exploration
capability of the algorithm.

The technique used here uses a binary string to encode each candidate solution and CLON-
ALG as the search engine. Figure2 presents a diagram describing CLOANLG’s execution
flux where “initialize population" randomly generates the initial population, “evaluate" de-
codes and calculates the antibodies’s affinity, “select" selects individuals to be cloned, “clone"
clones the selected antibodies, “hypermutate" applies thesomatic hypermutation in generated
clones, and “replace" generates new candidate solutions and update the population of antibod-
ies. Here an antibody is replaced by its best hypermuted clone if it is better than the original
one [Cutello et al.(2005)].

The hypermutation operator used here is the defined byde Castro and von Zuben(2002)
which defines the mutation rate as

mr(i) = e−ρfn(i)

wheremr(i) is the mutation rate of thei-th cell,fn(i) is the normalized affinity (assuming unity
for the best antibody) of thei-th candidate solution, andρ is a parameter.

Also, to keep the diversity of the population: (i) every antibody in population is selected to
be cloned and (ii) the number of clones is the same for all candidate solutions.

The procedure “evaluate" must be specially considered. This is where each antibody is
transformed from a binary string into a tree (i.e. a symbolicrepresentation) and evaluated with
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respect to the objective function in order to define its affinity value. The process to decode an
antibody into a tree is defined in Sections3 and4.1.

4.1 The repair method

Considering the CLONALG presented above, it is important tonotice that all antibodies
generate hypermutated clones. It means that a candidate solution which does not belongs to
the language will try to evolve, mostly producing new invalid solutions. Graphics showing the
maintenance of invalid solutions by this search mechanism over the evolutionary process can
be found inBernardino and Barbosa(2010). However, an “invalid" solution phenotype can be
repaired in mapping procedure to always be recognized by thegrammar.

In order to generate only valid candidate solutions, the repair method produces a tree in the
genotype-to-phenotype mapping process and fixes it when thearray of integers is exhausted
and the program is not complete. The information about how the repair must operate over a
invalid candidate solution is incorporated to the user defined grammar which now is defined by
a 5-tuple

G = {N,Σ, R, Rr, S}, (3)

whereN , Σ, R, andS are previously defined in the Expression (1). Rr is a set of production
rules, as defined in (2), to repair the generated tree. EachRf rule is defined as

(Σ ∪N)∗N (Σ ∪N)∗N (Σ ∪N)∗ ::= (Σ ∪N)∗Σ (Σ ∪N)∗ , (4)

This new set of rules must contain a backward step to create the tree when there are no more
integers available. Two constraints must be highlighted: the new rule must have less subtrees
than the original one and givenw ∈ Rf then the inverse transformation ofw is in R, or at least
can be reached by this one. It is important since a repaired program also must be recognized by
the original grammar.

An example ofRf , applicable to the grammar given in Expression (1) and used in the com-
putational experiments, can be found following

(< op >< expr >< expr >) ::= < expr > | x | y | 1 | 2 | 3

(< unit op >< expr >) ::= x | y | 1 | 2 | 3

The repair method is performed unstacking the integer values used in the mapping process.
Thus, the first integer in the sequence defines which rule fromRr (Rij) will be the repair rule.
However, not all possibilities fromRr (Rij) can be considered. The options will be those with a
number of non-terminals not larger than the number of non-null children of the invalid sub-tree.
Also, the types of the children must be considered. Thus the children of the invalid sub-tree can
be used by the new (valid) one.

Figure3 shows how the repair method fixes the supposed “invalid" solution while it is con-
structed using the grammar from Expression (3). In Figure3, the next integer in the sequence
is 91 and91mod(5) = 1. Thus the terminaly is chosen concluding the generation of the (now)
valid tree.

5 COMPUTATIONAL EXPERIMENTS

In order to study the performance of GIP when solving the problem of finding the symbolic
expression which better models the given observed data we apply the two alternatives presented
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Figure 3: The repair method [Bernardino and Barbosa(2010)].

here against a suite composed by fifteen problems. Almost allproblems are obtained fromInce
(1956) andBernardino and Barbosa(2010).

In all cases, 21 or 101 observed pairs(xi, yi) are assumed given, wherex takes equally
spaced values in the range of interest[a, b], andyi is the corresponding experimentally observed
value. Here synthetical data are used: the “observed" values were substituted by the valuesy(xi)
computed from the exact solution of the target ODE. The functions which define the observed
data and their range of interest[a, b] are presented in Table2.

To evaluate a candidate solution by integration we used a4-th order Runge-Kutta method.
The step-sizesh = b−a

m
or h = b−a

10m
were considered; the second one corresponding to a more

accurate but also more computationally expensive approach.
Considering the alternative of derivation of the observed data, we used two- or five-point

numerical approximations for the derivative in order to assess how the number of points affects
the solution quality.

GIP search mechanism is a clonal selection algorithm (CLONALG) with binary encoding
using population size=50, length of the integer array=100,each integer encoded with 8 bits (as
suggested byO’Neill and Ryan(2003)), number of clones=1,ρ = 5, and percentage of new ran-
domly generated antibodies=10%. These parameters were also used inBernardino and Barbosa
(2010) and are the same for all problems with no attempt of fine tuning. Two GIP variants were
considered according to the use (or not) of the repair method(indicated byR).

The error, to be minimized, is given by

error =
1

m

m
∑

i=1

(yi,exact − yi,approximate)
2 ,

where,m is the number of observed data-pairs. Two different values for m were used: 21 and
101.

For all problems the stop condition is 25,000 objective function evaluations, and the grammar
defined by Expression (1) is applied together with theRf presented in Section4.1.
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Functions used to generate the observed values Range
p01 y(x) = Axp +Bxq [0, 10]
p02 y(x) = Aepx +Beqx [0, 2]
p03 y(x) = A cos(qx) +B sin(qx) [0, 10]
p04 y(x) = epx (A cos(qx) +B sin(qx)) [0, 2]
p05 y(x) = A cosh

(

x
A

)

[0, 10]
p06 y(x) = xq (A +B log(x)) [0, 10]
p07 y(x) = epx (A+Bx) [0, 2]
p08 y(x) = (A+Bx) cos(qx) + (C +Dx) sin(qx) [0, 10]
p09 y(x) = epx [(A+Bx) cos(qx) + (C +Dx) sin(qx)] [0, 2]
p10 y(x) = Ax cos

(

q

x
+B

)

[0, 10]
p11 y(x) = A+ e−6x [0, 10]
p12 y(x) = A sin(Cx) [0, 10]

p13 y(x) = Ae−x2

[0, 10]

p14 y(x) =
√
A+Bx [0, 10]

p15 y(x) = log(A + x)(A+ x)− x [0, 10]

Table 2: Functions used to generate the observed values where we have setA = C = 1, B = D = p = 2, and
q = 3.

The comparisons are based on the average of the error. Also the two alternatives to solve
the symbolic regression problem considered here are compared evaluating the final solutions
achieved by the search process on all variations of each problem, that is, the solution found
using the numerical derivative is also evaluated integrating its final solution. It is important not
only to compare both approaches in the same way but also to verify the generalization power of
the final solutions found.

Concluding the comments about the computational experiment’s environment, JScheme1 and
Michael Thomas Flanagan’s Java Scientific Library2 are used by our implementation. JScheme
is a implementation with a very simple interface of the Scheme language while the second
library has a great collection of numerical methods, including the Runge-Kutta method consid-
ered here.

5.1 Performance profiles

The most common way of assessing the relative performance ofa setV of variantsvi, i ∈
{1, . . . , nv} is to define a setP of representative test-problemsfj , j ∈ {1, . . . , np} and then
test all variants against all problems measuring the performancetp,v of variantv ∈ V when
applied to problemp ∈ P . The performance indicator to be maximized here is the inverse of
the minimum objective function value found by variantv in test-problemp averaged over 30
runs.

Now a performance ratio can be defined as

rp,v =
tp,v

min{tp,v : v ∈ V } (5)

It is interesting to be able to assess the performance of the variants inV on a potentially
large set of test-problemsP in a compact graphical form. This can be attained following

1http://jscheme.sourceforge.net/jscheme/main.html
2http://www.ee.ucl.ac.uk/~mflanaga/java
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Dolan and Moré(2002) and defining

ρv(τ) =
1

np

|{p ∈ P : rp,v ≤ τ}|

where|.| denotes the cardinality of a set. Thenρv(τ) is the probability that the performance
ratio rp,v of variantv ∈ S is within a factorτ ≥ 1 of the best possible ratio. If the setP
is large and representative of problems yet to be tackled then variants with largerρs(τ) are
to be preferred. The performance profiles thus defined have a number of useful properties
[Dolan and Moré(2002); Barbosa et al.(2010)] such as (i)ρv(1) is the probability that variant
v will provide the best performance inP among all variants inV . If ρV 1(1) > ρV 2(1) then
variantV 1 was the winner in a larger number of problems inP than variantV 2, and (ii) a
measure of the reliability of variantv is its performance ratio in the problem where it performed
worst:Rv = sup{τ : ρv(τ) < 1}. As a result, the most reliable variant is the one that minimizes
Rv; that is, it presents the best worst performance in the setP :

v∗ = argmin
v∈V

Rv = argmin
v∈V

sup{τ : ρv(τ) < 1}

5.2 Evaluating the repair method

We first evaluated if the introduction of the repair method inthe GIP technique leads to better
results. GIP with and without repair method was applied to all problems presented in Table2
considering the two alternative ways of solving them (by numerical integration or derivation).
The variation of the number of observed values and internal parameters of the numerical al-
gorithms were also considered. Since there are fifteen problems, two set of data points (21
and 101), and two classes of numerical algorithms (integrative and derivative) with two inter-
nal parameters values for each (two values forh and two number of points considered by the
numerical derivative), then we have a total of15× 23 = 120 different tests to be performed.

Performance profiles (see Section5.1) are used to simplify our comparison task and they are
shown in Figure4. It is easy to see that, as verified inBernardino and Barbosa(2010), GIP with
the repair method performs better than without it. Thus the results obtained by the GIP-R are
used to evaluate the two alternative ways considered here toinfer an ODE model.

5.3 Evaluating the two alternative ways inferring ODEs using GIP

As presented in Section5.2, the GIP-R variant performs much better than the one withoutthe
repair method. Thus GIP-R is used to evaluate the two alternative ways to solve the symbolic
regression problem for ODEs.

First we consider solving the inference problem using the numerical integration of the can-
didate solutions and comparing the predicted values with the observed ones. Figure5 presents
the performance profiles corresponding to the solutions found.NI − 21− 1 andNI − 101− 1
correspond to the use of numerical integration,h = b−a

m
, and 21 or 101 observed values, respec-

tively. The same pattern is used for the labelsNI−21−10 andNI−101−10, when adopting
h = b−a

10m
. It is important to notice that it is assumed similarity between the errors what is not

a strongly assumption since the errors are the averaged square error in each observed value.
Figure5 shows that for both values ofh few observed values are preferred and results in best
reliability. Whenh = b−a

m
, the variant with more observed values is the most efficient.However

this does not happen whenh = b−a
10m

.
To verify the generalization of the solutions found by the variants using numerical integra-

tion we compared their performance with respect to the otherapproach, that is, by numerical
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Figure 4: Performance profiles comparing the GIP technique with and without the repair method.
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Figure 5: Performance profiles comparing the numerical integration approach with respect toh. h = b−a

m
and

h = b−a

10m
are used in plots (a) and (b), respectively.
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Figure 6: Performance profiles comparing the generalization of the solutions found by GIP-R using numerical
integration. The errors are evaluated against 101 observedvalues and a five-point numerical derivative.

derivative. We used the set of user defined parameters which results in maximum accuracy: 101
observed values and five-point numerical derivative approximation. The performance profiles
are presented in Figure6 where the problem’s variantNI − 21 − 10 achieved the best perfor-
mance. This result is important because it shows that it is not necessary to have many observed
values in order to obtain good results using numerical integration. Also the combination of a
large amount of data and a smarth can result in overfitting.

Figure7 shows the performance profiles corresponding to the solutions found using numeri-
cal derivative.ND − 21− 2 andND − 101− 2 correspond to the use of two-point numerical
derivative, and 21 or 101 observed values, respectively. The same pattern is used for the labels
ND − 21 − 5 andND − 101 − 5, where a five-point numerical derivative is adopted. As
with numerical integration comparisons, here we also assumed similarity between the errors.
The performance profiles show that the two-point numerical derivative approximation is better
when few observed values are available while five-point are preferred otherwise. In both cases,
the best efficiency is achieved with only 21 observed values.

Also, to verify the generalization of the solutions found bythe variants using numerical
derivative we compared their performance with respect to the other approach, that is, by the
numerical integration. The variants are evaluated using 101 observed values and the five-point
numerical derivative. The performance profiles are presented in Figure8 where the problem’s
variantND−101−2 achieved the best performance. Differently from the case using numerical
integration, here the best result is achieved using 101 observed values and with the two-point
numerical derivative approximation.

Since theNI − 21 − 10 andND − 101 − 2 variants presented the best results in the gen-
eralization test, they are used in the following comparisons where the approaches are evaluated
by both numerical derivative and integration. Figure9 presents the performance profiles corre-
sponding to the final solutions found by these variants evaluated by numerical integration with
101 observed values andh = b−a

10m
while Figure10 shows the results evaluating the solutions

with five-point numerical derivative approximation using 101 observed values. According to
these plots variantNI − 21 − 10 performs better thanND − 101 − 2 for both cases. That
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Figure 7: Performance profiles comparing the numerical derivative approach varying the number of points used in
the numerical derivative approximation in each observed value. Two and five points are used in plots (a) and (b),
respectively.
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Figure 8: Performance profiles comparing the generalization of the solutions found by GIP-R using numerical
derivative. The errors are evaluated with 101 observed values and a4-th order Runge-Kutta method withh = b−a

10m
.

(a) presents the curves withτ ∈ [1; 47] while in (b) τ ∈ [1; 1.85e+ 6].
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Figure 9: Performance profiles comparing the variantsNI − 21− 10 andND− 101− 2. The errors are evaluated
with 101 observed values and a4-th order Runge-Kutta method withh = b−a

10m
. (a) presents the curves with

τ ∈ [1; 105] while in (b) τ ∈ [1; 4e+ 15].

means thatNI − 21− 10 not only is able to infer a solution which better matches the observed
values by numerical integration but also finds solutions which generalize to the corresponding
numerical derivative.

6 CONCLUSIONS

This paper presented two alternative ways to solve model inference problems in the case
of ordinary differential equations (ODE) by means of symbolic regression techniques using
Grammar-based Immune Programming (GIP). Also, the use of the repair method previously
proposed was evaluated in this class of problems showing theefficiency of this approach.

The first way to solve the ODE inference problem consists in taking numerical derivatives
from the given data obtaining a set of approximationsȳ′i ≈ y′i while another way is to nu-
merically integrate the ODEy′ = f(x, y) corresponding to the candidate solutionf(x, y) and
compare the results with the observed values.

Computational experiments verified that when using numerical integration few observed val-
ues together with a small integration steph achieve better generalized results. When the numer-
ical derivative is used more observed values with a simpler numerical derivative approximation
(fewer points used) is the best option.

Comparing the best variants with respect to each approach, that is, the best using numerical
derivative and integration we could verify that, although more computationally expensive, the
use of numerical integration leads to better results.

We believe that (i) investigating the determination of the numerical constants, (ii) guiding
the search by minimizing not only the error but also the complexity of the solutions, and (iii) to
apply the technique to systems of ODEs are important research avenues for future work.
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Figure 10: Performance profiles comparing the variantsNI−21−10 andND−101−2. The errors are evaluated
using the five-point numerical derivative approximation with 101 observed values. (a) presents the curves with
τ ∈ [1; 78] while in (b)τ ∈ [1; 1.17e+ 5].
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