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Abstract. The problem of choosing the sizes of the members in order to minimize the weight of struc-
tures while satisfying stress, displacement, stability, and other applicable constraints is complicated by
the requirement of considering the non-linear structural behavior. The problem is further complicated
if the members are to be chosen from a discrete set of commercially available sizes, which is often the
case. Genetic Algorithms, inspired by Darwin’s theory of evolution by natural selection, are powerful
and versatile tools in difficult search and optimization problems. In this paper a genetic algorithm is
proposed to find the optimum discrete and continuous values of the cross-sectional areas of the mem-
bers that minimize the weight of planar frame structures presenting geometrically non-linear behavior.
Several computational experiments are discussed involving these structures.
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1 INTRODUCTION

Several types of structures, naturally, present a geometrically nonlinear behaviour and it is
very common such as the dome and space and planar frames, for example, particularly when
they are subjected to certain kind of loads. Sometimes, these structures may present instability
to be avoided choosing the adequate sizing of cross-sectional areas, topology, supports, etc.

When the optimum configuration of these structures is searched by using algorithms of op-
timization the designer should be aware in considering the effects of geometrically nonlinear
behaviour.

To define the optimum structural configuration, preliminary engineering analysis is usually
made of a few conventional possibilities, pre-defined by the architect, and the engineer only
chooses the sizes of the members to satisfy the applicable codes, considering economic aspects.
The normal and buckling stresses arising from the axial forces in the members, and the dis-
placements at the nodes, are the values that affect the sizes of the members and the final cost
of the structure. For this kind of structure it is interesting to carry out a nonlinear analysis to
obtain the axial forces and displacements.

Comparing the optimization using a linear analysis against a nonlinear analysis it is possible,
sometimes, to reach lighter weight considering the nonlinear case. Also, a nonlinear analysis
requires the interaction between axial forces and bending moments in members with a high
slenderness coefficient in order to check the stability of the structure Saka and Ulker (1991);
Ebenau et al. (2005); Kameshki and Saka (2007). If the structure demands the nonlinear analysis
the designer needs to adopt an structural optimization considering this behavior to define the
optimal design.

In Saka and Kameshki (1997) an algorithm is presented for the optimum design of three
dimensional rigidly jointed frames which takes into account the nonlinear response due to the
effect of axial forces in members. The stability functions for three-dimensional beam-columns
are used to obtain the nonlinear response of the frame. The problem of maximization of the
critical load or limit point of instability of shallow space trusses of constant volume is presented
in Kamat et al. (1984). In Pyrz (1990) a discrete optimization of trusses considering stability
constraints is discussed presenting examples of shallow truss structures when snap-through can
occur. Benchmark case studies in optimization of geometrically nonlinear structures can be
found in Suleman and Sedaghati (2005) where a structural optimization algorithm is developed
for truss and beam structures undergoing large deflections against instability.

In Saka (2007) an algorithm takes into account the nonlinear response of the dome structure
due to effect of axial forces on the flexural stiffness of members and the optimum solution of
the design problem is obtained using a coupled genetic algorithm.

A technique for the optimization of stability-constrained geometrically nonlinear shallow
trusses with snap-trough behavior is demonstrated using the arc length method and a strain en-
ergy density approach with a discrete formulation in Hrinda and Nguyen (2008). In Degertekin
et al. (2008) algorithms are presented for the optimum design of geometrically nonlinear steel
space frames using tabu search and genetic algorithm.

In this paper, a GA is proposed to minimize the weight of planar frame structures considering
both linear static and nonlinear static geometrically analysis. Discrete and continuous design
variables are considered corresponding to the sizing of the cross-sectional areas of the members.
To solve the nonlinear equilibrium equation of the structure the iterative Newton-Raphson’s
Method is adopted. The algorithm used in this paper are previously presented in Lemonge et al.
(2010) applied to optimization of geometrically nonlinear dome structures.
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This paper is organized as follows. The structural optimization problem is presented in Sec-
tion 2 The geometrically nonlinear approach is summarized in Section 3 The genetic algorithm
and the constraint handling technique are discussed in Section 4 Numerical experiments are
presented in Section 5 Finally, conclusions are presented in Section 6.

2 THE STRUCTURAL OPTIMIZATION PROBLEM

For a given objective function f(x), where x ∈ Rn is the vector of design/decision vari-
ables, a standard structural sizing optimization problem reads: Find the set of areas x =
{A1, A2, . . . , AN} which minimizes the volume of the structure

f(x) =
N∑

i=1

Aili, (1)

where li is the length of the i-th member of the frame and N is the number of members. When
shape design variables are considered the values of li change and the weight depends not only
on the values of Ai, but also on the joint coordinates of the structure.

The problem is usually subject to inequality constraints gp(x) ≥ 0, p = 1, 2, . . . , p̄ and
sometimes equality constraints hq(x) = 0, q = 1, 2, . . . , q̄. Also, the variables are usually
subject to bounds xL

i ≤ xi ≤ xU
i but this type of constraint is trivially enforced in a GA and

does not require further consideration here. The most common constraints are displacements
constraints: |dj|

dmax

− 1 ≤ 0, k = 1, 2, . . . , pd (2)

where dj is the displacement at the j-th global degree of freedom, dmax is the maximum allow-
able displacement, and pσ +pd = p̄. Additional constraints such as a minimum natural vibration
frequency or more realistic buckling stress limits can also be included.

3 GEOMETRICALLY NONLINEAR APPROACH

Although the material of the structures discussed in this paper present a linear elastic be-
havior, geometrical non-linearity needs to be considered in the analysis. In order to provide an
exact structural analysis, the equilibrium equation in each joint of the structure must be written
considering the final geometry of the structure. In these equations nonlinear terms involving
strain and displacement must be considered and the overall equilibrium equation can be written
as:

[KT ] {u} = {P ∗} (3)

where
[KT ] = [KE] + [KG] (4)

and [KT ] is called overall tangent stiffness matrix of the structure, [KE] is known as the over-
all linear elastic stiffness matrix and [KG] is the geometric stiffness matrix. The matrix [KG]
depends on the elastic and geometric stiffness matrix and {P ∗} is the vector of unbalanced
load. To solve the equation (4) an iterative scheme is required and here the Newton-Raphson’s
Method is adopted. Newtons’s Method is summarized as follow:

1. Perform the linear analysis of the structure and obtain the displacements for the first load
step;
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2. Update the joint coordinates of the structure considering the displacements obtained in
the previous step;

3. Evaluate the internal member actions;

4. Evaluate, at each node, the resultant of the internal member actions in the global axes;

5. Evaluate the unbalanced load vector that is the difference between the member actions
obtained in the previous step and the load applied at the structure in this load step;

6. Assemble the stiffness matrix and check its determinant. The loss of stability is identified
when a element of the main diagonal of the system of equations has a value least or equal
to zero. On the other hand, the structure is analyzed considering the unbalanced load
vector and new incremental displacements are obtained;

7. Update the node coordinates;

8. Repeat steps 3 to 7 until the unbalanced vector satisfies the error tolerance.

It is important to note that in the nonlinear procedure used in this paper when the loss of
stability occurs the current displacements and internal actions in the members are amplified
by a factor of 100. This candidate solution is strongly penalized by the penalty scheme and
consequently has a low position in the rank of the population.

4 THE GA AND THE PENALTY SCHEME

A rank-based selection scheme is adopted in the binary-coded GA used here where the se-
lection scheme operates on the current population sorted according to the values of the fitness
function where better solutions have higher rank. The candidate solutions presenting lower
fitness values will have a higher rank considering weight minimization problems discussed in
this paper. A form of elitism is used where the best individual is always copied into the next
generation along with one copy where one randomly chosen bit has been changed. The recom-
bination of the genetic material of the selected “parent" chromosomes uses the standard uniform
crossover operator applied with probability equal to pcross = 0.8. A mutation operator is intro-
duced with a mutation rate pm = 0.03 applied to each bit in the offspring chromosomes. The
whole process is repeated for a given number of generations or until certain stopping criteria
are met. A pseudo-code of the binary GA used here is displayed in the Figure 1.

The adaptive penalty method introduced by Barbosa and Lemonge (2002), and applied to
structural optimization problems in Lemonge and Barbosa (2004), will be applied here to en-
force all the mechanical constraints considered in the numerical experiments (stresses and dis-
placements). Defining the amount of violation of the j-th constraint by the candidate solution x
as

vj(x) =

{ |hj(x)|, for an equality constraint,
max{0,−gj(x)} otherwise

it is common to design penalty functions that grow with the vector of violations v(x) ∈ RM

whereM = p̄ + q̄ is the number of constraints to be penalized. The fitness function is defined
as Barbosa and Lemonge (2002)

F (x) =

{
f(x), if x is feasible,
f(x) +

∑M
j=1 kjvj(x) otherwise

(5)
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Algorithm generational GA
Initialize the population P
Evaluate individuals in population P using a linear or nonlinear analysis

repeat
Copy elite to P’
repeat

Select 2 or more individuals in P
Apply a recombination operator with probability pc

Apply mutation operator with rate pm

Insert new individuals in P’
until population P’ complete
Evaluate individuals in population P’ using a linear or nonlinear analysis
P← P’

until stopping criteria are met
end

Figure 1: A standard binary encoded genetic algorithm.

where

f(x) =

{
f(x), if f(x) > 〈f(x)〉,
〈f(x)〉 otherwise (6)

and 〈f(x)〉 is the average of the objective function values in the current population.
The penalty parameter is defined at each generation by:

kj = |〈f(x)〉| 〈vj(x)〉∑M
l=1[〈vl(x)〉]2 (7)

and 〈vl(x)〉 is the violation of the l-th constraint averaged over the current population.

5 NUMERICAL EXPERIMENTS

Three experiments are discussed in this section: a 3-member, 5-member and 6-member pla-
nar frame. For each one of them, the discrete and continuous as well as the linear and nonlinear
cases are analyzed where the design variables are the dimensions of the cross-sectional areas
of the members, adopted here as rectangles. The members members were discretized by using
six finite elements and for each experiment they are linked in one and two member groups in
independent analysis.

For the discrete cases the dimensions of the sides of the cross-sectional areas are to be chosen
from 128 values defined in Table 1. For the continuous case the bounds for the design variables
are 0.5 in ≤ D1, D3 ≤ 3.0 in (orthogonal dimensions to the plane of the frame) and 5.0 in
≤ D2, D4 ≤ 30.0 in (dimensions in the plane of the frame). The Young’s modulus is equal
to E = 3.0 × 10 7 Psi and density of 0.10 lb/in3. The constraints consider the maximum
displacement of any node of the frame, in any direction, equal to 0.29 in.

When the members are linked in one group only the dimensions D1 and D2 are used for all
members. Whereas, the members are linked in two groups, the vertical members have the same
dimensions of the cross-sectional areas (D1 and D2) and the horizontal members have the same
dimensions of the cross-sectional areas (D3 and D4), respectively. In other words D1 and D3

are the width of members and D2 e D4 the heights of the members, respectively.
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For all experiments, four independent runs were performed considering 100 individuals in
the population evolved for 60 generations. The number of bits was set equal to 30 for each
design variable for the continuous case. When the nonlinear analysis is performed, ten load
steps and ten iterations, per load step, were adopted in the iterative Newton-Raphson’s Method.

Table 1: 128 discrete values for the dimensions of the cross-sectional areas of the members.

Dimension in Dimension in Dimension in Dimension in
1 0.5 33 6.9 65 13.3 97 20.1
2 0.7 34 7.1 66 13.5 98 20.5
3 0.9 35 7.3 67 13.7 99 20.9
4 1.1 36 7.5 68 13.9 100 21.3
5 1.3 37 7.7 69 14.1 101 21.7
6 1.5 38 7.9 70 14.3 102 22.1
7 1.7 39 8.1 71 14.5 103 22.5
8 1.9 40 8.3 72 14.7 104 22.9
9 2.1 41 8.5 73 14.9 105 23.3
10 2.3 42 8.7 74 15.1 106 23.7
11 2.5 43 8.9 75 15.3 107 24.1
12 2.7 44 9.1 76 15.5 108 24.5
13 2.9 45 9.3 77 15.7 109 24.9
14 3.1 46 9.5 78 15.9 110 25.3
15 3.3 47 9.7 79 16.1 111 25.7
16 3.5 48 9.9 80 16.3 112 26.1
17 3.7 49 10.1 81 16.5 113 26.5
18 3.9 50 10.3 82 16.7 114 26.9
19 4.1 51 10.5 83 16.9 115 27.3
20 4.3 52 10.7 84 17.1 116 27.7
21 4.5 53 10.9 85 17.3 117 28.1
22 4.7 54 11.1 86 17.5 118 28.5
23 4.9 55 11.3 87 17.7 119 28.9
24 5.1 56 11.5 88 17.9 120 29.3
25 5.3 57 11.7 89 18.1 121 29.7
26 5.5 58 11.9 90 18.3 122 30.1
27 5.7 59 12.1 91 18.5 123 30.5
28 5.9 60 12.3 92 18.7 124 30.9
29 6.1 61 12.5 93 18.9 125 31.3
30 6.3 62 12.7 94 19.1 126 31.7
31 6.5 63 12.9 95 19.3 127 32.1
32 6.7 64 13.1 96 19.5 128 32.5

5.1 The 3-member frame

The 3-member plane frame depicted in Figure 2 is subjected to a weight minimization con-
sidering a load of 350000 lbs applied in the vertical direction and 1000 lbs in the horizontal
direction at node 1.
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240 in
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0 
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1

350000 lbs 350000 lbs

1000 lbs

Figure 2: The 3-member planar frame.

5.2 The 5-member frame

The 5-member planar frame depicted in Figure 3 is subject to a weight minimization consid-
ering vertical loads of 350000.0 lbs of magnitude applied in the vertical direction at the nodes
1,7 and 13 and a load of 1000 lbs applied in the horizontal direction at the node 1.

240 in

1

350000 lbs 350000 lbs

1000 lbs

350000 lbs

240 in

24
0 

in

Figure 3: The 5-member planar frame.

5.3 The 6-member frame

The structure depicted in Figure 4 is a 6-member planar frame. The structure is subjected to
a weight minimization considering vertical loads of 350000.0 lbs of magnitude applied in the
vertical direction at the nodes 1 and 7 and a load of 1000 lbs in the horizontal direction at the
nodes 1 and 18.

5.4 Results

Tables 2,3, 4 and 5 present the best solution found for the discrete and continuous cases with
one and two member groups for all experiments. In these tables “dv” means design variable
and "LIN" and "NL", linear and nonlinear analysis, respectively. All solutions shown in these
Tables are rigorously feasible where the displacements are into the allowable required limits for
these constraints.
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Figure 4: The 6-member planar frame.

Table 2: Final weights in lbs for the discrete cases – members linked in one group.

3-member 5-member 6-member
dv LIN NL LIN NL LIN NL
D1 0.5 0.5 0.5 0.5 0.9 0.9
D2 20.5 19.5 19.9 20.1 24.1 28.1
W 723.6 709.2 1194.0 1206.0 3123.4 3641.8

Table 3: Final weights in lbs for the discrete cases – members linked in two groups.

3-member 5-member 6-member
dv LIN NL LIN NL LIN NL
D1 0.9 0.9 0.5 0.9 0.9 0.9
D2 11.9 11.7 21.3 12.5 26.5 25.3
D3 0.5 0.5 0.5 0.5 0.5 0.5
D4 10.5 5.1 0.9 14.1 15.1 27.3
W 640.1 575.3 788.4 1148.4 2652.0 3812.6

Table 4: Final weights in lbs for the continuous cases – members linked in one group.

3-member 5-member 6-member
dv LIN NL LIN NL LIN NL
D1 0.617 0.519 0.563 0.506 0.900 0.900
D2 15.951 18.786 17.507 19.478 23.433 27.442
W 709.200 702.000 1182.000 1182.000 3036.877 3556.555
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Table 5: Final weights in lbs for the continuous cases - members linked in two groups.

3-member 5-member 6-member
dv LIN NL LIN NL LIN NL
D1 0.505 0.665 0.557 0.901 0.900 0.900
D2 20.805 15.779 18.852 12.453 26.232 29.630
D3 0.502 0.500 0.500 0.500 0.506 0.700
D4 5.001 5.006 0.500 14.029 14.742 20.806
W 564.365 564.090 768.013 1144.560 2624.797 3259.554

For the 3-member planar frame one can observe that the optimization in all cases considering
nonlinear analysis reached lighter weights than the others considering linear analysis. As an
example, the discrete case considering two member groups, the weight of the optimized frame
was 575.3 lbs against 640.1 lbs considering linear analysis. The difference between the final
weigths was 10.12 %. The 3-member planar frame presented very similar final weights when
the continuous case with two member groups is considered (564.365 ls (LIN) and 564.090 lbs
(NL)). On the other hand, the 5-member and the 6-member planar frames present significant
differences between their final wights: 768.013 lbs (LIN) against 1144.560 lbs (NL) (33.01 %),
for the 5-member and, 2624.797 lbs (LIN) against 3259.554 lbs (LN) (19.47 %)

When one member group is adopted for the 5-member planar frame, in the discrete case,
the best weight found corresponds to the optimization using linear analysis (1194.0 lbs against
1206.0 lbs). For the two member groups the best final weight, again, was obtained considering
the linear analysis (788.4 lbs against 1148.4 lbs). In this case the difference between the final
weights was significant and equal to 31.35 %. When the continuous case is adopted with one
member group, the final weights were exactly the same (1182.0 lbs) but the dimensions D1

and D2 of the cross-sectional areas were distincts as observed from the Table 4. Finally, when
the members are inked in two groups, for the continuous cases, the final weights were equal to
768.013 lbs in the linear and 1144.560 lbs in the nonlinear analysis, respectively. In this case
the difference between the final weights is equal to 32.90 %.

For the discrete case, using one group, the optimization of the 6-member planar frame
reached a final weight equal to 3123.4 lbs in the linear against 3641.8 ls in the nonlinear anal-
ysis, respectively, corresponding to a difference between the weights equal to 14.23 %. When
2 groups were considered, the final weights were 2652.0 lbs and 3812.6 lbs, for linear and non-
linear analysis respectively, with 30.44 % of difference between these values. Analogously, the
final weights for discrete and continuous cases, when the members are linked in one and two
groups, provided differences equals to 14.61 % and 19.47 %.

One can observe from the results of the analysis the importance of carry out the linear and
nonlinear procedures since these analysis can lead to different final weights or it is possible
to reach similar final weights but distinct cross-sectional characteristics of the members. The
designer have to be attempt in order to choice the adequate analysis to be conducted in the
structural optimization.

The performance of GA for each experiment is provided in Table 6 and Table 7 where the
first part of the tables correspond to the cases where the members are linked in one group and
the second part in two groups, respectively.

The evolution of the best solutions during the optimization process is presented in the graph-
ics of the Figures 5 to 10.
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Table 6: Performance of the GA for each experiment continuous.

best average median std. dev. worst
3-member LIN 709.200 709.200 709.200 0.000 709.200

NL 702.000 708.269 707.338 5.729 716.400
5-member LIN 1182.000 1185.037 1188.075 5.175 1194.000

NL 1182.000 1182.000 1182.000 0.000 1182.000
6-member LIN 3036.877 3037.102 3037.071 0.150 3037.390

NL 3556.555 3556.625 3556.618 0.067 3556.707
3-member LIN 564.364 605.342 589.124 43.197 678.755

NL 564.090 566.677 564.339 2.996 570.939
5-member LIN 768.013 812.349 789.972 54.393 901.437

NL 1144.562 1148.609 1152.053 4.357 1155.777
6-member LIN 2624.797 2659.573 2657.029 26.529 2699.434

NL 3259.554 3296.676 3277.668 42.497 3371.813

Table 7: Performance of the GA for each experiment discretes.

best average median std. dev. worst
3-member LIN 723.60 723.60 723.60 0.00 723.60

NL 709.20 711.72 709.20 4.36 719.28
5-member LIN 1194.00 1262.40 1285.20 39.49 1285.20

NL 1206.00 1212.00 1206.00 10.39 1230.00
6-member LIN 3123.36 3123.36 3123.36 0.00 3123.36

NL 3641.76 3641.76 3641.76 0.00 3641.76
3-member LIN 640.08 642.24 640.08 3.74 648.08

NL 575.28 591.36 581.76 21.04 626.64
5-member LIN 788.40 851.28 850.56 62.88 915.60

NL 1148.40 1148.00 1148.40 0.00 1148.40
6-member LIN 2652.00 2657.28 2657.28 5.28 2662.56

NL 3812.64 3858.24 3871.68 26.68 3876.96
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Figure 5: Evolution of the best discrete solution of the
3-member frame.

Figure 6: Evolution of the best continuous solution of
the 3-member frame.

Figure 7: Evolution of the best discrete solution of the
5-member frame.

Figure 8: Evolution of the best continuous solution of
the 5-member frame.

Figure 9: Evolution of the best discrete solution of the
6-member frame.

Figure 10: Evolution of the best continuous solution of
the 6-member frame.
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Figures from 11 to 14 show the displacement of the node 1 in the horizontal direction
for each load step for the best solutions found for discrete and continuous cases, respectively,
considering the members linked in one and two groups. It is very important to observe that the
aspects of the curves presented by the analysis of the 3-member plane frame show a gain of
stiffness of the structure. This fact justify the ligther weight obtained for the strucuture at the
end of optimization considering nonlinear analysis in comparison with the linear analisys (709.2
lbs (NL) against 723.6 lbs (LIN), using one member group and 575.3 lbs (NL) against 640.1
lbs (NL), considering two member groups). For the 5- and 6-member plane frame the nonlinear
analysis presented heavier final weights considering nonlinear analysis than those obtained with
the linear analysis. The structures present a loss of stiffness and it can be observed from the
graphics of the Figures 15 to 22. This loss of stiffness strongly induces an increase of mass in
the members (areas of the cross-sections), of these structures in order to avoid displacements
greater than the limits imposed by the structural optimiation problem. Besides, it is possible to
observe distincts mechanical behaviour between the structures analyzed by linear and nonlinear
analysis. In this way, these structures became heavier in comparison with others optimized
using linear analysis.

Observing all graphics, it is easy to note a more pronounced nonlinear behavior of the 3-
member and 5-planar frames whereas in the 5-member planar frame this behavior is less per-
ceptible.

Figure 11: 3-member planar frame, Displacements X
LoadStep for the continuous case using one member
group.

Figure 12: 3-member planar frame, Displacements X
LoadStep for the discrete case using one member group.

6 CONCLUSIONS

In this paper, a GA is used to minimize the weight of planar frame structures considering
linear static analysis as well as nonlinear static analysis. the design variables are the dimensions
of the cross-sectional areas of the members ant they can be discrete or continuous. To solve
the nonlinear equilibrium equation of the structure the iterative Newton-Raphson’s Method was
adopted. The algorithm used in this paper are previously presented in Lemonge et al. (2010)
applied to optimization of geometrically nonlinear dome structures.

One can observe from the results of the analysis the importance of carry out the linear and
nonlinear procedures since these analysis can lead to different final weights. It is possible to
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Figure 13: 3-member planar frame, Displacements X
LoadStep for the discrete case using one member group

Figure 14: 3-member planar frame, Displacements X
LoadStep for the discrete case using one member group

Figure 15: 5-member planar frame, Displacements X
LoadStep for the continuous case using one member
group.

Figure 16: 5-member planar frame, Displacements X
LoadStep for the discrete case using one member group
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Figure 17: 5-member planar frame, Displacements X
LoadStep for the continuous case using two member
groups.

Figure 18: 5-member planar frame, Displacements
X LoadStep for the discrete case using two member
groups.

Figure 19: 6-member planar frame, Displacements X
LoadStep for the continuous case using one member
group.

Figure 20: 6-member planar frame, Displacements X
LoadStep for the discrete case using one member group.
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Figure 21: 6-member planar frame, Displacements X
LoadStep for the continuous case using two member
groups.

Figure 22: 6-member planar frame, Displacements
X LoadStep for the discrete case using two member
groups.

reach lighter weights considering nonlinear analysis in the structural optimization process when,
for example, the structure present a gain of stiffness leading to advantages with respect to the
economic aspects. Also it is possible to reach similar final weights but distinct cross-sectional
characteristics of the members and, in this way, the designer have to be attempt in order to
choice the adequate analysis to be conducted in the structural optimization.

The GA used in this paper has been improved in other aspects to solve more complex op-
timization problems considering nonlinear and snap-through analysis as well as problems of
maximization of the critical load or limit point of instability.

Also, several aspects of the iterative methods have to be considered in order to accelerate the
search of the optimum solutions. Aiming to provide a more appropriate statistical analysis, the
number of runs of the GA in the numerical experiments should be increased in the future works.

6.1 Acknowledgments

The authors would like to thank the support from CNPq (grants 308317/2009-2 and 301527/2008-
3), FAPEMIG (TEC 425/09), and FAPERJ (grants E-26/102.825/2008 and E-26/100.308/2010).

REFERENCES

Barbosa H. and Lemonge A. An adaptive penalty scheme in genetic algorithms for constrained
optimization problems. In GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conf., pages 287–294. Morgan Kaufmann Publishers, New York, 2002.

Degertekin S., Saka M., and Hayalioglu M. Optimal load and resistance factor design of geo-
metrically nonlinear steel space frames via tabu search and genetic algoruthms. Engineering
Structures, 30:197–205, 2008.

Ebenau C., Rotsschafer J., and Thierauf G. An advanced evolutionary strategy with an adap-
tive penalty function for mixed-discrete structural optimisation. Advances in Engineering
Software, 36:29–38, 2005.

Hrinda G. and Nguyen D. Optimization of stability-constrained geometrically nonlinear shallow
trusses using an arc lenght sparse method with a strain energy density approach. Finite
Elements in Analysis and Design, 44:933–950, 2008.

Mecánica Computacional Vol XXIX, págs. 9271-9286 (2010) 9285

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



Kamat M., Khot N., and Venkaya V. Optimization of shallow trusses against limit point insta-
bility. AIAA Journal, 22(3):403–408, 1984.

Kameshki E. and Saka M. Optimum geometry of nonlinear braced domes using genetic algo-
rithm. Computers and Structures, 85:71–79, 2007.

Lemonge A. and Barbosa H. An adaptive penalty scheme for genetic algorithms in structural
optimization. Int. Journal for Numerical Methods in Engineering, 59(5):703–736, 2004.

Lemonge A.C.C., Silva M.M., Barbosa H.J., Borges C.C., Lima E.B., and Santos P.P. A ge-
netic algorithm for optimization of geometrically nonlinear truss structures. 9o SIMMEC -
Simpósio de Mecânica Computacion al, 2010.

Pyrz M. Discrete optimization of trusses with stability constraints. Engineering Optimization,
16(2):79–89, 1990.

Saka M. Optimum topological design of geometrically nonlinear single layer latticed domes
using coupled genetic algorithm. Computers and Structures, 85(21–22):1635–1646, 2007.

Saka M. and Kameshki E. Optimum design of nonlinear elastic framed domes. Advances in
Engineering Software, 29(7–9):519–528, 1997.

Saka M. and Ulker M. Optimum design of geometrically non-linear space trusses. Computers
and Structures, 41:1387–1396, 1991.

Suleman A. and Sedaghati R. Benchmark case studies in optimization of geometrically nonlin-
ear structures. Structural and Mustidisciplinary Optimization, 30:273–296, 2005.

A. LEMONGE, M. SILVA, H. BARBOSA, C. BORGES, E. LIMA9286

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


	INTRODUCTION
	THE STRUCTURAL OPTIMIZATION PROBLEM
	GEOMETRICALLY NONLINEAR APPROACH
	THE GA AND THE PENALTY SCHEME
	NUMERICAL EXPERIMENTS
	The 3-member frame
	The 5-member frame
	The 6-member frame
	Results

	CONCLUSIONS
	Acknowledgments


