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Abstract. A parameter-less adaptive pendty scheme for steady-state genetic agorithms applied to
constrained optimization problems was proposed previously by two of co-authors of this paper. For each
constraint, a penalty parameter is adaptively computed along the run according to information extracted
from the current population such as the existence of feasible individuals and the level of violation of
each constraint. In this paper the performance of this scheme is extended using test problems from the
mechanical engineering design, aso, largely tested in the evolutionary computation literature. Using
real coding, rank-based selection and operators available in the literature very competitive results are
obtained and those are compared with other techniques.
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1 INTRODUCTION

Evolutionary algorithms (EAs) are weak search algorithnigctv can be directly applied
to unconstrained optimization problems where one seekaf@ement (vector of design vari-
ables), belonging to the search space, which minimizes éximizes) a real function. Such EA
usually employs a fitness function closely related to théd fenction. To handle constrained
optimization problems, it is usual to consider a penaltyeseé coupled to the fitness function.

The straightforward application of EAs to constrained mization problems (COPSs) is not
possible due to the additional requirement that a set oftcaings must be satisfied. Several
difficulties may arise: (i) the objective function may be efided for some or all infeasible ele-
ments, (ii) the check for feasibility can be more expendnamtthe computation of the objective
function value, and (iii) an informative measure of the @egof infeasibility of a given candi-
date solution is not easily defined. It is easy to see that #\mih the objective functiorf ()
and a measure of constraint violatiof:) are defined for alk € S it is not possible to know
in general which of two given infeasible solutions is clogethe optimum and thus should be
operated upon or kept in the population.

The techniques for handling constraints within EAs can besified either adirect (feasible
or interior)Shoenauer and Michalewi¢¥996, Koziel and MichalewicZ1999, Liepins and Potter
(1991); Orvosh and Davig1994, when only feasible elements it are considered or exte-
rior indirect that considers both feasible and infeasible elements gluhie search process
Adeli and Cheng1994), Barbosg1999, Surry and Radcliff€1997), Runarsson and Y&@000),
andvan Kampen et a(1996.

A parameter-less adaptive penalty scheme for steady-géatetic algorithms applied to
constrained optimization problems was previously progasethe literature by Barbosa and
LemongeBarbosa and Lemong@003 and used to find solutions in a suite of functions ex-
haustively tested as benchmark problems. For each camtstigienalty parameter is adaptively
computed along the run according to information extracteohfthe current population such as
the existence of feasible individuals and the level of \tiolaof each constraint. The idea is
that the values of the penalty coefficients should be disteidhin a way that those constraints
which are more difficult to be satisfied should have a relatili@her penalty coefficient.

In this paper the performance of this scheme is extended usst problems from the me-
chanical engineering design, also, largely tested in tb&ugwonary computation literature. Us-
ing real coding, rank-based selection and operators &lila the literature very competitive
results are obtained and those are compared with otheritpe®

In the next section the constrained optimization problemefned. The adaptive penalty
method for real-coded steady-state GA and is presentet8ecpresents experimental study
with test-problems from the mechanical engineering delsigrature and the paper closes with
some conclusions in Section 5.

2 CONSTRAINED OPTIMIZATION PROBLEM

A standard constrained optimization problemAf can be thought of as the minimization
of the objective functiory(z), subject to inequality constraintg(z) > 0, p = 1,2,... ,p as
well as equality constraints,(z) = 0, ¢ = 1,2, ... ,¢. Additionally, the variables are usually
subject to bounds? < z; < 2V and very often further constrained to belong to a given finite
set of pre-defined values, as in design optimization probletmen parts must be selected from
commercially available types. A mixed discrete-continsicanstrained optimization problem
arises. For such optimization problems the constraintsrafact a complex, often computa-
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tionally expensivejmplicit function of the design variables. Constraint handling teghes
which do not require the explicit form of the constraints aachot require additional objective
function evaluations are thus most valuable. In the nexi@ethe Adaptive Penalty Method
for the real-coded steady-state GA is described.

3 THE ADAPTIVE PENALTY METHOD FOR THE REAL-CODED STEADY-STATE
GA

The Adaptive Penalty Method (APM) scheme presenteBarbosa and Lemong@002
adaptively sizes the penalty coefficient of each constreimtg information from the population
such as the average of the objective function and the lewabtdtion of each constraint. The
fitness function is written as:

f(x), if z is feasible
F(z) = { h(z) + >, kjv;(z) otherwise (1)
where
f(), if f(z) > (f(z)),
h(z) = { (f(x)) otherwise 2)

and(f(x)) is the average of the objective function values in the ciipepulation. The penalty
parameter is defined at eagbneratiorby:

_ {w@)
2m [(u(@)]?

and(v;(z)) is the violation of thé-th constraint averaged over the current population. Tha id
is that the values of the penalty coefficients should beiligied in a way that those constraints
which are more difficult to be satisfied should have a relatiieggher penalty coefficient.

The straightforward extension of the penalty procedure@@sed inBarbosa and Lemonge
(2002 to the steady-state case would be to periodically updatedmalty coefficients and the
fitness function values for the population.

Further modifications were then proposed for the steadg-s&sion of the penalty scheme.
The fitness function is still computed according 1. However,h and the penalty coefficients
are redefined respectively as

ki = |(f(@))] 3)

h— f (Tworst) if there is no feasible element in the population
- f(xbestfeasible) otherwise

(4)

)
ES SURIETNE ®)

Also, every time a better feasible element is found (or thaloer of new elements inserted into
the population reaches a certain levely redefined and all fithess values are recomputed using
the updated penalty coefficients. The updating of each peoaéfficient is performed in such

a way that no reduction in its value is allowed. For convecgeone should keep the objective
function value and all constraint violations for each indual in the population. The fithness
function value is then computed usirg),((5), and ().
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Itis clear from the definition o in (4) that if no feasible element is presentin the population
one is actually minimizing a measure of the distance of thé/iduals to the feasible set since
the actual value of the objective function is not taken irtocunt. However, when a feasible
elementis found then itimmediately enters the populatioces after updating all fithess values
using @), (5), and (), it becomes the element with the best fitness value.

A pseudo-code for the proposed adaptive penalty schemesfeady-state GA can be written
as shown in Figur&. Numerical study are then presented in the following sectio

1: procedure RCSS

2 Initialize population

3 Compute objective function and constraint violation value
4: if there is no feasible elemetiten

5: h < worst objective function value

6 else

7 h < objective function value of best feasible individual
8 end if

9: Compute penalty coefficients

10: Compute fitness values

11: ni nser =0

12: for : = 1:maxeval do

13: Select operator

14: Select parent(s)

15: Generate offspring

16: Evaluate offspring

17: Keep best offspring

18: if offspring is the new best feasible elemémen

19: update penalty coefficients and fitness values
20: ni nser =0

21: end if

22: if offspring is better than the worst in the populatiben
23: worst is removed

24: offspring is inserted

25: ni nser =ni nser +1

26: end if

27: if ni nser/ popsi ze >r then

28: update penalty coefficients and fitness values
29: ni nser =0

30: end if

31 end for
32: end procedure

Figure 1. Pseudo-code for the steady-state GA with adapémalty schemen( nser is a counter for the number
of offspring inserted in the populatiopppsi ze is the population sizeyaxeval is the maximum number of
function evaluation and is a fixed constant that was set to 3 in all cases).
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4 EXPERIMENTAL STUDY

Six mechanical engineering optimization problems are ueesksess the performance of
the proposed algorithm when compared with alternative tcaims handling techniques: Arti-
ficial Immune Systems hybridized with a GA (AIS-GA and AIS-Gyfrom Bernardino et al.
(2007); AIS-GA¥ from Bernardino et al(2008; Adaptive Penalty Method (APM), presented
in Bernardino et al(2008 —here the superscript is added in order to inform the use of a "bi-
nary code"—; The Stochastic Ranking technique (SR) prapbgdrunarsson and Ya(2000
and used within a generational GA with a binary code presem&ernardino et al(2008.
Also, some algorithms are used in the comparisons: The Eual$trategy (ES-Coello) pro-
posed irM.M. Efrén and Ricard¢2003; The AIS-Coello presented M.-Montes et al(2003;
The GA (GAOS-Erbatur) proposed Erbatur et al(2000. The results of the present work are
defined by APM< where the notationc means the use of a "real code"

The APM* and the SR method presentedBarnardino et al(2008 used a population size
of 100 individuals, and a mutation rate equal to 0.004. A#itism is implemented: a copy
of the best individual remains in the next generation. Fer AhS-GA the population size
was set to 50, the mutation rate was set to 0.01, and elitisminvplemented (the two best
individuals are copied to the next generation). Also, eadibady generates only one clone,
and the maximum mutation rate of the AIS was set to 0.03. Almbégues use a binary Gray
code with 25 bits for each continuous variable, and a cregaobability equal to 0.9.

The simple real-coded steady-state GA (AP)Mwith a linear ranking selection scheme was
implemented using: (i) random mutation (which modifies alanly chosen variable of the se-
lected parent to a random value uniformly distributed betwte lower and upper bounds of the
corresponding variable), (i) non-uniform mutation (asgpwsed by Michalewickichalewicz
(1992), (iii) Muhlenbein’s mutation (as described Muhlenbein et al.(1991)), (iv) multi-
parent discrete crossover (which generates an offspringubgomly taking each allele from
one of then, selected parents), and (v) Deb’s SBX crossover as desarnbab and Agrawal
(1995.

No parameter tuning was attempted. The same probabilitppliGation (namely 0.2) was
assigned to all operators abovg,was set to 4, ang was set to 2 in SBX. This set of values
was applied tall test-problems, solved by AP in order to demonstrate the robustness of
the procedure. The values of the best, median, averagelasthdeviation, the worst and the
number of runs that reached feasible solutions are prasémteach experiment corresponding
to a number of function evaluations set for each of them.

4.1 The Tension/Compression Spring Design

The objective is to minimize the voluméof a coil spring under a constant tension/compression
load. The design variables are the number of active coile@tpring (V = z; € [2,15]), the
winding diameter D = x, € [0.25,1.3]), and the wire diameter(= z3 € [0.05,2]). The
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volume and the mechanical constraints are given by:

V(x) = (21 + 2)x07;
3

gilx) =1~ 713;28?333 =
2
g2() = 125222(33_;333123:@ - 51018x§ —1=d
ga(a) =1~ 7142;519”3 <0
ga(z) = x2;’r5x3 —1<0

where

2<xz; <15 025 <2, <13 0.05 <23 <2

)
/]

!
9 Displacemen

WA A
w

Figure 2: The Tension/Compression Spring

The number of function evaluations was set to 36,000 (20®ishgkls in the population). A
comparison of results is provided in the Talllehere the best result is found by the AIS-GA
and AIS-GA! (Bernardino et al(2007,Bernardino et al(2008) with a final volume equal to
0.012666. The Tabl@ shows the values found for the design variables correspgridi the
best solutions which are all feasible.

4.2 The Speed Reducer design

The objective is to minimize the weight” of a speed reducer. The design variables are the
face width ¢ = x; € [2.6,3.6]), the module of teethnf = x, € [0.7,0.8]), the number of
teeth on pinion#{ = x5 € [17,28]), the length of the shaft 1 between the bearings( =, €
[7.3,8.3]), the length of the shaft 2 between the bearirigs<(z; € [7.8, 8.3]), the diameter of
the shaft 1{; = z¢ € [2.9, 3.9]), and, finally, the diameter of the shaft® (= x;). The variable
x3 is integer and all the others are continuous. The weight hadrtechanical constraints are
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| Best

| Median | Average |

St.Dev |

Worst

| fr |

AIS-GA
AIS-GAC
AIS-GAH
APM?be
SR
APMe

0.012668
0.012666
0.012666

0.012684

0.012679

0.012679

0.012892

0.013575

0.013655
0.012733

0.013481
0.012974
0.013131
0.014022
0.013993
0.014466

6.28E — 4
1.47E — 3
1.27TE — 3
1.09E — 2

0.016155
0.013880
0.015318
0.017794
0.017796
0.089992

50
50
50
50

Table 1: Values found for Tension/Compression Spring daesig

[ AIS-GA | AIS-GA” | AIS-GA” | APM”

| SR

[ APV |

T
X2
€3

11.852177
0.347475
0.051302

11.329555
0.356032
0.051661

11.6611924
0.3505298
0.0514305

12.070748
0.344304
0.051168

11.375795
0.355485
0.051638

11.23705
0.357848
0.517359

v

0.012668

0.012666

0.012666

0.0126838

0.012679

0.012679

Table 2: Design variables found for the best solutions ferfiansion/Compression Spring design

given by

W = 0.7854x125 (3.333323 4 14.9334x5
—1.508zy (2§ + a3) 4 7.4777 (2§ 4 23)
+07851@Mx§+agxﬂ

g1(x )—27x1 x2 IL‘3 <1

—43.0934)

gs(x) = 1.933:2 T3 x4x6 <1
g4(7) = 1.93zy oy tadast < 1

- 0.5
1 7451‘4 6
= 16.9}+10 < 1100
95() 0.1z} < ToT3 > 1 ' ] -
- 0.5

(2) = —— | (T25%s 2+(1575)106 < 850

x) = :
g6 0.122 |\ zoxs -
g7(x) = oy < 40 gs(x) =21/ >'5
gg(l’) = J/’l/{L’Q S 12 910( ) (1 51’6 + 1. 9) < 1
gn(z) = (Lle; +1.9) 25" <1

The Table3 presents a comparison of the results found by the propogexdithim and others
from the literature. The number of function evaluations weisequal to 36,000. (200 individ-
uals in the population). In this case one can observe th&@ihiques, except the ES-Coello,
found essentially the same optimal design. The best valsdaumd by the APNF and APM*
(2996.3482). The Tablé presents the final values of the design variables (all swistare
feasible).
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Figure 3: The Speed Reducer

| | Best | Median | Average | StDev | Worst | fr |
ES-Coello | 3025.0051 — 3088.7778 — 3078.5918 | —
AIS-GA * 2996.3494 2996.356 2996.3643 | 4.35F — 3 | 2996.6277 | 50
AIS-GA® * | 2996.3484 | 2996.3484 | 2996.3484 | 1.46E — 6 | 2996.3486 | 50
AIS-GAH 2996.3483 | 2996.3495 | 2996.3501 | 7.45FE — 3 | 2996.3599 | 50
APM?¢ 2996.3482 | 2996.3482 | 3033.8807 | 1.10E +2 | 3459.0948 | 19
SR 2996.3483 | 2996.3488 | 2996.3491 | 1.01E —3 | 2996.3535 | 50
APM"¢ 2996.3482 | 2996.3482 | 2997.4728 | 7.87TFE + 0 | 3051.4556 | 49
Table 3: Values found for the Speed Reducer design
| ES-Coello[ AIS-GA* [ AIS-GA” * | AIS-GA” | APM* | SR | APM™ |
rp | 3.506163 | 3.500001 3.500000 | 3.500001 3.500000 3.500000 3.500000
xo | 0.700831 | 0.700000 | 0.700000 | 0.700000 0.700000 0.700000 0.700000
T3 17 17 17 17 17 17 17
x4 | 7.460181 | 7.300019 | 7.300001 7.300008 7.300000 7.300001 7.300000
rs | 7.962143 | 7.800013 | 7.800000 | 7.800001 7.800000 7.800001 7.800000
rg | 3.362900 | 3.350215 | 3.350215 | 3.350215 3.350215 3.350215 3.350215
r7 | 5.308949 | 5.286684 | 5.286684 | 5.286683 5.286683 5.286683 5.286683
W | 3025.0051 | 2996.3494 | 2996.3484 | 2996.3483 | 2996.3482 | 2996.3483 | 2996.3482

Table 4: Design variables found for the best solutions ferSpeed Reducer design
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4.3 TheWelded Beam design
The objective is to minimize the cost(h,[,t,b) of the beam wheré < [0.125,10], and
0.1 <1,t,b < 10. The objective and constraints re@eb (2000
C'(h,1,t,b) = 1.10471h% + 0.04811tb(14.0 + 1)
(1) = 13,600 — /(7 )2+ (7")2 + 177" /o > 0
ga2(c) = 30,000 — 504000/ (t*b) > 0
g3(b,h) =b—h >0 g4(P.) = P.— 6,000 >0
g5(6) = 0.25 — 2.1952/(t°b) > 0
- % o =02+ h+1)7)
P, =64746.022(1 — 0.028234675)tb3
p 6000(14 + 0.50)a
~ 2(0.707hI(12/12 + 0.25(h + )2))

C'(h,1,t,b) = 1.10471h*] + 0.04811tb(14.0 + 1)

g1(T) =13,600—7 >0  gao(0) =30,000— 0 >0
93(b,h) =b—h >0 ga(P.) = P.— 6,000 >0
g5(0) =025 -6 >0

The expressions far, o, P., andj are given by:

, 6000
T=+/(7")2+ +IT7'7T" T =
V()2 + (1) NGT
504000
a=+02512+(h+1)?) o= 7
2.1952
P, = 64746.022(1 — 0.0282346t)tb°> & = 5

- 6000(14 + 0.50)cx
2(0.707hI(12/12 + 0.25(h + 1)2))

Figure 4: The Welded Beam

The Table5 shows a comparison of results where the best value found ¢fsa equal to
2.38122) corresponds to the AIS-GAresented in the referenBernardino et al(2007). The
Table6 shows the design variables corresponding to the bestsolidund by each technique.
All the solutions are feasible and the number of functioneséons was set to 320,000 (200

individuals in the population).
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| Best | Median | Average| St.Dev | Worst | fr |
AIS-GA 2.38125 — 2.59303 — 3.23815 —
AIS-GA® | 2.38122 — 2.38992 — 241391 | —
AIS-GAT | 238335 | 2.92121 | 2.99298 | 2.02E —1 | 4.05600 | 50
APMbe 2.38144 | 3.27244 | 3.49560 | 9.09F — 1 5.94803 | 50
SR 2.59610 | 4.21812 | 4.33259 1.29 10.1833 | 50
APM"¢ 2.38124 | 2.67099 | 6.24497 | 2.29FE + 1 | 165.13681 | 50
Table 5: Values found for the cost of the Welded Beam design.

‘ ‘ AIS-GA ‘AIS-GAC ‘ AIS-GAY ‘ APM?* ‘ SR ‘ APM"¢
h 0.2443243 | 0.2443857 | 0.2434673 | 0.2442419 | 0.2758192 | 0.244395
l 6.2201996 | 6.2183037 | 6.2507296 | 6.2231189 | 5.0052613 | 6.218086
t 8.2914640 | 8.2911650 | 8.2914724 | 8.2914718 | 8.6261101 | 8.291043
b 0.2443694 | 0.2443875 | 0.2443690 | 0.2443690 | 0.2758194 | 0.244395
Cost| 2.381246 | 2.38122 2.38335 2.38144 2.59610 2.38124

Table 6: Design variables found for the best solutions fentfelded Beam design

4.4 The Pressure Vessel design

This problenSandgrerf1988; Kannan and Kramg1995; Deb(1997); Coello Coello(2000
corresponds to the weight minimization of a cylindrical gmere vessel with two spherical
heads. There are four design variables (in inches): th&rnbgs of the pressure vessél)(
the thickness of the head(), the inner radius of the vessédt) and the length of the cylindrical
component[). Since there are two discrete variablés&nd7},) and two continuous variables
(R and L), one has a nonlinearly constrained mixed discrete-coatis optimization problem.
The bounds of the design variables are625 < T, 7, < 5 (in constant steps of 0.0625) and
10 < R, L < 200. The weight, to be minimized, and the constraints are giyen b

W(T,, Ty, R, L) = 0,6224T,T,, R +
+1.7781T, R* 4+ 3.1661T°L + 19.84T*R
91(Ts, R) = T, — 0.0193R > 0

92(Th, R) = T, — 0.00954R > 0

g3(R, L) = TR*L + 4/37 R* — 1,296,000 > 0
ga(L) = —L +240 >0

The first two constraints establish a lower bound to the s&tig ? andT},/ R, respectively. The
third constraint corresponds to a lower bound for the voloirtee vessel and the last one to an
upper bound for the length of the cylindrical component.

The Table7 provides a comparison of results obtained with differegbathms. All al-
gorithms use 80,000 function evaluations, except MSMontes et al.(2003 which used
150,000. The APNF used 200 individuals in the population. The best solutios ¥eand
by APM"© and corresponds to a final weight equal to 6059.715. The Babigplays the final
solutions which are all feasible.
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| | Best | Median | Average | StDev | Worst | fr [ ne
AlS-Coello | 6061.123 — 6734.085 — 7368.060 | — | 150,000
AlIS-GA 6060.368 — 6743.872 — 7546.750 | — | 80,000
AIS-GA® 6060.138 — 6385.942 — 6845.496 | — | 80,000
AIS-GA! 6059.855 | 6426.710 | 6545.126 | 1.24E + 2 | 7388.160 | 50 | 80,000
APMb¢ 6065.822 | 6434.435 | 6632.376 | 5.15E + 2 | 8248.003 | 50 | 80,000
SR 6832.584 | 7073.107 | 7187.314 | 2.67TE + 2 | 8012.651 | 50 | 80,000
APM"¢ 6059.715 | 6288.529 | 6344.079 | 2.78E + 2 | 6928.386 | 49 | 80,000

Table 7: Values of the weight found for the Pressure Vessgide

‘ ‘ AIS-CoeIIO‘ AlIS-GA ‘ AIS-GA® ‘ AIS-GAY ‘ APM?¢ ‘ SR ‘ APM"¢ ‘
T 0.8125 0.8125 0.8125 0.8125 0.8125 1.1250 0.8125
Ty 0.4375 0.4375 0.4375 0.4375 0.4375 0.5625 0.4375
R 42.0870 42.0931 42.0950 42.0973 42.0492 58.1267 42.0984
L 176.7791 176.7031 | 176.6797 176.6509 177.2522 44.5941 176.6368
W 6061.1229 | 6060.3677 | 6060.138 | 6059.8546 | 6065.8217 | 6832.5836 | 6059.715

Table 8: Design variables found for the best solutions ferRhessure Vessel design
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45 The Cantilever Beam design

This test problenktrbatur et al(2000 corresponds to the minimization of the volume of a
cantilever beam subject to the loatd= 50000N. There are 10 design variables corresponding
to the height {7;) and width (B;) of the rectangular cross-section of each of the five cohstan
steps. The variableB, andH, are integer3; and B3 assume discrete values to be chosen from
the set2.4,2.6,2.8,3.1, H, and Hs are discrete and chosen from the &0, 50.0, 55.0, 60.0
and, finally,B,, H,4, Bs, and H5 are continuous. The variables are given in centimeterstand t
Young’s modulus of the material is equal to 200 GPa. The velamd the constraints read:

5

1=1
g:(H;, B;) = 0; < 14000N/em? i =1,...,5
911(Hz‘, Bz) =9 < 2.7cm

whered is the tip deflection of the beam in the vertical direction.

1 2 3 4

500 cm Bj

Figure 6: The Cantilever Beam

The Table9 presents results found using different techniques. Thebeumf function eval-
uations was set to 35,000 in all cases, except in the Rbhtur et al(2000 that used 10,000
function evaluations in each one of the three levels of th®©GAlgorithm. The APNf used
350 individuals in the population. The SR technique prodube best solution with a final vol-
ume equal to 64599.6509715. The Tableshows the design variables values corresponding to
the best solutions (all feasible) where "ne" correspondseémumber of function evaluations.

| | Best | Median | Average | StDev | Worst | fr [ ne |
GAOS-Erbatur, 64815 — — — — — | 10000
AIS-GA 65559.60 — 70857.12 — 7727278 | — | 35000
AIS-GA® 66533.47 — 71821.69 — 76852.86 | — | 35000
AIS-GAH 64834.70 | T74987.16 76004.24 | 6.93F + 3 | 102981.06 | 50 | 35000
APMbe 66030.05 | 79466.10 | 83524.21 | 1.44F + 4 | 151458.17 | 50 | 35000
SR 64599.65 | 70508.33 | 71240.03 | 3.90E + 3 | 83968.45 | 47 | 35000
APM"¢ 64647.82 | 76721.19 79804.77 | 1.63E +4 | 162089.24 | 49 | 35000

Table 9: Volume found for the Cantilever Beam design
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[ | GAOS-Erbatu] AIS-GA | AIS-GA” [AIS-GA” [ APM” | SR | APM™ |
B 3 3 3 3 3 3 3
Bs 3.1 3.1 3.1 3.1 3.1 3.1 3.1
Bs 2.6 2.8 2.6 2.6 2.6 2.6 2.6
By 2.3000 2.2348 2.3107 2.2947 2.2094 2.2837 2.2978
Bs 1.8000 2.0038 2.2254 1.8250 2.0944 1.7532 1.7574
H, 60 60 60 60 60 60 60
H, 55 5%5) 60 5%5) 60 5%5) 55
H; 50 50 50 50 50 50 50
H, 45.5000 44.3945 43.1857 45.2153 44.0428 45.5507 45.5037
Hs 35.0000 32.878708 | 31.250282 | 35.1191 31.9867 35.0631 34.9492
\ 64815 65559.6 66533.47 | 64834.70 | 66030.05 | 64599.65 | 64647.82
ne 10, 000 35,000 35,000 35,000 35,000 35,000 35,000

Table 10: Design variables found for the best solutionser@antilever Beam design

4.6 TheTen-Bar Trussdesign

This is a well known test problem corresponding to the weightimization of a ten-bar
truss structure. The constraints involve the stress in ea@mber and the displacements at
the nodes. The design variables are the cross-sectiorad afeéhe bars4;, « = 1,10). The
allowable stress is limited t& 25ksi and the displacements are limited to 2 in, in:ithendy
directions. The density of the material is 0.1 IB/ifoung’s modulus is E = Iksi, and vertical
downward loads of 100 kips are applied at nodes 2 and 4.

. 360in 360 in

T T T
§ 5 1 3 2 1

8 10
5 6 | 360in
7 9

§ 3 4 1

6 4 2

Figure 7: The ten-Bar Truss

Two cases are analyzed: discrete and continuous varidhdethe discrete case the values of
the cross-sectional areas¥jrmre chosen from the s8twith 32 options: 1.62, 1.80, 1.99, 2.13,
2.38,2.62,2.93, 3.13, 3.38, 3.47, 3.55, 3.63, 3.88, 4.2B3,41.59, 4.80, 4.97,5.12,5.74, 7.97,
11.50, 13.50, 14.20, 15.50, 16.90, 18.80, 19.90, 22.060280.00, 33.50. For the continuous
case the minimum cross sectional area is equal to 6.1Tine number of function evaluations
considered were 90,000 and 280,000 for the discrete anéhoonts cases, respectively. For
the APM© 300 and 400 individuals were used in the population for tiseréite and continuous
case, respectively.
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The Tablell presents the values found for the final weight in the disaase. ¢ APM and

A. LEMONGE, H. BARBOSA, C. BORGES, F. SILVA

AIS-GA" produced the best solution (5490.738 Ibs).

The Tablel3 presents the values for the continuous case, where the"AfeMnd the best
solution (5060.99). The Tabld and14 show the final values of the design variables for the

discrete and continuous cases, respectively, which afeadible.

| | Best | Median | Average| StDev | Worst | fr |
AlIS-GA 5539.24 — 5754.97 6790.89 | —
AIS-GA® | 5528.09 — 5723.78 6239.99 | —
AIS-GAY | 5490.74 | 5504.54 | 5513.90 | 2.56E + 1 | 5575.28 | 50
APMb¢ 5490.74 | 5558.74 | 5585.98 | 1.48E + 2 | 6443.23 | 50
SR 5491.72 | 5648.46 | 5664.21 | 9.64F + 1 | 6020.77 | 50
APM"¢ 5490.74 | 5593.24 | 5607.49 | 9.01E + 1 | 5891.16 | 48
Table 11: Values of weight for the Ten-bar Truss — discreseca
AIS-GA | AIS-GAY | AIS-GAY | APM® SR APM"¢
1 33.50 33.50 33.50 33.50 33.50 33.50
2 1.80 1.62 1.62 1.62 1.62 1.62
3 26.5 22.00 22.90 22.90 22.90 22.90
4 15.50 14.20 14.20 14.20 15.50 14.20
5) 1.62 1.62 1.62 1.62 1.62 1.62
6 2.13 1.62 1.62 1.62 1.62 1.62
7 7.97 5.74 7.97 7.97 7.97 7.97
8 19.90 26.50 22.90 22.90 22.00 22.90
9 22.00 22.00 22.00 22.00 22.00 22.00
10 1.62 1.62 1.62 1.62 1.62 1.62
W | 5539.24 | 5528.09 5490.74 | 5490.74 | 5491.72 | 5490.74

Table 12: Design variables found for the best solutionsHerTen-bar Truss design — discrete case

4.7 Discussion

The Tablel5 shows the performance of the algorithms used in the congeis this pa-
per. The Adaptive Penalty Method in the realcoded steaalg-sigorithm APNF reached very
competitive values, particularly, in finding the best smns. In the first column of this table
this technique appears four times in seven possible prab(geven test-problems), i.e., the
APM" presented a rate of 57.24 % of success. Although, this rateppear significantly in
the median, average and worst values, it is possible to wbsiEom the tables throughout this
paper, that these values found by APMhown to be very competitive. Probably, changing
the GA parameters as the number of runs, population sizeygedof operators one can reach
competitive and better values not only for the best but ferage, median and worst solutions,
but no parameter tuning was attempted in this way. The @iffees, in all metrics, sometimes
occurred in the significant numeral after the floating point.
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Best | Median | Average| St.Dev | Worst | fr |

AIS-GA | 5062.67 — 5075.55 — 5094.89 | —
AIS-GA® | 5064.67 — 5082.52 — 5113.22 | —
AIS-GAT | 5061.16 | 5064.36 | 5068.85 7.78 5084.56 | 50
APMbe 5062.12 | 5070.54 | 5133.22 | 2.48E +2 | 6430.55 | 50
SR 5061.71 | 5079.53 | 5077.67 | 1.01E+1 | 5101.17 | 50
APM"e 5060.99 | 5075.86 | 5109.83 | 2.20E +2 | 6629.79 | 50

Table 13: Values found for the final weight of the Ten-bar $rdesign — continuous case

[ [ AIS-GA [AIS-GA” [AIS-GA" [ APM® | SR | APM™ |
1 [30.16252 | 29.78121 | 30.52684 | 30.95080 | 30.01400 | 30.41463
2 | 0.10004 | 0.10031 | 0.10000 | 0.10000 | 0.10000 | 0.10000
3 | 22.81192 | 2255140 | 22.91574 | 22.92083 | 26.14460 | 23.18510
4 | 15.87183 | 15.50462 | 15.48294 | 1555024 | 15.29260 | 15.17496
5 | 0.10000 | 0.10002 | 0.10000 | 0.10000 | 0.10000 | 0.10000
6 | 0.51495 | 0.52377 | 0.54620 | 0.60959 | 0.55610 | 0.54325
7 | 750595 | 7.52854 | T.47594 | 7.46973 | 7.43980 | 7.44463
8 | 21.26408 | 21.15708 | 21.01566 | 20.83562 | 21.00560 | 20.97122
9 | 21.38304 | 2221351 | 21.55362 | 21.35644 | 21.93900 | 21.73486
10 | 0.10001 | 0.10018 | 0.10000 | 0.10000 | 0.10000 | 0.10000
W | 5062.67 | 5064.67 | 5061.16 | 5062.12 | 5061.71 | 5060.99

Table 14: Design variables found for the best solutionsterTien-bar Truss design — Continuous case

| | Best | Median | Average | Worst |
T/C. Spring AIS-GA® APM™¢ AIS-GA® | AIS-GA®
S. Reducer APMb/APM "¢ APMbe AIS-GAC | AIS-GA®
W. Beam AIS-GA® AIS-GAY | AIS-GAC | AIS-GA®
P. Vessel APMT¢ APM™¢ APM™¢ AIS-GA®
C. Beam SR SR AIS-GA | AIS-GA®
10-bar (dis) AIS-GA/APMY*/APM™c | AIS-GAT | AIS-GAT | AIS-GAH
10-bar (con) APM" AIS-GAH | AIS-GAH | AIS-GAH

Table 15: Best performing technigue in each mechanicaherging problem
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5 CONCLUSIONS

An adaptive parameter-less penalty scheme has been ptbpo&arbosa and Lemonge
(2003 in order to tackle constrained optimization problems. nigin feature, besides being
adaptive and not requiring any parameter, is to autométidafine a different penalty coef-
ficient for each constraint. The algorithm, as expectediopaed very well in problems of
optimization from the mechanical engineering design. Tiodlems discussed present contin-
uous, discrete, and mixed design variables. Besides, ¢jogitdm used produced competitive
results compared with other techniques found in the liteeain all problems tested so far. The
next studies will discuss larger structural optimizatioolgems.
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