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Abstract. A parameter-less adaptive penalty scheme for steady-state genetic algorithms applied to
constrained optimization problemswasproposed previously by two of co-authors of thispaper. For each
constraint, a penalty parameter is adaptively computed along the run according to information extracted
from the current population such as the existence of feasible individuals and the level of violation of
each constraint. In this paper the performance of this scheme is extended using test problems from the
mechanical engineering design, also, largely tested in the evolutionary computation literature. Using
real coding, rank-based selection and operators available in the literature very competitive results are
obtained and those are compared with other techniques.
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1 INTRODUCTION

Evolutionary algorithms (EAs) are weak search algorithms which can be directly applied
to unconstrained optimization problems where one seeks foran element (vector of design vari-
ables), belonging to the search space, which minimizes (or maximizes) a real function. Such EA
usually employs a fitness function closely related to this real function. To handle constrained
optimization problems, it is usual to consider a penalty scheme coupled to the fitness function.

The straightforward application of EAs to constrained optimization problems (COPs) is not
possible due to the additional requirement that a set of constraints must be satisfied. Several
difficulties may arise: (i) the objective function may be undefined for some or all infeasible ele-
ments, (ii) the check for feasibility can be more expensive than the computation of the objective
function value, and (iii) an informative measure of the degree of infeasibility of a given candi-
date solution is not easily defined. It is easy to see that evenif both the objective functionf(x)
and a measure of constraint violationv(x) are defined for allx ∈ S it is not possible to know
in general which of two given infeasible solutions is closerto the optimum and thus should be
operated upon or kept in the population.

The techniques for handling constraints within EAs can be classified either asdirect (feasible
or interior)Shoenauer and Michalewicz(1996), Koziel and Michalewicz(1999), Liepins and Potter
(1991); Orvosh and Davis(1994), when only feasible elements inS are considered or exte-
rior indirect that considers both feasible and infeasible elements during the search process
Adeli and Cheng(1994), Barbosa(1999), Surry and Radcliffe(1997), Runarsson and Yao(2000),
andvan Kampen et al.(1996).

A parameter-less adaptive penalty scheme for steady-stategenetic algorithms applied to
constrained optimization problems was previously proposed in the literature by Barbosa and
LemongeBarbosa and Lemonge(2003) and used to find solutions in a suite of functions ex-
haustively tested as benchmark problems. For each constraint, a penalty parameter is adaptively
computed along the run according to information extracted from the current population such as
the existence of feasible individuals and the level of violation of each constraint. The idea is
that the values of the penalty coefficients should be distributed in a way that those constraints
which are more difficult to be satisfied should have a relatively higher penalty coefficient.

In this paper the performance of this scheme is extended using test problems from the me-
chanical engineering design, also, largely tested in the evolutionary computation literature. Us-
ing real coding, rank-based selection and operators available in the literature very competitive
results are obtained and those are compared with other techniques.

In the next section the constrained optimization problem isdefined. The adaptive penalty
method for real-coded steady-state GA and is presented Section 4 presents experimental study
with test-problems from the mechanical engineering designliterature and the paper closes with
some conclusions in Section 5.

2 CONSTRAINED OPTIMIZATION PROBLEM

A standard constrained optimization problem inRn can be thought of as the minimization
of the objective functionf(x), subject to inequality constraintsgp(x) ≥ 0, p = 1, 2, . . . , p̄ as
well as equality constraintshq(x) = 0, q = 1, 2, . . . , q̄. Additionally, the variables are usually
subject to boundsxL

i ≤ xi ≤ xU
i and very often further constrained to belong to a given finite

set of pre-defined values, as in design optimization problems when parts must be selected from
commercially available types. A mixed discrete-continuous constrained optimization problem
arises. For such optimization problems the constraints arein fact a complex, often computa-
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tionally expensive,implicit function of the design variables. Constraint handling techniques
which do not require the explicit form of the constraints anddo not require additional objective
function evaluations are thus most valuable. In the next section the Adaptive Penalty Method
for the real-coded steady-state GA is described.

3 THE ADAPTIVE PENALTY METHOD FOR THE REAL-CODED STEADY-STATE
GA

The Adaptive Penalty Method (APM) scheme presented inBarbosa and Lemonge(2002)
adaptively sizes the penalty coefficient of each constraintusing information from the population
such as the average of the objective function and the level ofviolation of each constraint. The
fitness function is written as:

F (x) =

{

f(x), if x is feasible,
h(x) +

∑m

j=1
kjvj(x) otherwise

(1)

where

h(x) =

{

f(x), if f(x) > 〈f(x)〉,
〈f(x)〉 otherwise

(2)

and〈f(x)〉 is the average of the objective function values in the current population. The penalty
parameter is defined at eachgenerationby:

kj = |〈f(x)〉| 〈vj(x)〉
∑m

l=1
[〈vl(x)〉]2 (3)

and〈vl(x)〉 is the violation of thel-th constraint averaged over the current population. The idea
is that the values of the penalty coefficients should be distributed in a way that those constraints
which are more difficult to be satisfied should have a relatively higher penalty coefficient.

The straightforward extension of the penalty procedure proposed inBarbosa and Lemonge
(2002) to the steady-state case would be to periodically update the penalty coefficients and the
fitness function values for the population.

Further modifications were then proposed for the steady-state version of the penalty scheme.
The fitness function is still computed according to (1). However,h and the penalty coefficients
are redefined respectively as

h =

{

f(xworst) if there is no feasible element in the population,
f(xbestfeasible) otherwise

(4)

kj = h
〈vj(x)〉

∑m

l=1
[〈vl(x)〉]2 (5)

Also, every time a better feasible element is found (or the number of new elements inserted into
the population reaches a certain level)h is redefined and all fitness values are recomputed using
the updated penalty coefficients. The updating of each penalty coefficient is performed in such
a way that no reduction in its value is allowed. For convenience one should keep the objective
function value and all constraint violations for each individual in the population. The fitness
function value is then computed using (4), (5), and (1).
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It is clear from the definition ofh in (4) that if no feasible element is present in the population
one is actually minimizing a measure of the distance of the individuals to the feasible set since
the actual value of the objective function is not taken into account. However, when a feasible
element is found then it immediately enters the population since, after updating all fitness values
using (4), (5), and (1), it becomes the element with the best fitness value.

A pseudo-code for the proposed adaptive penalty scheme for asteady-state GA can be written
as shown in Figure1. Numerical study are then presented in the following section.

1: procedure RCSS
2: Initialize population
3: Compute objective function and constraint violation values
4: if there is no feasible elementthen
5: h← worst objective function value
6: else
7: h← objective function value of best feasible individual
8: end if
9: Compute penalty coefficients

10: Compute fitness values
11: ninser = 0
12: for i = 1:maxeval do
13: Select operator
14: Select parent(s)
15: Generate offspring
16: Evaluate offspring
17: Keep best offspring
18: if offspring is the new best feasible elementthen
19: update penalty coefficients and fitness values
20: ninser = 0
21: end if
22: if offspring is better than the worst in the populationthen
23: worst is removed
24: offspring is inserted
25: ninser = ninser + 1
26: end if
27: if ninser/popsize≥ r then
28: update penalty coefficients and fitness values
29: ninser = 0
30: end if
31: end for
32: end procedure

Figure 1: Pseudo-code for the steady-state GA with adaptivepenalty scheme. (ninser is a counter for the number
of offspring inserted in the population,popsize is the population size,maxeval is the maximum number of
function evaluation andr is a fixed constant that was set to 3 in all cases).
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4 EXPERIMENTAL STUDY

Six mechanical engineering optimization problems are usedto assess the performance of
the proposed algorithm when compared with alternative constraint handling techniques: Arti-
ficial Immune Systems hybridized with a GA (AIS-GA and AIS-GAC) from Bernardino et al.
(2007); AIS-GAH from Bernardino et al.(2008); Adaptive Penalty Method (APMbc), presented
in Bernardino et al.(2008) –here the superscriptbc is added in order to inform the use of a "bi-
nary code"–; The Stochastic Ranking technique (SR) proposed by Runarsson and Yao(2000)
and used within a generational GA with a binary code presented in Bernardino et al.(2008).
Also, some algorithms are used in the comparisons: The Evolution Strategy (ES-Coello) pro-
posed inM.M. Efrén and Ricardo(2003); The AIS-Coello presented inM.-Montes et al.(2003);
The GA (GAOS-Erbatur) proposed inErbatur et al.(2000). The results of the present work are
defined by APMrc where the notationrc means the use of a "real code"

The APMbc and the SR method presented inBernardino et al.(2008) used a population size
of 100 individuals, and a mutation rate equal to 0.004. Also,elitism is implemented: a copy
of the best individual remains in the next generation. For the AIS-GAH the population size
was set to 50, the mutation rate was set to 0.01, and elitism was implemented (the two best
individuals are copied to the next generation). Also, each antibody generates only one clone,
and the maximum mutation rate of the AIS was set to 0.03. All techniques use a binary Gray
code with 25 bits for each continuous variable, and a crossover probability equal to 0.9.

The simple real-coded steady-state GA (APMrc), with a linear ranking selection scheme was
implemented using: (i) random mutation (which modifies a randomly chosen variable of the se-
lected parent to a random value uniformly distributed between the lower and upper bounds of the
corresponding variable), (ii) non-uniform mutation (as proposed by MichalewiczMichalewicz
(1992)), (iii) Muhlenbein’s mutation (as described inMuhlenbein et al.(1991)), (iv) multi-
parent discrete crossover (which generates an offspring byrandomly taking each allele from
one of thenp selected parents), and (v) Deb’s SBX crossover as describedinDeb and Agrawal
(1995).

No parameter tuning was attempted. The same probability of application (namely 0.2) was
assigned to all operators above,np was set to 4, andη was set to 2 in SBX. This set of values
was applied toall test-problems, solved by APMrc, in order to demonstrate the robustness of
the procedure. The values of the best, median, average, standard deviation, the worst and the
number of runs that reached feasible solutions are presented for each experiment corresponding
to a number of function evaluations set for each of them.

4.1 The Tension/Compression Spring Design

The objective is to minimize the volumeV of a coil spring under a constant tension/compression
load. The design variables are the number of active coils of the spring (N = x1 ∈ [2, 15]), the
winding diameter (D = x2 ∈ [0.25, 1.3]), and the wire diameter (d = x3 ∈ [0.05, 2]). The
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volume and the mechanical constraints are given by:

V (x) = (x1 + 2)x2x
2

3

g1(x) = 1− x3
2x1

71785x4
3

≤ 0

g2(x) =
4x2

2 − x3x2

12566(x2x3
3 − x4

3)
+

1

5108x2
3

− 1 ≤ 0

g3(x) = 1− 140.45x3

x2
2x1

≤ 0

g4(x) =
x2 + x3

1.5
− 1 ≤ 0

where

2 ≤ x1 ≤ 15 0.25 ≤ x2 ≤ 1.3 0.05 ≤ x3 ≤ 2

Free
Length

d

Displacement

D

Figure 2: The Tension/Compression Spring

The number of function evaluations was set to 36,000 (200 individuals in the population). A
comparison of results is provided in the Table1 where the best result is found by the AIS-GAC

and AIS-GAH (Bernardino et al.(2007),Bernardino et al.(2008)) with a final volume equal to
0.012666. The Table2 shows the values found for the design variables corresponding to the
best solutions which are all feasible.

4.2 The Speed Reducer design

The objective is to minimize the weightW of a speed reducer. The design variables are the
face width (b = x1 ∈ [2.6, 3.6]), the module of teeth (m = x2 ∈ [0.7, 0.8]), the number of
teeth on pinion (n = x3 ∈ [17, 28]), the length of the shaft 1 between the bearings (l1 = x4 ∈
[7.3, 8.3]), the length of the shaft 2 between the bearings (l2 = x5 ∈ [7.8, 8.3]), the diameter of
the shaft 1 (d1 = x6 ∈ [2.9, 3.9]), and, finally, the diameter of the shaft 2 (d2 = x7). The variable
x3 is integer and all the others are continuous. The weight and the mechanical constraints are
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Best Median Average St.Dev Worst fr

AIS-GA 0.012668 − 0.013481 − 0.016155 −
AIS-GAC

0.012666 − 0.012974 − 0.013880 −
AIS-GAH

0.012666 0.012892 0.013131 6.28E− 4 0.015318 50

APMbc 0.012684 0.013575 0.014022 1.47E − 3 0.017794 50

SR 0.012679 0.013655 0.013993 1.27E − 3 0.017796 50

APMrc 0.012679 0.012733 0.014466 1.09E − 2 0.089992 50

Table 1: Values found for Tension/Compression Spring design.

AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

x1 11.852177 11.329555 11.6611924 12.070748 11.375795 11.23705
x2 0.347475 0.356032 0.3505298 0.344304 0.355485 0.357848
x3 0.051302 0.051661 0.0514305 0.051168 0.051638 0.517359
V 0.012668 0.012666 0.012666 0.0126838 0.012679 0.012679

Table 2: Design variables found for the best solutions for the Tension/Compression Spring design

given by

W = 0.7854x1x
2

2

(

3.3333x2

3 + 14.9334x3 − 43.0934
)

−1.508x1

(

x2

6 + x2

7

)

+ 7.4777
(

x3

6 + x3

7

)

+0.7854
(

x4x
2

6 + x5x
2

7

)

g1(x) = 27x−1

1 x−2

2 x−1

3 ≤ 1

g2(x) = 397.5x−1

1 x−2

2 x−2

3 ≤ 1

g3(x) = 1.93x−1

2 x−1

3 x3

4x
−4

6 ≤ 1

g4(x) = 1.93x−1

2 x−1

3 x3

5x
−4

7 ≤ 1

g5(x) =
1

0.1x3
6

[

(

745x4

x2x3

)2

+ {16.9}106

]0.5

≤ 1100

g6(x) =
1

0.1x3
7

[

(

745x5

x2x3

)2

+ (157.5) 106

]0.5

≤ 850

g7(x) = x2x3 ≤ 40 g8(x) = x1/x2 ≥ 5

g9(x) = x1/x2 ≤ 12 g10(x) = (1.5x6 + 1.9) x−1

4 ≤ 1

g11(x) = (1.1x7 + 1.9)x−1

5 ≤ 1

The Table3 presents a comparison of the results found by the proposed algorithm and others
from the literature. The number of function evaluations wasset equal to 36,000. (200 individ-
uals in the population). In this case one can observe that alltechniques, except the ES-Coello,
found essentially the same optimal design. The best value was found by the APMbc and APMrc

(2996.3482). The Table4 presents the final values of the design variables (all solutions are
feasible).
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1l

l2
z1 z2 d2

d1

Figure 3: The Speed Reducer

Best Median Average St.Dev Worst fr

ES-Coello 3025.0051 − 3088.7778 − 3078.5918 −
AIS-GA ∗ 2996.3494 2996.356 2996.3643 4.35E − 3 2996.6277 50

AIS-GAC ∗ 2996.3484 2996.3484 2996.3484 1.46E− 6 2996.3486 50

AIS-GAH 2996.3483 2996.3495 2996.3501 7.45E − 3 2996.3599 50

APMbc
2996.3482 2996.3482 3033.8807 1.10E + 2 3459.0948 19

SR 2996.3483 2996.3488 2996.3491 1.01E − 3 2996.3535 50

APMrc
2996.3482 2996.3482 2997.4728 7.87E + 0 3051.4556 49

Table 3: Values found for the Speed Reducer design

ES-Coello AIS-GA ∗ AIS-GAC ∗ AIS-GAH APMbc SR APMrc

x1 3.506163 3.500001 3.500000 3.500001 3.500000 3.500000 3.500000
x2 0.700831 0.700000 0.700000 0.700000 0.700000 0.700000 0.700000
x3 17 17 17 17 17 17 17
x4 7.460181 7.300019 7.300001 7.300008 7.300000 7.300001 7.300000
x5 7.962143 7.800013 7.800000 7.800001 7.800000 7.800001 7.800000
x6 3.362900 3.350215 3.350215 3.350215 3.350215 3.350215 3.350215
x7 5.308949 5.286684 5.286684 5.286683 5.286683 5.286683 5.286683
W 3025.0051 2996.3494 2996.3484 2996.3483 2996.3482 2996.3483 2996.3482

Table 4: Design variables found for the best solutions for the Speed Reducer design
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4.3 The Welded Beam design

The objective is to minimize the costC(h, l, t, b) of the beam whereh ∈ [0.125, 10], and
0.1 ≤ l, t, b ≤ 10. The objective and constraints readDeb(2000)

C(h, l, t, b) = 1.10471h2l + 0.04811tb(14.0 + l)

g1(τ) = 13, 600−
√

(τ ′)2 + (τ ′′)2 + lτ ′τ ′′/α ≥ 0

g2(σ) = 30, 000− 504000/(t2b) ≥ 0

g3(b, h) = b− h ≥ 0 g4(Pc) = Pc − 6, 000 ≥ 0

g5(δ) = 0.25− 2.1952/(t3b) ≥ 0

τ
′

=
6000√

2hl
α =

√

0.25(l2 + (h + t)2)

Pc = 64746.022(1− 0.0282346t)tb3

τ
′′

=
6000(14 + 0.5l)α

2(0.707hl(l2/12 + 0.25(h + t)2))

C(h, l, t, b) = 1.10471h2l + 0.04811tb(14.0 + l)

g1(τ) = 13, 600− τ ≥ 0 g2(σ) = 30, 000− σ ≥ 0

g3(b, h) = b− h ≥ 0 g4(Pc) = Pc − 6, 000 ≥ 0

g5(δ) = 0.25− δ ≥ 0

The expressions forτ , σ, Pc, andδ are given by:

τ =
√

(τ ′)2 + (τ ′′)2 + lτ ′τ ′′/α τ
′

=
6000√

2hl

α =
√

0.25(l2 + (h + t)2) σ =
504000

t2b

Pc = 64746.022(1− 0.0282346t)tb3 δ =
2.1952

t3b

τ
′′

=
6000(14 + 0.5l)α

2(0.707hl(l2/12 + 0.25(h + t)2))

l h

t

F

b

Figure 4: The Welded Beam

The Table5 shows a comparison of results where the best value found (final cost equal to
2.38122) corresponds to the AIS-GAC presented in the referenceBernardino et al.(2007). The
Table6 shows the design variables corresponding to the best solution found by each technique.
All the solutions are feasible and the number of function evaluations was set to 320,000 (200
individuals in the population).
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Best Median Average St.Dev Worst fr

AIS-GA 2.38125 − 2.59303 − 3.23815 −
AIS-GAC

2.38122 − 2.38992 − 2.41391 −
AIS-GAH 2.38335 2.92121 2.99298 2.02E− 1 4.05600 50

APMbc 2.38144 3.27244 3.49560 9.09E − 1 5.94803 50

SR 2.59610 4.21812 4.33259 1.29 10.1833 50

APMrc 2.38124 2.67099 6.24497 2.29E + 1 165.13681 50

Table 5: Values found for the cost of the Welded Beam design.

AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

h 0.2443243 0.2443857 0.2434673 0.2442419 0.2758192 0.244395
l 6.2201996 6.2183037 6.2507296 6.2231189 5.0052613 6.218086
t 8.2914640 8.2911650 8.2914724 8.2914718 8.6261101 8.291043
b 0.2443694 0.2443875 0.2443690 0.2443690 0.2758194 0.244395
Cost 2.381246 2.38122 2.38335 2.38144 2.59610 2.38124

Table 6: Design variables found for the best solutions for the Welded Beam design

4.4 The Pressure Vessel design

This problemSandgren(1988); Kannan and Kramer(1995); Deb(1997); Coello Coello(2000)
corresponds to the weight minimization of a cylindrical pressure vessel with two spherical
heads. There are four design variables (in inches): the thickness of the pressure vessel (Ts),
the thickness of the head (Th), the inner radius of the vessel (R) and the length of the cylindrical
component (L). Since there are two discrete variables (Ts andTh) and two continuous variables
(R andL), one has a nonlinearly constrained mixed discrete-continuous optimization problem.
The bounds of the design variables are0.0625 ≤ Ts, Th ≤ 5 (in constant steps of 0.0625) and
10 ≤ R, L ≤ 200. The weight, to be minimized, and the constraints are given by:

W (Ts, Th, R, L) = 0, 6224TsThR +

+1.7781ThR
2 + 3.1661T 2

s L + 19.84T 2

s R

g1(Ts, R) = Ts − 0.0193R ≥ 0

g2(Th, R) = Th − 0.00954R ≥ 0

g3(R, L) = πR2L + 4/3πR3 − 1, 296, 000 ≥ 0

g4(L) = −L + 240 ≥ 0

The first two constraints establish a lower bound to the ratiosTs/R andTh/R, respectively. The
third constraint corresponds to a lower bound for the volumeof the vessel and the last one to an
upper bound for the length of the cylindrical component.

The Table7 provides a comparison of results obtained with different algorithms. All al-
gorithms use 80,000 function evaluations, except AISM.-Montes et al.(2003) which used
150,000. The APMrc used 200 individuals in the population. The best solution was found
by APMrc and corresponds to a final weight equal to 6059.715. The Table8 displays the final
solutions which are all feasible.
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Figure 5: The Pressure Vessel.

Best Median Average St.Dev Worst fr ne

AIS-Coello 6061.123 − 6734.085 − 7368.060 − 150, 000
AIS-GA 6060.368 − 6743.872 − 7546.750 − 80, 000
AIS-GAC 6060.138 − 6385.942 − 6845.496 − 80, 000
AIS-GAh 6059.855 6426.710 6545.126 1.24E + 2 7388.160 50 80, 000
APMbc 6065.822 6434.435 6632.376 5.15E + 2 8248.003 50 80, 000
SR 6832.584 7073.107 7187.314 2.67E + 2 8012.651 50 80, 000
APMrc

6059.715 6288.529 6344.079 2.78E + 2 6928.386 49 80, 000

Table 7: Values of the weight found for the Pressure Vessel design

AIS-Coello AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

Ts 0.8125 0.8125 0.8125 0.8125 0.8125 1.1250 0.8125
Th 0.4375 0.4375 0.4375 0.4375 0.4375 0.5625 0.4375
R 42.0870 42.0931 42.0950 42.0973 42.0492 58.1267 42.0984
L 176.7791 176.7031 176.6797 176.6509 177.2522 44.5941 176.6368
W 6061.1229 6060.3677 6060.138 6059.8546 6065.8217 6832.5836 6059.715

Table 8: Design variables found for the best solutions for the Pressure Vessel design

Mecánica Computacional Vol XXIX, págs. 9287-9303 (2010) 9297

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



4.5 The Cantilever Beam design

This test problemErbatur et al.(2000) corresponds to the minimization of the volume of a
cantilever beam subject to the loadP = 50000N. There are 10 design variables corresponding
to the height (Hi) and width (Bi) of the rectangular cross-section of each of the five constant
steps. The variablesB1 andH1 are integer,B2 andB3 assume discrete values to be chosen from
the set2.4, 2.6, 2.8, 3.1, H2 andH3 are discrete and chosen from the set45.0, 50.0, 55.0, 60.0
and, finally,B4, H4, B5, andH5 are continuous. The variables are given in centimeters and the
Young’s modulus of the material is equal to 200 GPa. The volume and the constraints read:

V (Hi, Bi) = 100
5

∑

i=1

HiBi

gi(Hi, Bi) = σi ≤ 14000N/cm2 i = 1, . . . , 5

gi+5(Hi, Bi) = Hi/Bi ≤ 20 i = 1, . . . , 5

g11(Hi, Bi) = δ ≤ 2.7cm

whereδ is the tip deflection of the beam in the vertical direction.

500 cm

1 2 43 5

P

Hi

B i

Figure 6: The Cantilever Beam

The Table9 presents results found using different techniques. The number of function eval-
uations was set to 35,000 in all cases, except in the Ref.Erbatur et al.(2000) that used 10,000
function evaluations in each one of the three levels of the GAOS algorithm. The APMrc used
350 individuals in the population. The SR technique produced the best solution with a final vol-
ume equal to 64599.6509715. The Table10shows the design variables values corresponding to
the best solutions (all feasible) where "ne" corresponds tothe number of function evaluations.

Best Median Average St.Dev Worst fr ne

GAOS-Erbatur 64815 − − − − − 10000
AIS-GA 65559.60 − 70857.12 − 77272.78 − 35000
AIS-GAC 66533.47 − 71821.69 − 76852.86 − 35000
AIS-GAH 64834.70 74987.16 76004.24 6.93E + 3 102981.06 50 35000
APMbc 66030.05 79466.10 83524.21 1.44E + 4 151458.17 50 35000
SR 64599.65 70508.33 71240.03 3.90E + 3 83968.45 47 35000
APMrc 64647.82 76721.19 79804.77 1.63E + 4 162089.24 49 35000

Table 9: Volume found for the Cantilever Beam design
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GAOS-Erbatur AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

B1 3 3 3 3 3 3 3
B2 3.1 3.1 3.1 3.1 3.1 3.1 3.1
B3 2.6 2.8 2.6 2.6 2.6 2.6 2.6
B4 2.3000 2.2348 2.3107 2.2947 2.2094 2.2837 2.2978
B5 1.8000 2.0038 2.2254 1.8250 2.0944 1.7532 1.7574
H1 60 60 60 60 60 60 60
H2 55 55 60 55 60 55 55
H3 50 50 50 50 50 50 50
H4 45.5000 44.3945 43.1857 45.2153 44.0428 45.5507 45.5037
H5 35.0000 32.878708 31.250282 35.1191 31.9867 35.0631 34.9492
V 64815 65559.6 66533.47 64834.70 66030.05 64599.65 64647.82
ne 10, 000 35, 000 35, 000 35, 000 35, 000 35, 000 35, 000

Table 10: Design variables found for the best solutions for the Cantilever Beam design

4.6 The Ten-Bar Truss design

This is a well known test problem corresponding to the weightminimization of a ten-bar
truss structure. The constraints involve the stress in eachmember and the displacements at
the nodes. The design variables are the cross-sectional areas of the bars (Ai, i = 1, 10). The
allowable stress is limited to± 25ksi and the displacements are limited to 2 in, in thex andy
directions. The density of the material is 0.1 lb/in3, Young’s modulus is E = 104 ksi, and vertical
downward loads of 100 kips are applied at nodes 2 and 4.

360 in 360 in

360 in

5

46

5

8

7 9
6

10

21 3 1

2
43

P P

Figure 7: The ten-Bar Truss

Two cases are analyzed: discrete and continuous variables.For the discrete case the values of
the cross-sectional areas (in2) are chosen from the setS with 32 options: 1.62, 1.80, 1.99, 2.13,
2.38, 2.62, 2.93, 3.13, 3.38, 3.47, 3.55, 3.63, 3.88, 4.22, 4.49, 4.59, 4.80, 4.97, 5.12, 5.74, 7.97,
11.50, 13.50, 14.20, 15.50, 16.90, 18.80, 19.90, 22.00, 26.50, 30.00, 33.50. For the continuous
case the minimum cross sectional area is equal to 0.1 in2. The number of function evaluations
considered were 90,000 and 280,000 for the discrete and continuous cases, respectively. For
the APMrc 300 and 400 individuals were used in the population for the discrete and continuous
case, respectively.
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The Table11presents the values found for the final weight in the discretecase. c APMcc and
AIS-GAH produced the best solution (5490.738 lbs).

The Table13 presents the values for the continuous case, where the APMrc found the best
solution (5060.99). The Tables12 and14 show the final values of the design variables for the
discrete and continuous cases, respectively, which are allfeasible.

Best Median Average St.Dev Worst fr

AIS-GA 5539.24 − 5754.97 − 6790.89 −
AIS-GAC 5528.09 − 5723.78 − 6239.99 −
AIS-GAH

5490.74 5504.54 5513.90 2.56E + 1 5575.28 50

APMbc
5490.74 5558.74 5585.98 1.48E + 2 6443.23 50

SR 5491.72 5648.46 5664.21 9.64E + 1 6020.77 50

APMrc
5490.74 5593.24 5607.49 9.01E + 1 5891.16 48

Table 11: Values of weight for the Ten-bar Truss – discrete case

AIS-GA AIS-GAC AIS-GAH APMbc SR APMrc

1 33.50 33.50 33.50 33.50 33.50 33.50
2 1.80 1.62 1.62 1.62 1.62 1.62
3 26.5 22.00 22.90 22.90 22.90 22.90
4 15.50 14.20 14.20 14.20 15.50 14.20
5 1.62 1.62 1.62 1.62 1.62 1.62
6 2.13 1.62 1.62 1.62 1.62 1.62
7 7.97 5.74 7.97 7.97 7.97 7.97
8 19.90 26.50 22.90 22.90 22.00 22.90
9 22.00 22.00 22.00 22.00 22.00 22.00
10 1.62 1.62 1.62 1.62 1.62 1.62
W 5539.24 5528.09 5490.74 5490.74 5491.72 5490.74

Table 12: Design variables found for the best solutions for the Ten-bar Truss design – discrete case

4.7 Discussion

The Table15 shows the performance of the algorithms used in the comparisons in this pa-
per. The Adaptive Penalty Method in the realcoded steady-state algorithm APMrc reached very
competitive values, particularly, in finding the best solutions. In the first column of this table
this technique appears four times in seven possible problems (seven test-problems), i.e., the
APMrc presented a rate of 57.24 % of success. Although, this rate not appear significantly in
the median, average and worst values, it is possible to observe, from the tables throughout this
paper, that these values found by APMrc shown to be very competitive. Probably, changing
the GA parameters as the number of runs, population size and type of operators one can reach
competitive and better values not only for the best but for average, median and worst solutions,
but no parameter tuning was attempted in this way. The differences, in all metrics, sometimes
occurred in the significant numeral after the floating point.
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Best Median Average St.Dev Worst fr

AIS-GA 5062.67 − 5075.55 − 5094.89 −
AIS-GAC 5064.67 − 5082.52 − 5113.22 −
AIS-GAH 5061.16 5064.36 5068.85 7.78 5084.56 50

APMbc 5062.12 5070.54 5133.22 2.48E + 2 6430.55 50

SR 5061.71 5079.53 5077.67 1.01E + 1 5101.17 50

APMrc
5060.99 5075.86 5109.83 2.20E + 2 6629.79 50

Table 13: Values found for the final weight of the Ten-bar Truss design – continuous case

AIS-GA AIS-GAC AIS-GAH APMrc SR APMrc

1 30.16252 29.78121 30.52684 30.95080 30.01400 30.41463
2 0.10004 0.10031 0.10000 0.10000 0.10000 0.10000
3 22.81192 22.55140 22.91574 22.92083 26.14460 23.18510
4 15.87183 15.50462 15.48294 15.55024 15.29260 15.17496
5 0.10000 0.10002 0.10000 0.10000 0.10000 0.10000
6 0.51495 0.52377 0.54620 0.60959 0.55610 0.54325
7 7.50595 7.52854 7.47594 7.46973 7.43980 7.44463
8 21.26408 21.15708 21.01566 20.83562 21.00560 20.97122
9 21.38304 22.21351 21.55362 21.35644 21.93900 21.73486
10 0.10001 0.10018 0.10000 0.10000 0.10000 0.10000
W 5062.67 5064.67 5061.16 5062.12 5061.71 5060.99

Table 14: Design variables found for the best solutions for the Ten-bar Truss design – Continuous case

Best Median Average Worst

T/C. Spring AIS-GAC APMrc AIS-GAC AIS-GAC

S. Reducer APMbc/APMrc APMbc AIS-GAC AIS-GAC

W. Beam AIS-GAC AIS-GAH AIS-GAC AIS-GAC

P. Vessel APMrc APMrc APMrc AIS-GAC

C. Beam SR SR AIS-GA AIS-GAC

10-bar (dis) AIS-GA/APMbc/APMrc AIS-GAH AIS-GAH AIS-GAH

10-bar (con) APMrc AIS-GAH AIS-GAH AIS-GAH

Table 15: Best performing technique in each mechanical engineering problem
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5 CONCLUSIONS

An adaptive parameter-less penalty scheme has been proposed in Barbosa and Lemonge
(2003) in order to tackle constrained optimization problems. Itsmain feature, besides being
adaptive and not requiring any parameter, is to automatically define a different penalty coef-
ficient for each constraint. The algorithm, as expected, performed very well in problems of
optimization from the mechanical engineering design. The problems discussed present contin-
uous, discrete, and mixed design variables. Besides, the algorithm used produced competitive
results compared with other techniques found in the literature in all problems tested so far. The
next studies will discuss larger structural optimization problems.
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