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Abstract. Assessing the global behavior of reinforced materials from the individual properties of their 
components has been the subject of a considerable amount of experimental and theoretical works in 
the last years. The so-called multiphase model is an alternative generalization of the homogenization 
method and it relies upon the idea that, at the macroscopic scale, the reinforced concrete is a 
geometrical superposition of the matrix phase (concrete) and the reinforcing phase (steel bars). The 
constitutive equations for the homogenized reinforced concrete structures are formulated and the 
corresponding numerical implementation is described. Considering the particular case of concrete 
structures, Figueiredo et al. (2009) analyzed the mechanical behavior of reinforced concrete flat slabs 
under prescribed loading using an elastoplastic multiphase model. The present contribution extends 
the previous numerical code to account for concrete cracking by implementing the smeared crack 
model presented by Hinton (1988). As expected, the numerical implementation with multiphase 
approach leads to a significantly reduced computational time with respect to a direct numerical 
simulation in which the steel bars are treated as individual structural elements embedded in the 
concrete matrix. (FIGUEIREDO et al., Elastoplastic multiphase model for reinforced concrete flat 
slabs, In: XXX CILAMCE, 2009; HINTON, E., 1umerical methods and software for dynamic analysis 
of plates and shells, 1988). 
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1 I�TRODUCTIO� 

The capacity of predicting the essential characteristics that govern the behavior of materials 
reinforced by stiff linear inclusions from the properties of the individual components still 
remains a major concern in structural engineering of composite materials, and a significant 
number of works has been dedicated to this subject in the last decades. 

As far as the finite element modeling of reinforced concrete structures is concerned,  steel 
bars are traditionally accounted for through three ways (CEB, 1983): 1) by means of a 
continuous equivalent model as often used in the case of plates and shells, substituting the 
dense reinforcement by equivalent layers, 2) through a discrete modeling in which the steel 
bars are represented by one-dimensional elements frequently associated with appropriate 
adherence elements, and 3) through the so-called “embedded model” where each bar is 
considered as a stiffer linear inclusion embedded within the element of concrete matrix, thus 
resulting in an element stiffness equal to the sum of concrete matrix and steel bar contribution. 
However such approaches can come up against serious numerical difficulties when the 
number of bars involved in the structure becomes higher. Indeed, the computational cost may 
eventually be prohibitively large since three-dimensional analysis is generally needed to take 
into account interactions between concrete matrix and inclusions properly and since non-
linear constitutive models, such as plasticity, have to be utilized in order to obtain relevant 
results. 

An alternative approach called multiphase model was recently developed, providing a 
mechanically consistent framework to analyze the behavior of structures made up of materials 
reinforced by linear continuous inclusions. The general formulation of the model is presented 
in Sudret (1999) together with applications in the field of geotechnical engineering. 
Extensions of the multiphase model have been introduced by Bennis (2002) and later by 
Hassen (2006). The method has been applied to a large variety of problems involving 
reinforced soils such as reinforced earth, micropile networks and rock-bolted tunnels may be  
found in de Buhan and Sudret (1999, 2000, 2001) or Hassen and de Buhan (2005, 2006).  The 
main advantage of such modeling lies in a significantly reduced computational effort, 
compared to that required in direct numerical simulations. 

2 THE MULTIPHASE MODEL FOR REI�FORCED CO�CRETE 

2.1 Description of the model 

Considering the reinforced concrete as a matrix of concrete with steel bars arranged 
periodically (Figure 1). The typical size of the structure being significantly greater than the 
diameter of the inclusions and their spacing. Consider the reinforced concrete as homogenous 
medium. 

 

 

 

 

 

 

 

Figure 1 – Description of the reinforced material, Hassen (2006). 
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Sudret (1999) explains that to any point of a volume Ω of reinforced material are 
associated geometrically coincident particles: one particle of the matrix phase and N particles 
of the reinforcement phase. These N + 1 superposed particles form the multiphase medium. 

( ) ( ) ( )U
1r

rm xdxdxd
,...1=

ΩΩ=Ω  (1) 

In this way, the steel bars are grouped in a finite number of N different families, each one 
of these families characterized by a direction given by a unit vector er (r = 1, ..., N). The 
number of reinforcement families will be the same to the number of directions in which the 
bars are disposed. 

 

 

 

 

 

 

 

 

 

Figure 2 – Description of the material with the matrix phase and two reinforcement phases. 

2.2 Efforts behaviour 

The matrix phase is modelled as Cauchy continuum. It can be shown that the internal 

forces are described by a second-order symmetrical tensor denoted by mσ . This quantity will 

be referred to as the matrix phase stress tensor. 

It is admitted that the inclusions are assumed to take only tensile-compressive forces, that 
is, shear forces and bending moments are disregarded, Hassen (2006) applies the multiphase 
model taking into account that the inclusions takes these efforts. So, the variable that 
describes the internal forces in the reinforcement phase turns out to be a scalar stress, noted 

rσ . 

Finally, due to the superposition of N+1 particles in each point, body forces, I j, are 
introduced to account for the interaction between phases. 

The external forces applied onto a geometrical volume Ω are prescribed in each phase j 
separately, and consists in: 

(a) Body forces denoted by jj Fρ  (gravity) exerted by the outside of Ω. 

(b) Tractions jT  applied at the boundary Ω∂ . 

The inertial forces are computed by means of the phase acceleration fields denoted by jγ . 
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2.3 Equations of motion 

In this way, the equations of motion of the multiphase model are given, in agreement with 
Sudret (1999), for each phase separately as follows. 

 0)())()()(()(
1

=+−+ ∑
=

�

r

rmmmm xIxxFxxdiv γρσ  (2) 

 ( ) 1rxIxxFxeexdiv rrrr
rr

r ,...1,0)())()()(()( ==−−+⊗     γρσ  (3) 

The corresponding boundary conditions are 

 )()()( xnxxT mm ⋅=σ  (4) 

 ( ) 1reexnxxT rr
rr ,...1,)()()( =⋅=    σ  (5) 

Equations (2) and (4) are the equations of motion of a Cauchy continuum, where the 
interaction forces appear as body forces. These interaction forces reveal, at the macroscopic 
scale, the interface forces between each inclusion and the surrounding matrix at the 
microscopic scale, and can thus be interpreted as the average of the latter on a unit volume. 

2.4 Perfect bonding model 

Sudret (1999) and de Buhan and Sudret (2001) present a particular case of the two-phase 
model where is admitted the perfect bonding hypothesis: all phases have the same 
displacement field. This model is going to allow to treat problems of reinforced concrete in 
what is supposed to be no slippage between the steel bars and the concrete matrix. So: 

 
ξξξ ≡= rm

 (6) 

Taking into account the perfect bonding hypothesis, is introduced, with no ambiguity, the 
total strain tensor: 

 
( )ξξ gradgrad t+=∈

2

1

 (7) 

The compatibility equations between the phase strain variables are: 

 
( ) rrrr

rm ee ≡∈⊗∈=∈= :; εε     
 (8) 

In this model, the system kinematics is described by a single displacement field  ξ. Bennis 
(2002) carries out the application of the model to geotechnical structures taking into account 
the interaction matrix/reinforcement. 

It is thus relevant do derive global equations of motion for the whole system. These 
equations are obtained by summing up Eq. (2), (3) and the Eq. (4), (5) respectively. 
Introducing the following notation: 
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with j ∈  {m, r = 1,...1}, one gets: 

 
( ) 0=−+Σ γρ Fdiv

 (11) 

 nT ⋅Σ=  (12) 

The tensor of total stress Σ  appears to be the sum of the partial tensor in the matrix phase 

and the uniaxial partial stress tensor in the reinforcement phase. With this notation, the 
constitutive Eq. (11) and (12) reduce to those of the classical Cauchy continuum. 

To complete the description of the perfect bonding model, global constitutive equation 
relating Σ  and ∈  are derived. One can easily prove that the global tensor of elastic moduli A  

satisfying :AΣ = ∈ in the elastic domain write: 

 
∑
=

⊗⊗⊗+=
1

r
rrrr

rm eeeeaaA
1  (13) 

where the global tensor of elastic moduli is decomposed additively in a contribution of the 
matrix phase and a contribution of each reinforcement phase. It appears clearly that the 
directions re  are privileged, what is seen in the anisotropic characteristic of the behavior. 

Equilibrium equations and constitutive laws have been derived, making it possible to solve 
boundary value problems. In order to model real reinforced structures, it is now necessary to 
connect the phase constitutive laws with the material characteristics of the concrete and 
inclusions. 

de Buhan and Sudret (2001) assumed that the volume fraction rη  of the inclusion is small 
compared to one: 

• The matrix phase constitutive law is identified with that of the concrete. 
• Supposing that the inclusions take axial force only it is possible to calculate the 

reinforcement phase stiffness as: 
 incrr Ea ⋅=η  (14) 

where incE  is the Young’s modulus of the steel bars. 

3 �UMERICAL IMPLEME�TATIO� OF THE MODEL 

The implementation formulated here follows the steps presented by Sudret (1999), Hassen 
(2006) and de Buhan and Sudret (2001). 

3.1 Description of the model 

In case of perfect bonding, considering a kinematically admissible virtual displacemente 

field ξ̂  and its associated linear strain field ε̂ , the principle of virtual work, derived from (11) 

and (12), satisfies: 
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Relating the elastic strain to the phase stress by ( ):m m m m

p
aσ ε ε= −  and ( )r r r r

paσ ε ε= −  

and substituting in Eq. (11) and using the Eq. (8), the first term in Eq. (15) may be rewritten as 
follows: 

 

ˆ ˆ:  : : :  
Ω Ω

 Σ Ω = − − ⊗ Ω  ∫ ∫
m m r r

r rpp
d A a a e e dε ε ε ε ε

 (16) 

The geometric volume is discretized into 1e elements. The displacement field ξ in each 
element νe is approximated as follows 

 ( ) ( ) ee
e uxxx e ⋅=∈∀ N  , |νξν  (17) 

where ue is the vector of element nodal displacements and �e(x)  are the shape functions. The 
strain vector is classically given by: 

 
( ) ee ux ⋅= Bε

 (18) 

where the matrix Be contains partial derivatives of the shape functions with respect to the 
coordinates. Consequently, the matrix phase stress vector is: 

 
( )m

p
mm εεσ −⋅= d

 (19) 

It is introduced now an additional notation for dealing with the reinforcement phase. Let us 
denote by re  the vector of the six components of rr ee ⊗ . The compatibility Eq. (7) can be 
rewritten as: 

 = ⋅ = ⋅r re e
t trε ε ε  (20) 

Substituting the above equations in the principle of virtual work (15) and using (16), one 
gets the discretized formulation, which leads to the usual linear system yielding the global 
vector of nodal displacement U. 

 
r
p

m
p

ext FFFU ++=⋅K
 (21) 

The global stiffness matrix K turns out to be: 
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the terms in the right-hand side of Eq. (33) are the external load vector: 
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 (23) 

and the vector of plastic forces associated to each phase: 
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3.2 Plastic integration algorithm 

Due to the non-linearity of the phases constitutive laws, the loading path is divided into 
load increments noted by ∆Fj

ext. For each load step, the problem is solved by an iterative 
algorithm. 

Denoting by { }r
np

m

npn

r
n

m

nnU ,,
,,,,, εεεσσ  the set of state variables describing the system after 

load step n. For each variable χ  in this set, let us write: 

 nnn χχχ −=∆ +1  (26) 

Let us apply the load increment ∆Fj
ext. The corresponding displacements increment ∆Un is 

obtained from the global equilibrium. 

 np
ext
nn FFU ,∆+∆=∆⋅K

 (27) 

where r
np

m
npnp FFF ,,, ∆+∆=∆  is the vector of plastic nodal forces. These forces are unknown, 

since the plastic strain increments { }r
np

m

np ,,
,εε  resulting from the load increment ∆Fn

ext are still 

unknown. The latter have to be determined in such a way that the elastoplastic constitutive 
laws are satisfied in each Gauss point of the mesh. 

The goal is achieved by using an iterative procedure. Starting from: 

( ) ( ) 000 ,,
=∆=∆ r

np
m

np
εε  at every Gauss point, sucessive evalutions ( ) ( ){ }ii r

np
m

np ,,
,εε  of the 

plastic strains are calculated until convergence. 

Suppose that ( ) ( ){ }1,1 ,,
−− ii r

np
m

np
εε  is known at each Gauss point, the vector of plastic 

forces calculated by (34) and (35) being  ( )1, −∆ iF m
np  and ( )1, −∆ iF r

np . The iteration i consists 

first in computing the increment of nodal displacement ( )iU n∆  satisfying: 

 
( ) ( )1, −∆+∆=∆⋅ iFFiU np

ext
nnK

 (28) 

Following the global calculation yielding the displacement vector ∆Un(i), the constitutive 
laws have been checked locally in each Gauss point. The original point of the present 
implementation is the separate treatment of each individual phase. The power of the 
multiphase approach is thus totally exploited. The classical return mapping algorithm, Simo 
and Hughes (1998), is applied in each Gauss point as follows: 

At first, trial stress states are calculated for each phase by freezing the plastic strains 
resulting from the load increment. Then the phase yield criteria are evaluated separately. If 
they are negative, no additional plastic strain has developed due to ∆Fn

ext. If not, a closest-
point projection of the trial states onto their respective yield surfaces is performed. 

For the matrix phase, this leads to solving the following set of equations: 
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Considering now the reinforcement phase, the yield criterion can be written as 
r
o

rrrf σσσ −=)(  due to the one-dimensional formulation. The solution for the projection 

problem and the related plastic strain increment is: 
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3.3 Failure criterion 

The strength of concrete under multiaxial states of stress may be estimated from the so-
called Ottosen failure criterion given by Equation 34 (CEB, 1990). 

 0112
2
2 =−++

cmcmcm f

I

f

J

f

J
βλα  (34) 

where λ, J2, I1 depend on the principal stresses and α and β are material properties which 
depend on the strength ratio fctm/fcm (tensile and compression concrete strength). 

3.4 Stress-strain relationship for concrete under compression 

A uniaxial stress-strain relationship for compressed concrete is assumed as hardening rule. 
This stress-strain diagram has the form shown schematically in Figure 3 and is calculated by 
the following function (CEB, 1990): 

2

1 1 1
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ε ε
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 
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 
+ − 
             (35) 

where Eci is the concrete tangent modulus, Eci  = - fcm/0,0022, σc is the strength compressive 
stress (MPa), εc is the compression strain and εc1 = -0.0022. 
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Figure 3 – Stress-strain diagram for uniaxial compression. 

3.5 Modeling of cracked concrete (Hinton, 1988) 

Probably the main feature of plain concrete material behavior is its low tensile strength, 
which results in tensile cracking at very low stress compared with the failure stress in 
compression. In the finite element context two main approaches have been used for crack 
representation, the discrete crack model that represents the individual cracks as actual 
discontinuities in the finite element mesh; the smeared crack model in which the cracked 
concrete is assumed to remain a continuum and the material properties are modified to 
account for damage. The second alternative will be adopted in this work. 

3.6 The smeared crack model 

The concrete is initially isotropic, but cracking induces anisotropy. After cracking, the 
concrete is assumed to become orthotropic, with the principal material axes oriented along the 
directions of cracking. The material properties depend on the state of strain and stress. The 
Young’s modulus is reduced in the direction perpendicular to the crack plane and Poisson’s 
effect is usually neglected. This approach is computationally attractive, since the topology of 
the mesh is unchanged throughout the analysis, and only the stress-strain relationship need to 
be updated when cracking occurs. In order to implement the smeared crack model, the 
following items have to be applied: a cracking criterion, a strain-softening rule and a model 
for shear transfer. 

Due to bond forces, cracked concrete carries between the cracks a certain amount of tensile 
stress normal to the cracked plane. The concrete adheres to reinforcing bars and contributes 
actively to the overall stiffness of the structure. This can be incorporated into the 
computational model assuming that the loss of tensile strength in concrete occurs gradually 
and such procedure has been extensively used in computational analysis of reinforced concrete 
structures. According to Hinton (1988) it is easy to choose a tension-stiffening curve that will 
adequately fit experimental results, but very difficult to make an a priori predictions. 

For the tensile concrete it will be used the constitutive equation (Eq. 36) adopted by Prates 
Junior (1992), Martinelli (2003) and other authors 
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where αt is the reduction coefficient related to cracking strength and, σi and εui respectively 
denote the stress and strain component following principal direction i. The following curve  
explain this relationship. 
 
 
 
 
 
 
 
 
 
 
 

Figure 4 – Stress-strain curve for concrete under tensile load. 

4 APPLICATIO�S 

The following numerical examples were performed in order to verify the proposed element 
model and formulation in this paper.  

4.1 Mc�eice’s corner-supported reinforced concrete slab with a point load 

The results of a corner-supported two-way square reinforced concrete slab, tested 
experimentally under a central point load by Jofriet and McNeice (1971), have been used as a 
benchmark for verification of numerical schemes by several researchers (Zhang et al, 2007), 
and this slab was analyzed using the multiphase model to assess the accuracy and performance 
of the proposed schemes for RC slabs. The geometry and reinforcement of the slab are shown 
in Figure 5 and the material properties are those of Table 1. 

 
Phase Properties  

Matrix 
(concrete) 

Young’s modulus 28600 MPa 
Poisson’s ratio 0,15 

Compression strength 38 MPa 
Tensile strength 3,8 MPa 

αt  reduction coefficient 0,4 
Reinforcement 

(steel) 
Young’s modulus 200000 MPa 

Yield stress 350 MPa 

Table 1: Material properties. 

The finite element mesh used to perform the simulations consists in two hundred twenty-
noded hexahedral elements. The cross-section of the slab was divided into eight concrete 
layers and one or more equivalent steel layers with reinforcement in two directions, with one 
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PLATE THICK = 4,45 cm

CROSS-SECTION OF THE SLAB EXAMPLE 0 - NO REINFORCEMENT

EXAMPLE 2

EXAMPLE 4EXAMPLE 3

EXAMPLE 1 - EVERY ELEMENT IS REINFORCED

quarter of the slab being analyzed owing to symmetry with a 5 x 5 meshing of the quadrant 
(Figure 5). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 5 – Geometry of the reinforced concrete slab. 

The slab is reinforced by a distribution of parallel steel bars introduced following directions 
ex and ey. The loading mode corresponds to a bending-like test with just one point loaded. 

Numerical simulations are performed corresponding to five different reinforcement 
distributions along the transversal section. Example 0 has no reinforcement while Example 1 
has the reinforcements distributed all along the cross-section. Examples 2, 3 and 4 have the 
steel distributed at the inferior region of the structural element as it can be seen in Figure 6. It 
is very important to point out that variable called volumetric fraction η, varies in each model 
aiming to maintain the same amount of steel reinforcement. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 6 – Reinforcement scheme: the hatched regions indicating reinforced layers. 
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Figure 7 presents the numerical and experimental results. It has been found from the 
comparisons that the numerical results agree with the experimental tests. Obviously Example 
1 gave the worst result since the center of mass of the steel bars wasn’t observed. The 
influence of the area where the reinforcement is applied is reported in Figure 8. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 7 – Load-deflection curves at node 2 of McNeice’s slab under a central point load. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8 – Load for a deflection of 5mm at node 2. 

An important issue of the computational modeling is to determine the extent of the 
multiphase zone (i.e., reinforced zone). Actually, this aspect is related to the validity of the 

M. FIGUEIREDO, S. MAGHOUS, A. CAMPOS FILHO9866

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

approach, since the later theoretically requires that the density of reinforcement is much higher 
for the material to be regarded at the macroscopic scale as an ‘homogeneous’ two phase 
material. 

The analysis indicates that the configurations of Example 3 and 4 converge to the 
experimental result meaning that, for the adopted example, reinforced zone with extension of 
40,9% (1,82cm/4,44cm) and 15,9% (0,71cm/4,44cm) prove to be enough for an appropriate 
representation of the reinforced zone. This results is still to be confirmed by further 
investigations. 

5 CO�CLUDI�G REMARKS 

A multiphase model for structures of reinforced concrete with perfect bounding between 
the steel bars and the matrix of concrete and considering the concrete cracking was 
introduced. The implementation and validation of this model is the object of the doctorate 
thesis of the first author. The comparative study performed with McNeice’s reinforced 
concrete slabs produced results in good agreement with the experimental results. In terms of 
future development, the model will be extended to include more realistic conditions than 
perfect bonding, allowing some kind of sliding between the matrix phase and the 
reinforcement phase. 

ACK�OWLEDGEME�TS  

Finally, my thanks to CNPq (Brazilian National Council for Scientific and Technological 
Development) for financial support which enabled this work. 

REFERE�CES 

BENNIS, M. Un modèle multiphasique pour le calcul des ouvrages renforcés par inclusions, 
avec prise en compte de l’interaction matrice/inclusions. Thèse de doctorat de l’École 
1ationale des Ponts et Chaussés, Paris, 2002. 

de BUHAN, P., SUDRET, B. A two-phase elastoplastic model for unidirectionally-reinforced 
materials. European Journal of Mechanics A/Solids. 1999, pp 995-1012. 

de BUHAN, P., SUDRET, B. Micropolar multiphase model for materials reinforced by linear 
inclusions. European Journal of Mechanics A/Solids. 2000, pp 669-687. 

de BUHAN, P., SUDRET, B. Multiphase model for inclusion-reinforced geostructures 
Application to rock-bolted tunnels and piled raft foundations. International Journal for 
numerical and analytical methods in geomechanics. 2001, pp 155-182. 

COMITÉ EURO-INTERNATIONAL DU BÉTON (CEB). “Application of the Finite 
Element-Method to Two-Dimensional Reinforced Concrete Structures”. Paris, 1983. 
(Bulletin d’Information, 159). 

FIGUEIREDO, M. P., MAGHOUS, S., CAMPOS FILHO, A. Elastoplastic multiphase model 
for reinforced concrete flat slabs. CILAMCE, 2009. 

HASSEN, G. Modélisation multiphasique pour le calcul des ouvrages renforcés par inclusion 
rigides. Thèse de doctorat de l’École 1ationale des Ponts et Chaussés, Paris, 2006. 

HASSEN, G., de BUHAN, P. A two-phase model and related numerical tool for the design of 
soil structures reinforced by stiff linear inclusions. European Journal of Mechanics 
A/Solids. 2005, pp 987-1001. 

HASSEN, G., de BUHAN, P. Elastoplastic multiphase model for simulating the response of 
piled raft foundations subject to combined loadings. International Journal for numerical 
and analytical methods in geomechanics. 2006, pp 843-864. 

Mecánica Computacional Vol XXIX, págs. 9855-9868 (2010) 9867

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 

HINTON, E. Numerical methods and software for dynamic analysis of plates and shells. 
Swansea: Pineridge Press, 1988. 

JOFRIET, J. C., McNEICE, G. M. Finite-element analysis of reinforced concrete slabs, J. 
Struct. Div. ASCE 97 (ST3), 1971, pp. 785-806. 

SIMO, J. C., HUGHES, T. J. R. Computational Inelasticity. Springer, Berlin, 1998. 
SUDRET, B. Modélisation multiphasique des ouvrages renforcés par inclusions. Thèse de 
doctorat de l’École 1ationale des Ponts et Chaussés, Paris, 1999. 

ZHANG, Y. X., BRADFORD, M. A., GILBERT, R. I. A layered shear-flexural plate/shell 
element using Timoshenko functions for nonlinear analysis of reinforced concrete plates. 
Finite Elements in Analysis and Design 43, 2007, pp. 888–900. 

M. FIGUEIREDO, S. MAGHOUS, A. CAMPOS FILHO9868

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar


