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Abstract. Addition of steel fiber to concrete results in a composite with enhanced strength properties 
than conventional concrete. Experimental studies have shown that fibers improve the biaxial 
compressive and uniaxial tensile strengths of concrete. This study investigates the strength properties 
at the macroscopic level of the reinforced material by means of a micromechanical reasoning which 
implements the static approach of limit analysis homogenization theory. Within this framework, the 
macroscopic strength criterion can be theoretically determined from the knowledge of the failure 
conditions of individual constituents, namely, concrete matrix and fibers. Adopting a Drucker-Prager 
failure criterion for the concrete failure properties, and assuming an isotropic spatial distribution for 
the fibers, an approximate static-based model is formulated for the homogenized strength properties. 
The expression of the latter is provided together with the corresponding geometric interpretation in the 
space of macroscopic stresses. The accuracy of the proposed model is assessed by means of 
comparison with available data. The predictions of the analytical model are found to compare well 
with the available experimental results. 
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1 INTRODUCTION 

Evaluating the strength properties of materials remains fundamental concern in material 
and structural engineering, either for material appropriate use or for correct consideration in 
projects, design and verification stages. The strength capacities are classically characterized 
by the strength convex which defines the set of admissible stresses. Its determination is an 
important issue in material modeling. 

As for most conventional materials, the concrete strength and behavior under multiaxial 
stress states have been experimentally and theoretically studied for several decades. These 
characteristics are mainly influenced by the physical and mechanical properties of aggregate 
and cement paste. In the case of fiber reinforced concrete (FRC), there are few experimental 
and analytical studies aimed at establishing its behavior under complex stress states. 
Experimental studies of Yin et al. (1989), Traina and Mansour (1991) and Swaddiwudhipong 
and Seow (2006) sought to evaluate the steel FRC behavior under biaxial compression. These 
studies showed that the reinforced concrete has a failure curve distinct than the concrete 
matrix alone and the increase in the biaxial compression strength due to the fibers addition 
can be considerable. 

The limit analysis theory, in turn, provides a powerful tool not only to establish the 
collapse load of structural components but also to determine the strength capacity of 
heterogeneous materials. It is a direct method since it does not involve a step by step analysis 
and does not consider the full story along the loading process as in elastic-plastic analysis. For 
this, it uses the classical lower (static) and upper (cinematic) bound theorems. The 
homogenization theory applied to the limit analysis theory allows defining the macroscopic 
strength properties of a heterogeneous medium in a rigorous way. Through this approach the 
strength properties of composites reinforced by long parallel fibers has been obtained and the 
theoretical results established for these materials showed good agreement with experimental 
results (de Buhan and Taliercio, 1991). 

Based on a concept of equivalence between the FRC and a fictitious medium defined by a 
concrete matrix reinforced by long fibers, this study aims to obtain the steel FRC strength 
domain analytically. Therefore, the homogenization theory, the limit analysis theory and the 
results obtained by de Buhan (1985) for a medium reinforced by long parallel fibers are used. 
The composite strength criterion is determined by considering the strength properties of its 
individual constituents, namely, concrete matrix and fibers, and their volume fractions. The 
formulation employed allows the consideration of any strength criterion for the components 
of the composite material. In the fibers case, only its uniaxial compressive and tensile 
strengths are needed. The concrete matrix failure is characterized in this work by the Drucker 
Prager criterion. 

The next section describes how the FRC strength criterion will be determined in this study 
through the homogenization and limit analysis theories and the concept of a correspondence 
between the real and a fictitious medium. Section 2.1 presents the formulation that provides 
the strength criterion of a medium reinforced by long fibers arranged in one direction. 
Following this result is used for the analysis of a medium reinforced by fibers in three 
directions. Section 2.3 presents the results obtained by considering a matrix with isotropic 
behavior and that obeys the Drucker-Prager criterion. Finally the analytical results are 
compared to steel FRC experimental data available in the literature. 

2 MACROSCOPIC STRENGTH DOMAIN 

The construction of the macroscopic strength domain homG  of a heterogeneous medium 
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results from the resolution of a limit analysis problem placed on the representative elementary 
volume (REV) of this material. It requires the knowledge of the constituent (i.e., the matrix, 
fibers and fiber/matrix interface) strength domains, its geometric configuration and the fiber 
volume fraction. 

The FRC is a random medium (Figure 1a) formed by a cementitious matrix and the i  
(integer) fiber families characterized by its direction ie  and its aspect ratio /l d  
(length/diameter). 

In this study, some simplifications are adopted to obtain the FRC macroscopic strength 
domain in an analytical way. First it is assumed that the macroscopic strength of a medium 
reinforced by randomly distributed short fibers can be obtained by considering a correlation 
between this material and a fictitious medium defined by a concrete matrix reinforced by long 
fibers. The second simplification concerns the consideration of a fictitious medium with long 
fibers arranged in three perpendicular directions for the random medium study, since the 
analysis with a larger number of directions would involve a more complex formulation. 

The described concept is depicted in Figure 1. 

 
Figure 1: Medium formed by randomly distributed short fibers and an approximate fictitious medium. 

This fictitious medium, with fictitious properties, should present a macroscopic strength 
domain able to reproduce the macroscopic strength domain of a medium reinforced by 
random and short fibers. To establish the correlation between the strength properties of these 
two media, in other words the determination of the fictitious properties to be used, 
comparisons between the obtained analytical results and those verified in experiments are 
needed. 

Strength, like elastic properties, is function of the fiber aspect ratio and approaches an 
asymptotic limit as the aspect ratio becomes larger. The influence of the parameter /l d  in the 
composite material strength properties can be obtained, for example, from the evaluation of 
experimental data of matrices reinforced by fibers of different aspect ratios. The comparison 
of experiments and the analytical results obtained in this study allows the definition of 
fictitious properties which vary in function of the fiber aspect ratios. 

The Chen (1971) and Halpin and Kardos (1978) works sought to evaluate the influence of 
this parameter on the composite strengths. Halpin and Kardos (1978) propose a strength 
reduction factor in function of /l d . However their studies are based on composites 
reinforced by short fibers periodically arranged in one direction. 

For the strength properties of fiber/matrix interface, in turn, it is considered perfect 
bonding between the two constituents. 

ie
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2.1 Matrix reinforced by long parallel fibers 

Composites formed by a matrix reinforced by long parallel fibers belong to the class of 
periodic media. In this case it is therefore possible to define a unit cell A , which is the 
structure that repeats along the composite material and contains all the necessary information 
for their complete description. 

The determination of the macroscopic strength domain of this material is obtained from the 
solution of a limit analysis problem placed on their unit cell: 

 hom
0 (e 0 )

, , ( ) ( )

Sdiv n along S
G

n antiperiodic x G x x A

σ σ
σ

σ σ σ

⎧ = ⋅ =⎪Σ∈ ⇔ ∃ ⎨
Σ = ⋅ ∈ ∀ ∈⎪⎩

 (1) 

where Σ  is the macroscopic stress tensor and σ  represents the microscopic stress field in A . 
( )G x  is the material strength domain at the current point x  of A , or, the set of allowable 

stress tensors ( )xσ . In the matrix case ( ) m mx G x Vσ ∈ ∀ ∈  and in the fibers case 

( ) f fx G x Vσ ∈ ∀ ∈ . σ  is the jump of σ  and S  are possible stress discontinuity surfaces 

with outer unit normal Sn . The matrix and fiber strength domains could be represented in a 
more appropriate way employing their yield functions, respectively, mF  e fF  
( ( ) 0m mG Fσ σ∈ ⇔ ≤  and ( ) 0f fG Fσ σ∈ ⇔ ≤ ). It is worth noting that the Eq. (1) 

represents the static definition of homG . The dual cinematic definition of homG  is done 
through the employment of its support function hom ( )π D . 

Assuming the fibers parallel to the x -axis, the resolution of the problem (1) is effectuated 
through the static approach with the consideration of the piecewise homogeneous stress field: 

 
,

,

m m m

f m ff f
x x

in the matrix with G

e e in the fiber with G

σ σ
σ

σ σ σ σ

⎧ ∈⎪= ⎨
= + ⊗ ∈⎪⎩

 (2) 

The stress field (2) satisfies the problem conditions (1). The described static approach, 
with the consideration of piecewise homogeneous stress field, constitutes a lower bound 
approximation to homG , since it corresponds to the use of the limit analysis lower bound 
theorem of the limit analysis theory: 

 hom

,

m f
x x hom

s m mm f f
x x

f e e
G G

G e e G

σ σ

σ σ σ

⎧ ⎫Σ = + ⊗⎪ ⎪= ⊂⎨ ⎬
∈ + ⊗ ∈ ⎪⎪ ⎭⎩

 (3) 

where s  refers to static and /ff A A=  is the fiber volume fraction. 

In particular conditions defined by 1f <<  and 0

0
/f m

f
G G f G

→
>> , where 0G  is a bounded 

fixed convex domain, de Buhan and Taliercio (1991) showed that: 

 hom hom

0 0, [ , ]

m
x xf

s m m
f

e e
G G

G

σ σ

σ σ σ σ− +

⎧ ⎫Σ = + ⊗⎪ ⎪= ⎨ ⎬
∈ ∈⎪ ⎪⎩ ⎭

 (4) 

where the parameters { } { }0
0 sup sup f

x x x x fe e G f e e G fσ σ σ σ σ σ+ += ⊗ ∈ = ⊗ ∈ =  and 
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{ } { }0
0 inf inf f

x x x x fe e G f e e G fσ σ σ σ σ σ− −= ⊗ ∈ = ⊗ ∈ =  represent respectively the fiber 

uniaxial tensile and compressive strengths per unit transverse area. σ +
f  and σ −

f  are 
respectively the fiber tensile and compressive strengths. 

Geometrically, the strength domain homG  can be interpreted in the space 
{ }6 , , , , ,xx yy zz xy xz yzR = Σ Σ Σ Σ Σ Σ  of macroscopic stress as the convex envelope of two domains 

obtained by translating the matrix strength domain mG  by algebraic distances ffσ −  and ffσ +  
parallel to the axis Σxx -axis. These translations in the space of macroscopic stresses are the 
expression of the reinforcement due to the fibers presence. 

A cross-sectional view of the strength domain homG  in an arbitrary plane of macroscopic 
stresses ( , )Σ Σxx ij  is sketched in Figure 2. 

 
Figure 2: Geometrical representation of the macroscopic strength domain homG  of a matrix reinforced by long 

fibers parallel to the x -axis 

The strength criterion homG  can also be represented employing its yield function homF , in 
other words the stress states Σ  that satisfy the macroscopic criterion (4) form the convex 

domain homG  defined by the yield function ( ) 0homF Σ ≤ : 

 ( ) 0
( ) 0,

m
x xfhom

mm
f

e e
F

F I

σ σ

σ σ

⎧ Σ = + ⊗⎪Σ ≤ ⇔ ⎨
≤ ∈⎪⎩

 (5) 

with ,σ σ− +⎡ ⎤= ⎣ ⎦f fI f f . 
The yield function of the homogenized material defined by Eq. 5 can be rewritten as: 

 ( ) min ( )
σ

σ
∈

Σ = Σ − ⊗hom m
x xI

F F e e  (6) 

2.2 Matrix reinforced by long fibers in three directions 

For the situation of a matrix reinforced by long fibers arranged in three directions, the 
considerations employed are similar to those described before when only on fiber direction 
was evaluated. Thus the strength criterion is defined by the equation: 

ffσ −
ffσ +

homG

xxΣ

ijΣ
mG
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( ) 0,

m
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mm
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e e
F

F I

σ σ

σ σ
=

⎧Σ = + ⊗⎪Σ ≤ ⇔ ⎨
⎪ ≤ ∈⎩

∑
 (7) 

with ,i i i i iI f fσ σ− +⎡ ⎤= ⎣ ⎦ . 
The geometric representation of the strength domain in the space of macroscopic stresses 

for the case of fibers oriented in three directions, for example, x , y  and z , is then defined as 
the convex envelope of eight domains obtained by translating the matrix strength domain by 
algebraic distances x xf σ −  and x xf σ +  along the Σxx -axis, y yf σ −  and y yf σ +  along the Σ yy -axis 

and z zf σ −  and z zf σ +  along the zzΣ -axis. The geometric representation of the strength domain 
homG  of a composite material reinforced by fibers in three or more directions is not trivial. 

Along the convex envelope can be identified zones where one of the parameters related to the 
stress in the fibers ( xσ , yσ  and zσ ) has a limit value and also zones where two or three of 
these parameters have a limit value. 

Figure 3, adapted from Taliercio et al. (1991), shows in a generic way the macroscopic 
strength domain of a composite material formed by a matrix reinforced by fibers in the 
directions x , y  and z , in the space of the macroscopic stress components xxΣ , yyΣ  and zzΣ . 
For the sake of clearness, the particular case of a bounded and polyhedric matrix strength 
domain has been depicted. The zones identified as A  are those in which only one parameter 
( xσ , yσ  and zσ ) has a limit value whilst zones B  and C  are those in which two and three 
parameters, respectively, have a limit value. 
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Figure 3: Macroscopic strength domain ( ) 0homF Σ ≤  of a material reinforced by fibers in the directions x , y  

and z  in the space of macroscopic stress components xxΣ , yyΣ  and zzΣ . 

The determination of the mathematical expressions that define the macroscopic strength 
domain, i.e., the convex envelope of the eight domains obtained by translating the matrix 
strength domain, is possible by defining the parameters xσ , yσ  e zσ  that minimize the 
function: 

 ( , , ) ( )m
x x y y z zx y z x y zg F e e e e e eσ σ σ σ σ σ= Σ − ⊗ − ⊗ − ⊗  (8) 

Σ  being prescribed. In other words: 

 ( ) min ( )
x x
y y
z z

hom m
x x y y z zx y zI

I
I

F F e e e e e e
σ
σ
σ

σ σ σ
∈
∈
∈

Σ = Σ − ⊗ − ⊗ − ⊗  (9) 

The following situations can be identified: 

• 
x x

y y

z z

I
I
I

σ
σ
σ

∈∂⎧
⎪ ∈∂⎨
⎪ ∈∂⎩

 , where iI∂  represents the limit values of the interval iI  defined before. In 

this case, zones of the macroscopic strength domain homG  defined as C  are obtained. 

• 
x x

y y

z z

I
I

I

σ
σ

σ

⎧ ∈∂⎪⎪ ∈∂⎨
⎪

∈⎪⎩

 and permutations of x , y  and z , where iI  represents values within the 

( ) 0homF Σ ≤

y yf σ −

y yf σ +

( ) 0mF Σ ≤

z zf σ −

z zf σ +

x xf σ +

x xf σ −

yyΣ

xxΣ

zzΣ

A B

C
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interval iI . In this case, zones of the macroscopic strength domain homG  defined as B  are 
obtained. 

• 

x x

y y

z z

I

I

I

σ

σ

σ

∈∂⎧
⎪⎪ ∈⎨
⎪

∈⎪⎩

 and permutations of x , y  and z . In this case, zones of the macroscopic 

strength domain homG  defined as A  are obtained. 

• 

x x

y y

z z

I

I

I

σ

σ

σ

⎧ ∈⎪
⎪

∈⎨
⎪

∈⎪
⎩

 . In this case, the zones of the macroscopic strength domain homG  are 

located in the complementary space { }, ,xy xz yzΣ Σ Σ  of 3R . 
In the second situation described above, when two of the parameters have reached their 

limit values, the third is obtained by annulling the correspondent derivative of ( , , )x y zg σ σ σ . 
For example, if x xIσ ∈∂  and y yIσ ∈∂ , zσ  is obtained through: 

 
( , , ) ( )

( ) 0

m

x x y y z zx y z x y z
z z

m

x x y y z zx y z
zz

g F e e e e e e

F e e e e e e

σ σ σ σ σ σ
σ σ

σ σ σ
σ

∂ ∂
= Σ − ⊗ − ⊗ − ⊗ =

∂ ∂

∂
− Σ − ⊗ − ⊗ − ⊗ =
∂

 (10) 

Due to the symmetry in relation to the three considered directions, the resolution of the 
remaining cases are obtained through permutations of x , y  and z . 

In the third situation described above, when only one of the parameters have reached its 
limit values, the other two parameters are obtained through the system formed by the 
correspondent derivatives of ( , , )x y zg σ σ σ  annulled. For example, if z zIσ ∈∂ , xσ  and yσ  are 
obtained through the system: 

 ( , , ) 0 ( , , ) 0x y z x y z
x y

g geσ σ σ σ σ σ
σ σ
∂ ∂

= =
∂ ∂

 (11) 

The resolution of the remaining cases are obtained through permutations of x , y  and z . 

2.3 Matrix characterized by the Drucker Prager Criterion 

The concepts previously described are generalized, i. e., they can be applied to matrices 
satisfying any strength criterion mG  (defined by their yield function ( ) 0mF σ ≤ ). This 
section describes the formulation for a matrix with isotropic behavior and that obeys the 
Drucker-Prager criterion. 

The Drucker-Prager criterion was initially developed to study the soils behavior. However, 
it has also been applied to the study of rocks, polymers, foams, concrete and other materials 
which depend on the hydrostatic pressure. In the three-dimensional principal stress space, the 
Drucker-Prager surface has a conical form with its vertex on the hydrostatic axis 
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( )xx yy zzσ σ σ= = . In a two-dimensional stress space (for example, considering a cross section 
of the cone in the plane of principal stresses ( , )xx yyσ σ ), it represents a domain with an 
ellipsoidal shape. 

The Drucker-Prager criterion may be expressed in the following form: 

 ( )3( ) 0
2

m
m m mF s trσ α σ σ σ= + − − ≤  (12) 

where 
1

2( : )s s s=  is the norm of the second-order tensor s , which is the deviatoric part of 

σ , i.e., ( )s dev σ= . mσ  represents the elastic limit of the material under uniaxial tensile 
stress. The scalar mα  is a non-dimensional parameter ranging between 0 (von Mises criterion) 
and 1, which accounts for the criterion dependence on the hydrostatic stress. 

It is observed that: 

 3 1
2

m

m

sF
s

α
σ

∂
= +

∂
 (13) 

Considering Eq. (12) and Eq (13), which respectively express the Drucker-Prager criterion 
and the derivative of its function in relation to σ , the resolution of Eq. (10) leads to: 

 
( ) ( ) ( )

2

2

2

3 2 3: ( )
2 3 3 2 21

x y x ym
z zz zz x y xx yy

m

S S S S S S
σ σ σ σασ σ σ

α

⎛ ⎞+ −⎜ ⎟= + + − + − − −⎜ ⎟−⎜ ⎟
⎝ ⎠

(14) 

where ( )= ΣS dev  is the deviatoric part of the macroscopic stress tensor. 
Two zones B  of the macroscopic strength domain are then obtained considering: 

 ( )

z z z z z

x x x y y y
z z z z

x x x y y y

z z z z z

f if f

with f and f
if I

or f and f

f if f

σ σ σ

σ σ σ σ
σ σ σ

σ σ σ σ

σ σ σ

− −

+ −

− +

+ +

⎧ ≤
⎪
⎪ = =⎪Σ = ∈⎨ = =⎪
⎪
⎪ ≥⎩

 (15) 

in the function ( ) ( )hom m
x x y y z zx y zF F e e e e e eσ σ σΣ = Σ − ⊗ − ⊗ − ⊗ . The remaining zones B  

are obtained by permutations of x , y  and z  in Eq. (10), Eq. (14) and Eq. (15). 
The expressions obtained for the zones B  of the macroscopic strength domain are 

described below in a simplified form: 

 Zone 1B : 
( )( )1 2 7 8

9
xx

f f f f
f

+ −
Σ = , with x x x z z zf and fσ σ σ σ+ −= =   

 Zone 2B : 
( )( )3 4 7 8

9
yy

f f f f
f

+ − +
Σ = , with y y y z z zf and fσ σ σ σ+ −= =   

M e c á n i c a  C o m p u t a c i o n a l  V o l  X X I X ,  p á g s .  1 0 0 6 3 - 1 0 0 8 0  ( 2 0 1 0 )1 0 0 7 1

C o p y r i g h t  ©  2 0 1 0  A s o c i a c i ó n  A r g e n t i n a  d e  M e c á n i c a  C o m p u t a c i o n a l  h t t p : / / w w w . a m c a o n l i n e . o r g . a r



 Zone 3B : 
( )( )5 6 7 8

9
yy

f f f f
f

− −
Σ = , with x x x y y yf and fσ σ σ σ− += =  (16) 

 Zone 4B : 
( )( )1 2 7 8

9
xx

f f f f
f

− + +
Σ = , with x x x z z zf and fσ σ σ σ− += =   

 Zone 5B : 
( )( )3 4 7 8

9
yy

f f f f
f

− +
Σ = , with y y y z z zf and fσ σ σ σ− += =   

 Zone 6B : 
( )( )5 6 7 8

9
yy

f f f f
f

+ − −
Σ = , with x x x y y yf and fσ σ σ σ+ −= =   

where ( )( )2
1 3 1 m x z zzf α σ σ= − − + −Σ , ( ) ( )( )2

2 1 3 2 1m m x z zz m mf α α σ σ σ α= − − − +Σ − + , 

( )( )2
3 3 1 m y z zzf α σ σ= − − +Σ , ( ) ( )( )2

4 1 3 2 1m m y z zz m mf α α σ σ σ α= − + −Σ + + , 

( )( )2
5 3 1 m x y xxf α σ σ= − − −Σ , ( ) ( )( )2

6 1 3 2 1m m x y xx m mf α α σ σ σ α= − + −Σ + + , 
2

7 3 1m mf α α= − , ( )2
8 3 1 mf α= −  e ( )( )2 2

9 3 1 1 4m mf α α= − − . 

While the expressions that define the zones 1B , 2B , 4B  and 5B  are constants for each 
choice of the matrix and reinforcement properties and for each zzΣ , the expressions of the 

zones 3B  and 6B  are functions ( ), 0xx yyf Σ Σ = . 
Considering Eq. (12) and Eq. (13), the solution of the equation system (11) gives the 

expressions for one of the zones A . System (11) gives: 
 

 

2 2 2

2

2 2 2

2

2 2 3
1 4

2 2 3
1 4

m
x xx yy z xy xz yz

m

m
y yy xx z xy xz yz

m

S S S S S e

S S S S S

ασ σ
α

ασ σ
α

= + + + + +
−

= + + + + +
−

 (17) 

Zone 3A  of the macroscopic strength domain is then obtained considering: 

 

( )

( )

x x x x x

x x z z z x x

x x x x x

y y y y y

y y z z z y y

y y y y y

f if f
with f if I

f if f

f if f
with f if I

f if f

σ σ σ
σ σ σ σ σ

σ σ σ

σ σ σ
σ σ σ σ σ

σ σ σ

− −

+

+ +

− −

+

+ +

⎧ ≤
⎪Σ = = ∈⎨
⎪ ≥⎩
⎧ ≤
⎪Σ = = ∈⎨
⎪ ≥⎩

 (18) 

in the function ( ) ( )hom m
x x y y z zx y zF F e e e e e eσ σ σΣ = Σ − ⊗ − ⊗ − ⊗ . The remaining zones A  

are obtained by permutations of x , y  and z  in Eq. (11), Eq. (17) and Eq. (18). 
The expressions obtained for the zones A  of the macroscopic strength domain are 
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described below in a simplified form: 

 Zone 1A : 
3 ( 1)

3
m x m m

xx
m

α σ σ α
α

+ +
Σ = , with x x xfσ σ +=   

 Zone 2A : 
3 ( 1)

3
m y m m

yy
m

α σ σ α
α

+ +
Σ = , with y y yfσ σ +=  (19) 

 Zone 3A : 
3 ( 1)

3
m z m m

zz
m

α σ σ α
α

+ +
Σ = , with z z zfσ σ +=   

The above expressions show that the zones 1A , 2A , and 3A  are constant with respect to the 
macroscopic stress components xxΣ , yyΣ  and zzΣ , respectively. The planes defined by 
expressions (19) correspond to three planes placed on four vertices of four domains obtained 
by translating the matrix strength domain. 

Figure 4 displays the intersection of the plane 0/ 0zzΣ Σ =  with the macroscopic strength 
domain of a composite reinforced by fibers in the directions x , y  and z  and whose matrix 
obeys the Drucker-Prager criterion. 0Σ  is a reference stress. The intersections of the same 
plane with the matrix strength domain and with the eight domains obtained by its translations 

x y zx x y y z zf e f e f eσ σ σ± ± ±+ +  are also displayed. It is possible to verify that the macroscopic 

strength domain homG  is the convex envelope of these eight domains. 
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Figure 4: Macroscopic strength domain in the plane ,xx yyΣ Σ  of a composite reinforced in the directions x , y  

e z  and whose matrix strength is represented by the Drucker-Prager criterion. 

Figure 5 displays the intersections of homG  with the planes 0/ 0zzΣ Σ = , 0/ 0.7zzΣ Σ = , 

0/ 1.41zzΣ Σ = , 0/ 2zzΣ Σ =  and 0/ 3.41zzΣ Σ = . The intersections of the matrix strength 
domain with these planes (ellipses) are also displayed. 
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Figure 5: Intersections of homG  and of the matrix strength domain with the planes 0/ 0zzΣ Σ = , 

0/ 0.7zzΣ Σ = , 0/ 1.41zzΣ Σ = , 0/ 2zzΣ Σ =  and 0/ 3.41zzΣ Σ = . 

The vertices of the domains obtained by the translations vectors x y zx x y y z zf e f e f eσ σ σ± ± −+ +  
of the matrix strength domain are located in the plane (3 ( 1)) / 3zz m z m m mα σ σ α αΣ = + + , with 

z z zfσ σ −= . In this plane the zones 1C , 2C  and 3C  represent three points (the vertices) and the 
intersections between the zones 1A  and 1B  and 2A  and 2B  happen. Below this plane only 
zones defined as B  and C  occur, as it was shown in Figure 4. Above this plane, the 
equations of zones 1A  and 2A  substitute, respectively, the equations of the zones 1B  and 2B , 
as it can be seen in Figure 5. 

The vertices of the domains obtained by the translations vectors x y zx x y y z zf e f e f eσ σ σ± ± ++ +  
of the matrix strength domain are located in the plane (3 ( 1)) / 3zz m z m m mα σ σ α αΣ = + + , with 

z z zfσ σ += . The zone 3A  of the macroscopic strength domain is located in this plane. Stress 
states where zzΣ  has a value greater than this plan represents the situation of the composite 
material rupture. 

2.4 Comparison with experimental results 

The results obtained from the limit analysis and the homogenization theories are compared 
in this section with the experimental results of Yin et al. (1989), Swaddiwudhipong and Seow 
(2006) and Peres (2008) which were performed on concrete reinforced by steel fibers. 

Yin et al. (1989) employed in their experiments fibers with aspect ratio /l d =60 and 
volume fractions f = 1% and f = 2%. In this analysis the real properties of the random 
medium are used to characterize the fictitious medium. The uniaxial and the biaxial 
compressive strength of the concrete matrix were, respectively, cf =  37.6 MPa and 
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1.34cb cf f= . Thus the following values for the parameters of the Drucker-Prager criterion are 
obtained: 0.2023mα =  and 24.94mσ =  MPa. The uniaxial tensile strength of the fibers was 
414 MPa. Figure 6 shows the experimental data of Yin et al. (1989) and the results obtained 
in this study (solid lines). 

 
Figure 6: Experimental data of Yin et al. (1989) and results obtained in this study. 

Swaddiwudhipong e Seow (2006) employed in their experiments fibers with aspect ratio 
/l d =  55 and volume fraction f =  0,5% 1% and 1,5%. In this analysis the real properties of 

the random medium are used to characterize the fictitious medium. The uniaxial and the 
biaxial compressive strength of the concrete matrix were, respectively, cf =  22.96 MPa and 

1.23cb cf f= . Thus the following values for the parameters of the Drucker-Prager criterion are 
obtained: 0.1575mα =  and 16.754mσ =  MPa. The uniaxial tensile strength of the fibers was 
1100 MPa. Figure 7 shows the experimental data of Swaddiwudhipong e Seow (2006) and the 
results obtained in this study (solid lines). 

 

yyΣ

xxΣ

Concrete 
FRC 

V. PASA DUTRA, S. MAGHOUS, A. CAMPOS FILHO10076

Copyright © 2010 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



 
Figure 7: Experimental data of Swaddiwudhipong e Seow (2006) and results obtained in this study. 

Peres (2008) employed in her experiments fibers with aspect ratio /l d =  44 and volume 
fraction f =  0,5% 1% and 1,5%. In this analysis the real properties of the random medium 
are used to characterize the fictitious medium. The uniaxial and the biaxial compressive 
strength of the concrete matrix were, respectively, cf =  28.24 MPa and 1.16cb cf f= . Thus the 
following values for the parameters of the Drucker-Prager criterion are obtained: 0.121mα =  
and 23.13mσ =  MPa. The uniaxial tensile strength of the fibers was 1200 MPa. Figure 8 
shows the experimental data of Peres (2008) and the results obtained in this study (solid 
lines). 
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Figure 8: Experimental data of Peres (2008) and results obtained in this study. 

The results presented above confirm that the use of the Drucker Prager criterion is suitable 
to the study of the concrete behavior under biaxial compression. This criterion has a simpler 
formulation than the Ottosen and the Willam-Warnke criteria, for example, not allowing the 
characterization of the concrete behavior under tensile and compressive stress states with the 
same parameters. Nevertheless, it allows performing the proposed study, employing the 
homogenization and limit analysis theories, in an analytical way. 

The "expansion effect" that occurs on the concrete strength criterion when fibers are added 
to the matrix can be obtained through the employed approach. However, the comparison of 
the analytical results with the Yin et al. (1989) and Peres (2008) experimental data shows that 
the obtained results underestimate the biaxial compressive strength values and overestimate 
the uniaxial compressive strength values. It is observed that other studies (Williamson (1974), 
Narayanan and Darwish (1987), Bentur and Mindess (1990), Lim and Oh (1999)) have 
indicated that the increase of the uniaxial compressive strength in function of the fiber 
addition can be greater than the increase found in the Yin et al. (1989) and Swaddiwudhipong 
and Seow (2006) experiments. 

Since the present study considered a fictitious medium with long fibers and the real 
material properties for the steel FRC analysis, it was expected that the analytical results of 
strength criterion of the reinforced material were higher than the experimental data of the 
concrete reinforced by short fibers. Further studies will be conducted to evaluate the influence 
of /l d  on the composite material strength and on the fictitious properties of the fictitious 
medium used in this study. The comparison of the obtained results with the Yin et al. (1989) 
and Peres (2008) experimental data indicates that for usual values of the aspect ratio /l d , the 
use of real properties for the characterization of the fictitious medium may be appropriate. 
Following this reasoning, the fact that the analytical results are higher than the 
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Swaddiwudhipong and Seow (2006) experimental data may be related to the consideration of 
perfect bonding between the composite constituents. 

3 CONCLUSIONS 

The strength properties of steel FRC were evaluated in this work through the 
homogenization and limit analysis theories. Assuming the existence of a correlation between 
the random medium (FRC) and a fictitious medium defined by a concrete matrix reinforced 
by long fibers, the strength domain of this material was obtained analytically. The composite 
strength criterion was determined considering the constituents (fibers and matrix) volume 
fractions and strength properties. In the fibers case, only its uniaxial compressive and tensile 
strengths are needed. The matrix concrete strength, in turn, was characterized by the Drucker 
Prager criterion. This criterion has a simpler formulation than the Ottosen and the Willam-
Warnke criteria, for example, not allowing the characterization of the concrete behavior under 
tensile and compressive stress states with the same parameters. Nevertheless, it allows 
performing the proposed study, employing the homogenization and limit analysis theories, in 
an analytical way. 

The "expansion effect" that occurs on the concrete strength criterion when fibers are added 
to the matrix can be obtained through the employed approach. The comparison of the 
analytical results with the experimental data available in the literature suggests that the 
proposed model satisfactorily approximate the experiments. In all the analyzed cases, the 
micromechanical predictions seem to overestimate the strength properties of FRC under 
uniaxial compressive stresses. This aspect is likely to be explained by the assumption of 
perfect bonding at the fiber/matrix interface, which amounts to consider infinite resistance 
interface material. A more comprehensive approach would account for the strength properties 
of interface in the formulation of the macroscopic strength domain homG . 

Studies aiming the evaluation of the fiber aspect ratio influence in the composite strength 
properties are still needed. Moreover, the verification of the influence of the fiber/matrix 
interface strength on the macroscopic strength and the consideration of the Otossen criterion 
for the characterization of the concrete matrix behavior are tasks which remain to be done. 
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