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Abstract. We introduce a new finite element space for discontinuous pressures at immersed boundaries
not conforming with the mesh. The proposed space incorporates two additional degrees of freedom that
are local to the elements crossed by the interface, linear on each side, discontinuous at the interface
and zero at the element nodes. The new degrees of freedom can be statically condensed before final
assembly, therefore avoiding difficulties associated with the update of the mesh graph in the case of
moving interfaces as happens for instance with the well known extended finite element method (XFEM).
The implementation of the new space in any existing finite element code is extremely easy in two and
three spatial dimensions, since the new shape functions are based on the usual P1 functions. The new
space is compared with the classical P1-conforming space and with another finite element space without
additional unknowns also proposed by the authors (see Ausas, Simeoni and Buscaglia, Comput. Meth.
Appl. Mech. Engng., 2010) in several problems involving jumps in the viscosity and in the presence
of singular forces, in two dimensions and in more challenging three dimensional situations. Based on
the numerical experiments we show that the behavior of the new space is equal or better than that of the
aforementioned space.
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1 INTRODUCTION

Simulation of free–surface and/or two–phase flows is still a challenge in computational fluid
dynamics because neither the shape nor the positions of the interfaces are known a priori. These
problems can be solved using the interface–tracking or the interface–capturing methods. The
former computes the motion of the fluid particles using a Lagrangian approach and the compu-
tational domain adapts to the shape of the interface (see for instance Hughes et al. (1981); Hirt
et al. (1974); Cruchaga et al. (2001); Dettmer et al. (2003); Baiges et al. (2010)). A different
approach for the simulation of free–surface flows that is based on Lagrangian particles can be
found in Idelsohn et al. (2004, 2009). On the other hand, in the front–tracking method Unverdi
and Tryggvason (1992); Gueyffier et al. (1999); Popinet and Zaleski (1999), the interface is rep-
resented by a surface mesh advected with a Lagrangian method while immersed in an Eulerian
(fix) mesh where the flow problem is solved considering the fluids as a single fluid with variable
properties.

The other alternative are the interface–capturing methods like the Volume–of–fluid tech-
nique (see Hirt and Nichols (1981); Kothe et al. (1996); Cummins et al. (2005)) and the level
set method (see for example Adalsteinsson and Sethian (1995); Sethian (2001); Osher and Fed-
kiw (2001)). The flow problem is solved in a fixed mesh considering a single fluid with variable
properties. Variants of these methods differ in two aspects: first, the tecnhique used to solve
the transport equation for the scalar function used to represent the interface, for which sev-
eral schemes have been proposed (see Shu and Osher (1988); Jiang and Peng (2000); Sweby
(1984); Enright et al. (2002); Marchandise et al. (2006); Di Pietro et al. (2006) for purely Eu-
lerian methods and Enright et al. (2005); Strain (1999a,b) for semi–Lagrangian methods). The
other differences are related to the method used to solve the Navier–Stokes equations for a one
phase flow with variable properties and in how the discontinuities and kinks in velocity and
pressure that may arise at the interface due to discontinuities in the physical properties and/or
the presence of singular force are approximated.

Several remedies have been proposed to improve accuracy and robustness of computations
in Eulerian formulations. For instance, in Brackbill et al. (1992) a treatment of the singular
forces at the interface by means of a regularization is proposed, such that, sharp variations
in the pressure field are avoided. In Löhner et al. (2006) and Carrica et al. (2007), different
extrapolation techniques of the velocity and pressure near the interface are presented. In Ausas
and Buscaglia (2010) a velocity extrapolation method is also discussed.

In this work we focus the attention on how to improve the accuracy of simulations in finite
element formulations by means of improving the approximation spaces. In this case, since a
partition of the computational domain into simplices is made and the interface does not neces-
sarily conform with the element edges, standard finite element methods, either continuous or
discontinuous across inter–element boundaries, suffer from suboptimal approximation orders.
Poor approximation orders cause spurious velocities near the interface that may affect accuracy
and robustness of simulations as described for instance in Ganesan et al. (2007). One possi-
bility is to locally modify the finite element spaces in those elements cut by the interface in
order to accomodate the discontinuities. This can be done without introducing additional de-
grees of freedom as shown by Ausas et al Ausas et al. (2010a) in which a new finite element
space has been introduced. The interpolation properties of this space are discussed thoroughly
in Buscaglia and Agouzal (2011). When taken as pressure space, the accuracy of Navier–Stokes
computations in equal–order velocity–pressure approximations is not limited, since the global
accuracy is already limited by theH1(Ω)–accuracy of the velocity space, which is at mostO(h).
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Another option is to add degrees of freedom or enrich the finite element spaces at the el-
ements cut by the interface. Minev and co workers Minev et al. (2003) use gradient velocity
shape functions and discontinuous pressure shape functions also for problems involving surface
tension. Also, for two–phase flow problems, Chessa and Belytschko Chessa and Belytschko
(2003) use an enrichment method called XFEM, initially developed by the second author for
the modeling of cracks Belytschko et al. (2001). Both approaches lead to optimal orders of con-
vergence, but the main drawback is that the additional degress of freedom cannot be eliminated
before assembly. The connectivity of the unknowns depend on the position of the interface,
therefore the mesh graph needs to be updated as the interface moves. Also, it has been observed
that the resulting linear system becomes ill–conditioned and that the linear independence of the
finite element basis deteriorates as the mesh size is reduced. This XFEM approach has also been
used recently in Gross and Reusken (2007b,a); Reusken (2008) for two–phase flows. Another
method that is related to the XFEM approach, but avoids the inclusion of additional degrees
of freedom is presented by Fries at al Fries and Belytschko (2006), but some complexities re-
lated to the moving least square approach used have to be dealt with. Also, in Coppola-Owen
and Codina (2005), Codina and Coppola introduce an enrichment for the treatment of kinks in
the pressure field as typically happens in problems with jumps in the density in the presence
of a gravitational field. The additional degree of freedom can be statically condensed prior to
assembly.

In this paper a new enrichment space for discontinuous pressures is proposed. Two enrich-
ment functions are introduced at the elements cut by the interface. The additional functions are
local to each element, linear on each side of the interface, discontinuous just at the interface and
zero at the element nodes. The new degrees of freedom can be statically condensed prior to as-
sembly, thus avoiding difficulties related with the update of the mesh graph. Implementation of
this enrichment in existing finite element programs results easy regardless the number of spatial
dimensions, since the new shape functions can be computed using the classical P1 functions.
As revelead in the numerical experiments, the interpolation properties of this enrichment space
are equal or better than those of the space presented in Ausas et al. (2010a).

The plan of the article is the following: after this introduction, the mathematical problem
and jump conditions in two–phase flows are presented. Also, the continuous and discrete vari-
ational formulations are written. Next, the new enrichment space for discontinuous pressures
is explained with details to construct the enrichment basis functions. In section 4 several test
examples in two dimensions are shown. Finally, some conclusions are drawn.

2 GOVERNING EQUATIONS

We consider the incompressible Navier–Stokes equations. Let Ω be a domain in Rd (d = 2
or 3). The problem is to find a velocity field u and a pressure field p such that

ρ (
∂u

∂t
+ u · ∇u)−∇ ·

(
2µ∇Su

)
+∇p = ρb in Ω, t > 0, (1)

∇ · u = 0 in Ω, t > 0, (2)

u = u∂Ω in ∂Ω, t > 0, (3)

u = u0 in Ω, t = 0, (4)
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where b is a volume force, u∂Ω are the Dirichlet boundary conditions and u0 is the initial
condition for the velocity field. We restrict to the case of two phase flows. The domain Ω is
divided into subdomains Ω+ and Ω−. The fluid properties (density and viscosity) are then given
by

(ρ(x), µ(x)) =

{
(ρ+, µ+) if x ∈ Ω+

(ρ−, µ−) if x ∈ Ω−
(5)

The fluid domains Ω+ and Ω− are separated by an interface denoted by Γ = Ω+∩Ω−. We recall
here the boundary or jump conditions at this internal interface.

Jump conditions for a Newtonian fluid

The standard jump conditions at internal boundaries are briefly recalled here. In the first
place, the velocity field at the interface u is decomposed into its normal and tangential parts as
follows

u = unn + us, (6)

where un = u · n. The interface forces must balance the sum of the forces exerted on Γ from
the “positive” side, plus those from the “negative” side. This is expressed as

(σ− − σ+) · n = fΓ. (7)

We are interested in the normal component of this jump that reads

[(σ− − σ+) · n] · n = JσnnK = J−p+ 2µ
∂un
∂n

K = fΓn. (8)

Remark: In the general case, both the pressure and the velocity gradient can be discontinuous
at the interface. However, for problems involving surface tension, in the absence of Marangoni
or thermocapillary effects, the force fΓ is normal to the interface and given by

fΓ = γ κn, (9)

where γ is the (constant) surface tension coefficient and κ is the mean curvature of the interface.
If viscosities of both fluids are the same, just the pressure exhibits a jump. In the numerical solu-
tion of problem (1)–(4) with the jump conditions (8), regardless of the method used, be it finite
elements or finite differences, special care has to be taken to accomodate the discontinuities in
the fluid–dynamical variables near the interface. In this article we use a finite element method
of which the variational formulation is presented below. In this case, the key issue relies in how
to choose the approximation spaces for pressure and velocity.
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2.1 Variational formulations
The variational formulation for the problem to be solved is

Find (u, p) ∈ V ×Q such that

∫
Ω

ρ (
∂u

∂t
+ u · ∇u) · v dΩ +

∫
Ω

2µDu : Dv dΩ−

−
∫

Ω

p∇ · v dΩ =

∫
Ω

b · v dΩ + fΓ(v) (10)∫
Ω

q ∇ · u dΩ = 0 (11)

∀(v, q) ∈ V ×Q. The term fΓ(v) accounts for a singular force concentrated at Γ. For the case
of surface tension we use a Laplace–Beltrami formulation (see e.g. Bänsch (2001); Ganesan
et al. (2007); Gross and Reusken (2007b))

fΓ(v) = −
∫

Γ

γ(x) (I− n⊗ n) : ∇v dΓ, (12)

accounting for the surface tension force and Marangoni effects.
We use a stabilized formulation based on the ASGS (Algebraic Subgrid Scale) method for

discretization (see e.g. Codina (2001) and references therein) together with a trapezoidal rule
for temporal discretization and a monolithic approach solving simultaneously for velocity and
pressure using a Newton–Raphson iterative method. The discrete variational formulation of this
problem then reads

Find (un+1
h , pn+1

h ) ∈ Vh ×Qh such that

Ru =

∫
Ω

Gu · vh dΩ +

∫
Ω

2µ∇Sun+1
h : ∇vh dΩ−

∫
Ω

pn+1
h ∇ · vh dΩ + fn+1

Γh
(vh) +

+
∑
K∈Th

τK

∫
ΩK

(Gu +∇pn+1
h ) · un

h · ∇vh +
∑
K∈Th

∫
ΩK

δK ∇ · un+1
h ∇ · vh dΩ = 0 (13)

Rp =

∫
Ω

qh∇ · un+1
h dΩ +

∑
K∈Th

∫
ΩK

τK
ρ

(Gu +∇pn+1
h ) · ∇qh dΩ = 0 (14)

∀(vh, qh) ∈ Vh ×Qh. In (13), the term Gu is given by

Gu = ρ

(
un+1
h − un

h

∆t
+ un+1

h · ∇un+1
h − bn+1

)
, (15)

with ∆t the time step and the stabilization parameters given by

τK = c

[
4
ν

h2
+ 2
|uh|n∞
h

]−1

, δK = 2µ+ ρ |uh|n∞ hK , (16)

where c is an adjustable parameter.
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Many authors introduce a regularized form of the Dirac delta function for the computation
of fn+1

Γh
(vh) in (13) as proposed in Brackbill et al. (1992); Chang et al. (1996), therefore, the

surface force is approximated as a volume force more or less concentrated around Γ depending
on an adjustable regularization parameter. In our formulation, we do not use such regulariza-
tions and instead compute this term exactly, which precisely leads to sharp variations through
the interface in the pressure field. Solving problem (13)–(14) accuratelly, requires the finite
element spaces to be appropriately chosen, so as to accomodate discontinuities and/or kinks in
the pressure and velocity fields. We first focus on how to improve the accuracy of the numerical
approximation in several problems involving jumps in the pressure field, for which we introduce
a new enrichment space.

3 THE NEW ENRICHMENT SPACE

Let us consider a finite element partition Th of Ω into simplices (triangles in 2D, tetrahedra
in the 3D) and denote each element in the partition as ΩK . The number of vertices per element
is denoted by np (3 for triangles and 4 for tetrahedra). We consider the interface Γh composed
of straight segments in 2D or planar facets in 3D. This interface is not conforming with the
element edges. The element ΩK can be divided into subelements Ω+

K and Ω−K . A typical element
is shown in figure 1. An interface passing exactly through the nodes of the element leads to a
degenerate case which is not considered here for brevity. In the three dimensional case, two
situations have to be considered, since the reconstructed interface can be either a triangular or
a quadrangular facet. In the discrete variational formulation presented above, the integrals over
the elements are performed exactly by redefining the quadrature in the elements cut by. The
velocity field is made up of continuous linear functions. For all the elements of Th that are
not crossed by Γh the space Qh is also made up of continuous linear functions. The various
possibilities to improve accuracy of the numerical approximation in problems involving jumps
or kinks, consist in an enrichment or a modification of the finite element space Qh only in those
elements of Th crossed by Γh.

The pressure field is written as

ph =

nP∑
J=1

PJ NJ +
2∑

J=1

CJ MJ , (17)

where the first sum corresponds to the standard degrees of freedom (nP = 3 for linear triangles
and 4 for linear tetrahedra) and the second sum corresponds to the additional enrichment degrees
of freedom that are local to the element.

In order to build the enrichment functions, a requirement is that a constant solution on each
fluid domain with a jump at the interface belong to the discrete space Qh. To satify this re-
quirement, we introduce two new enrichment functions that are linear on each subelement Ω+

K

and Ω−K and discontinuous at Γh. We also require both functions to be zero at the nodes of
the simplex. By inspection, we see that a possibility to define the enrichment functions is as
follows:

M1(x) = (1− S(x))χ+(x), (18)
M2(x) = S(x)χ−(x), (19)

where the function S is given in terms of the usual P1 functions by
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Ω−
K

Ω+
K

Triangular facet

Ω+
K

Ω−K Γh

Triangle (2D)

Tetrahedral (3D)

Ω−
K

Quadrangular facet

Γh

Γh

Ω+
K

Figure 1: Typical element ΩK and subelements Ω+
K and Ω−

K and interface Γh.

S =
∑
J∈J+

NJ(x), (20)

with J + = {J ∈ J , xJ ∈ Ω+
K}, and χ+ and χ− the characteristic functions for the positive

and negative sides. The pressure space thus has dimension NP + 2NE , where NP and NE are
the total number of nodes and elements respectively in Th. However, since the additional shape
functions are local to each element crossed by the interface, they can be condensed prior to
assembly and the size of the final linear system to be solved is the same as in the standard case.
Note that this elimination can be done because the pressure is just involved in linear terms of
the problem.

In figure 2 the enrichment functions for a typical triangular element are shown. In the left
part of the figure, the two functions are shown separately and in the right part they are plot
together just for illustrative purposes.
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M1

M1 + M2

M2

Γh

Γh

Γh

Figure 2: New enrichment functions in a typical triangular element. In the left, the two functions are drawn
separately and in the right, the two functions are drawn together just for illustrative purposes.

4 NUMERICAL EXAMPLES

4.1 An academic example

We consider the computational domain [0, 1]× [0, 1] split by the straight horizontal interface
x2 = a separating regions with different values for the parameters µ1 and µ2. The interface is
kept fixed. The parameter ρ is assumed the same for both regions. Considering the following
linear field u

u1(x1, x2) = 1− x1, (21)
u2(x1, x2) = x2, (22)

assuming b = 0, it can be easily found that the exact solution for the field p is quadratic on each
region, with a jump at the interface due to the difference between µ1 and µ2 and is given by

p(x1, x2) = ρ
(
x1 − 1

2
(x2

1 + x2
2)
)

+ 2(µ1 − µ2)H(a− x2) (23)

where H(a − x2) = 1 if x2 < a and zero otherwise. The indeterminacy of the pressure in the
simulations is again removed by imposing p(1, 1) = 0 instead of setting the average to zero. In
order to reproduce this exact solution, the velocity field given by (21)–(22) is imposed at the
boundaries.
The problem is solved with ρ = 10, µ1 = 5 and µ2 = 1 and a = 0.5 using the classical P1-
conforming pressure space, the new enrichment space and the space of Ausas et al. (2010a). A
sequence of unstructured meshes was built, of which the first one is shown in Fig. 3. To this
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mesh, which consists of 1104 triangles, we assign a mesh size of h = 0.0055. The following
meshes in the sequence are built by subdivision of each triangle into four equal triangles. We
measure the velocity error in the H1(Ω)-norm and the pressure error in the L2(Ω)-norm as
function of h. The results of the convergence analysis are displayed in Fig. 4 and 5. Results
for the new enrichment space exhibit in this case a much smaller error (more than one order
of magnitude) than results for the space of Ausas et al. (2010a) in both pressure and velocity.
Also, for the meshes considered, we observe a better convergence order of the new enrichment
space, equal to h2 for pressure and h

5
2 for velocity.

In Fig. 6, cuts of the field p at x1 = 0.5 are compared, where the better behavior near the
interface using the new enrichment space as compared to the classical P1–conforming space is
noticed. Note that the case with ρ = 0 corresponds to a constant solution for the field p on each
fluid, with a jump at the interface of magnitude 2(µ1 − µ2). This solution belongs to the finite
element spaces when either, the new enrichment space or the space of Ausas et al. (2010a) are
used.

0 1

0

1

0.5

Figure 3: Mesh for the academic problem convergence study, with 1104 elements and h = 0.01.

4.2 A 3D example: Rising bubbles

In the previous academic example the interface Γ was fixed. Now, we aim to show the good
behavior of the new enrichment space in a more complex situation including the transport of
the interface. In this article a level set formulation is used, in which the interface is the zero set
of a continuous scalar function φ, i.e.

Γ = {x ∈ Ω, φ(x) = 0}. (24)
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Figure 4: Error norm for the pressure field, showing the convergence rates for the academic example.

The function φ is transported according to

∂φ

∂t
+ u · ∇φ = 0. (25)

which is solved together with the velocity and pressure fields using a SUPG method (see Hughes
(1987)) by adding the following to (13)–(14)

Find φn+1
h ∈ Wh such that

∑
K∈Th

∫
ΩK

(
φn+1
h − φn

h

∆t
+ un+1

h · ∇φn+1
h ) (wh + τ̃Ku

n+1
h · ∇wh) dΩ = 0 (26)

∀wh ×Wh. The discrete space Wh is made up of continuous linear functions. The stabilization
parameter τ̃K is taken as

τ̃K =
c̃ h

2 |uh|∞
, (27)

With this formulation, we study the rise of a buoyant bubble. This problem has been solved
many times before (see e.g. Marchandise et al. (2007) and references therein). We assume a
bubble with density ρ1 = 10−3 and viscosity µ1 in a quiescent liquid with density ρ2 = 1 and
viscosity µ2 in the computational domain Ω = (0, 2.25)× (0, 2.25)× (0, 4). At the initial time
the diameter of the bubble is 1 and is placed at the position (1.125, 1.125, 1). The gravity g is
taken to −10. We consider two different regimes corresponding to parameters given in table 1.
The first case, is labeled as spherical regime. In this case surface tension effects are dominant
and the bubble’s shape remains approximatelly spherical during its evolution. The second case
is labeled as skirted regime. In this case, surface tension effects are less important and the
bubble suffers a larger deformation during its evolution.
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Figure 5: Error norm for the velocity, showing the convergence rates for the academic example.

Table 1: Physical parameters for the two regimes considered for the rise of a buoyant bubble in 3D.

Regime ρ1 µ1 ρ2 µ2 γ
Spherical 10−3 3× 10−4 1 0.3 10

Skirted 10−3 10−4 1 0.1 0.1

The discrete variational formulation with the new enrichment space was included into a gen-
eral purpose in–house code which is described elsewhere (see Ausas (April, 2010)). The level
set function is periodically reinitialized by means of a mass–preserving redistancing scheme
(see Mut et al. (2006); Ausas et al. (2010b)) to keep its distortion under control. For this prob-
lem, the finite element mesh used consists of 1, 511, 016 tetrahedra and the time step is taken
equal to 5× 10−4 for both regimes.

For the spherical regime, shown in figure 7 is the interface shape at times t = 0, 0.375 and
0.75. The bubbles are painted with the velocity magnitude. It is evident from the figure the
benefits regarding mass conservation when the new enrichment space is used with respect to
the classical P1–conforming space. In the former case, a 2% of the bubble’s mass is lost at the
final time shown in the figure against a 60% in the case without enrichment.

For the skirted regime, to better appreciate the benefits of the new enrichment space, we plot
in figure 8 the bubbles at different times together. We observe the typical cap shape attained
by the bubble. For the case using the new enrichment, the bubble is plotted in the left side,
in red, while for the case using the classical P1-conforming space, the bubble is plotted in the
right side, in blue. The mass lost is 0.14% in the first case and 15% in the second one, clearly
evidencing the benefits of the new pressure space. For both regimes, similar results to those
corresponding to the new enrichment are obtained if the space of Ausas et al. (2010a) is used
instead.
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Figure 6: Section at x1 = 0.5 of the field p for the academic example using the new enrichment space and the
P1-conforming space.

5 SUMMARY

In this article a new pressure space has been introduce to accomodate jumps in the pressure
field at immersed interfaces in two–phase flows. The new space incorporates two statically
condensable degrees of freedom per element crossed by the interface. The enrichment space
has been compared to other pressure spaces. In the classical Couette flow problem with a
singular force the error norms for pressure and velocity, showed very similar results as in the
case with the space of Ausas et al. (2010a). For the extensional flow problem, the error norms
resulted in more than one order of magnitude smaller errors and a better convergence order for
the new enrichment space as compared to the space of Ausas et al. (2010a). The new enrichment
space has also been tested in a 3D problem involving the rising of a bubble in a quiescent liquid
considering two different physical regimes. In this case also the new enrichment space exhibited
excelent results regarding mass conservation as compared to the classical P1–conforming space.
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t = 0

t = 0.375

t = 0.75

Figure 7: Comparison of the three dimensional rising bubble at different times for the spherical regime, using the
new enrichment space (left) and the classical P1-conforming space (right). For times 0.375 and 0.75, the maximum
of the colour scale corresponds to 1.3 (red) and the minimum to 0.02 (blue).
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t = 0.7t = 0.45

t = 0.22t = 0

New enrichment

P1 conforming

Figure 8: Comparison of the three dimensional rising bubbles at different times for the skirted regime, using the
new enrichment space (left, red) and the classical P1-conforming space (right, blue).
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