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Abstract. In this paper, we focus on numerical simulations of the wandering phenomenon in
bubble plumes, obtained with a new comprehensive model. The theoretical model has been
developed from the theory of multi-component fluids. We have implemented that model in a
finite-element, parallel platform.

After a brief discussion about the theoretical/numerical model, we describe and analyze the
simulations of the wandering motion using the k-ε model. We show that this solution replicates
wandering only for a relatively short period of time. The reasons for this fact are analyzed.
Then, we present results obtained with the use of a Large-Eddy-Simulation (LES) approach.
These results notably mimic observations of bubble plume wandering without any restriction.

Finally, we employ the unsteady results of the LES approach to perform a detailed analysis
of turbulence in bubble plumes.
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1 INTRODUCTION

Multi-phase flows appear in numerous forms in Nature. They can be found in sediment-laden
flows in rivers, in underflows associated with volcanic eruptions, in turbidity currents, in the
bubbly wake of ships and in liquid-vapor mixtures in nuclear reactors, among many others.
This article addresses basic aspects of the flow in a bubble plume, which is a simple paradigm
of multiphase flow that appears in a many situations: They can be used as breakwaters, as
destratification devices, and as containment for oil spills; they are also encountered in oil-well
blowouts and in nuclear devices.

Although multiphase flows have been very well-known for long time, the theory to explain
them is still under development. Mass, momentum, and energy equations for each of the phases
are nowadays available. These equations are much more complex than their single-phase coun-
terparts and they pose new challenges to their analytical and numerical treatment.

Several numerical solutions of the two-phase flow equations have been presented in the last
decade. Still, the prediction capability of the models is not fully satisfactory, with the exception
of a few cases. The advancement of computational power has not provided means to compensate
the inherent theoretical difficulties of multi-phase flows.

The modeling of bubble plumes has received attention in the engineering community with
special emphasis in the analysis of the flow in reactors and in ladles. The results typically show
an acceptable prediction of time-averaged variables, but the analysis of turbulence is far from
being well established. Very often, the description of turbulence in bubble plumes determines
the difference between having a physically correct result, exceeding the issue of accuracy of the
solution.

In this paper, we devote our efforts to the simulation and analysis of the phenomenon of
wandering in bubble plumes. We focus on the numerical strategies for the replication of the
wandering motion as well as the understanding of the interplay between eddies and bubbles
during the quasi-period. The analysis include simulations in two and three dimensions.

2 THE WANDERING PHENOMENON. MODELING AND MEASUREMENTS

Plume wandering has received scientific attention for about fifty years now. It has been observed
not only in bubble plumes but also in single-phase, thermal plumes.1 It is believed to be a
buoyancy-driven instability enhanced by the presence of walls. It is worth pointing out that the
phenomenon has nothing to do either with a sort of “Magnus effect”,2 nor with “instabilities
produced by excessive waves”.3

Typically, the bubbles swarm from side to side in the three dimensional space in a random
manner. The motion has a quasi-period that depends on the airflow rate of the plume, and the
aspect ratio of the container. Delnoijet al.4 found experimentally that the frequency of the
wandering motion increases with the aspect ratio (AR) for a constant airflow rate up to a value
of AR ∼ 4, after which a constant value for the frequency is attained. Larger airflow rates
producelarger frequency values, i.e.,smallerperiods. These trends were confirmed by Rensen
and Roig.5

F. Bombardelli, G. Buscaglia, M. Garćıa, E. Dari
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One set of measurements that has motivated much work during the last ten years is that
performed by Beckeret al..6 Fig. 1 shows pictures of a bubble plume undergoing wandering
in a box of 0.5 m of width, 1.5 m of water depth, and 0.08 m of thickness perpendicular to
the paper. Beckeret al. obtained velocity signals with Laser Doppler Anemometry (LDA), and
presented time-averaged velocity fields.

Figure 1: Wandering motion in a bubble plume. Experiments by Beckeret al. (1994). Source: Sokolichin and
Eigenberger (1999).

Other measurements associated with wandering, in containers of different size and shape,
were presented by Muddeet al.,7 Mudde and Van Den Akker,8 Borcherset al.,9 Beckeret al.,10

Lefebvre and Guy,11 Pflegeret al.,12 Rensen and Roig,5 Brennet al.,13 and Buwa and Ranade.14

From the numerical point of view, the wandering phenomenon was the subject of several
works, all of them employing finite differences. The state-of-the-art of the modeling of multi-
phase flows is such that there is no ample consensus on basic issues. For instance, we can
choose to perform an Eulerian description of the disperse phase, or a Lagrangean one. We
could also adopt a full two-phase flow model or variants of it. In what follows, we review some
of the previous works on the subject.

Tomiyama and Shimada15 stated that only a multi-group modeling of bubble columns (i.e.,
including processes of break-up and coalescence) guarantees the replication of wandering,
whereas Sokolichin and Eigenberger,16 on the contrary, obtained wandering with a monodis-
perse model. Several researchers have also employed complex models to reproduce wandering,
all of them based on the two-fluid model (TFM). This means that there is still a debate on how
to model wandering and that, following Loth,17 the issue is still “what to model” rather than
“how to model”.

It is intuitive to think that the numerical scheme is crucial in allowing for the replication of
wandering. Very diffusive schemes could preclude the motion altogether. Sokolichinet al.18

showed that solutions obtained with a very simple model (and without any turbulence closure!)
using both an “upwind” scheme and a second-order TVD scheme were able to simulate wander-
ing. However, eddies in the upwind solution did not show the level of detail in the length scales
of the TVD solution. Sokolichinet al. also concluded that Lagrangean and Eulerian approaches
offer similar results, provided that a large number of particles is used (they suggested more than
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100,000 particles). Later on, Sokolichin and Eigenberger16 reproduced wandering again with a
simple model and the k-ε turbulence closure. In turn, Deenet al.19 could not obtain wandering
with the k-ε closure, but they could with a LES approach. Mudde and Simonin, on the other
hand,20 stated that the addition of the lift force is mandatory to replicate wandering with the full
TFM, a force that was not included in most of the previous (successful!) simulations.

This survey indicates that there are different alternatives to model two-phase flows in general
and bubble plumes or columns in particular. No agreement or consensus has been attained.

Since the models developed in this work were implemented in a stabilized finite element
platform, there is a clear question as to whether or not a stabilized-finite-element code can
replicate wandering. We employ a quite simple two-fluid model with both RANS and LES
turbulent closure, so as to address the effect of this closure on wandering prediction.

3 THEORETICAL AND NUMERICAL MODELS

In this section, we briefly review the theoretical and numerical models we developed in this
work. We have presented more details in MECOM 2002 (see Buscagliaet al., 200221); in
Buscagliaet al.;22 Bombardelli, 2003;23 Bombardelliet al., 2003;24 Bombardelli, 2004;25 and
Bombardelliet al., 2004.26

3.1 Theoretical formulation

The equations of the TFM are obtained through ensemble averaging of the exact conservation
equations for each phase in a multi-phase flow. According to Drew and Passman,27 such model
reads:

∂ αk 〈ρk〉
∂t

+ div (αk 〈ρk〉 〈 ~uk〉) = Γk (1)

∂ αk 〈ρk〉 〈 ~uk〉
∂t

+ div (αk 〈ρk〉 〈 ~uk〉 ⊗ 〈 ~uk〉) = div
[
αk

(
〈Tk〉 + TRe

k

)]
+

+ αk 〈ρk〉 ~bk + ~Mk + ~vki
m Γk (2)

for the conservation equations of mass and momentum of the phases, respectively. (Notice that
these are in fact four equations in an air-water mixture: two for each phase.) In (1) and (2),
the subscriptk stands forg in the case of the gaseous phase, and for` in the liquid counterpart.
The symbol〈 · 〉 is employed to denote the ensemble average operator, whileαk is the volume
fraction of phasek; ρk and ~uk are the density, and the velocity vector of phasek. It is worth
pointing out that the stress tensor indicated with the superscriptRe is the result of the process
of ensemble averaging. The sum of both stress tensors is denoted byT ∗

k = 〈Tk〉 + TRe
k . Γk

indicates the interfacialmass transfersource (
∑

k Γk = 0), and ~vki
m Γk expresses the interfacial

momentumexchange due tomasstransfer.~bk denotes the body force,~Mk is the interfacial-force
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and⊗ refers to the tensor product. It can be shown that∑
k

(
~vki

m Γk + ~Mk

)
= ~STF (3)

where ~STF represents the force coming from surface tension.
Our model definesmixtureequations in terms of the velocity and density of the liquid and

the gas.22 In addition, certain non-linear terms are eliminated under the umbrella of the “di-
lute plume” hypothesis. These two steps allow for the recovery of a Navier-Stokes-equations
structure for the mass and momentum conservation expressions (the forces in the momentum
equations cancel out). Besides the ensemble average embedded in the TFM, eithertime av-
eragingor filtering is formally necessary to account for turbulence. Time averaging is usually
associated to RANS-type approaches; filtering is associated with Large-Eddy-Simulation (LES)
approaches. Applying now the Reynolds’ decomposition or the filtering, and denoting with the
subscriptm the mixture variables, the final equations read:

∂ρm

∂t
+ div

(
ρm ~um

)
= 0 (4)

∂ρm ~um

∂t
+ div

(
ρm ~um ⊗ ~um

)
+∇pm = div (σm)t − ρm g k (5)

where,( · ) indicates either Reynolds-averaging or filtering. The tensor(σm)t = −ρm u′
m ⊗ u′

m

corresponds to Reynolds stresses in RANS and to residual stresses in LES.28 Adopting a New-
tonian model defining the mixture density

ρm = ρ` α` + ρg αg (6)

we obtain

div ~um = − 1

ρ∗

(
∂ρ∗

∂t
+ ~um · ∇ρ∗

)
(7)

ρ∗
∂ ~um

∂t
+ ρ∗

(
~um · ∇

)
~um +∇p̂m = div

[
µT

(
∇ ~um +∇T ~um

)]
− ρmg k (8)

whereρ∗ may be taken asρ` (Boussinesq approximation) or asρm; µT is the dynamic viscosity.
For the gaseous phase, our code includes several treatments of the mass and momentum

equations.24 The mass conservation equations result, with both ensemble and turbulent averag-
ing:22

∂

∂t
〈CO〉+ div

(
〈CO〉 〈 ~ug〉

)
= SO + div

(
µT

〈ρ`〉Scg

∇〈CO〉

)
(9)

∂

∂t
〈CN〉+ div

(
〈CN〉 〈 ~ug〉

)
= SN + div

(
µT

〈ρ`〉Scg

∇〈CN〉

)
(10)
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1973



with CO andCN denoting the concentrations of gaseous oxygen and nitrogen, respectively,SO

andSN indicating the mass transfer rates, andScg referring to the Schmidt number.
In this paper we adopt an algebraic equation of the gas velocity:

~ug = ~u` + wb k (11)

wherewb indicates the bubble-slip velocity. The model has been extended in the references
given above so as to include a full momentum equation for the gas and the simulation of break-
up and coalescence of bubbles.

3.2 Numerical treatment

The above equations were implemented in a parallel code based upon the finite element method.
This code is a long-term development of Centro Atómico Bariloche, Argentina. Reports on suc-
cessive stages of the code can be found in Buscaglia,29 Lew,30 Buscagliaet al.,31 and Cantero.32

Subroutines corresponding to the two-phase flow were coded at the Ven Te Chow Hydrosystems
Laboratory, University of Illinois at Urbana-Champaign, in the context of the Ph.D. research of
the first author. Details about the code can be found in Buscagliaet al.22 and Bombardelli.25

In what follows, we will summarize some of the main features of the final implementation.
The model employs an equal order formulation stabilized by pressure gradient projection, pro-
posed by Codina and Blasco33,.34 Several methods provide stability for the convective term:
SUPG, SGS and GLS. In addition, diverse interpolation schemes are implemented.

In this paper, we have used bilinear quadrilateral elements in the 2D simulations, and lin-
ear tetrahedral elements in the 3D counterparts. The submodels associated with the turbulence
treatment, the gaseous phases, and the liquid chemistry variables are advanced in time decom-
posing the time step into several substeps. The 3D cases were run in the IA-64 Linux Cluster at
the National Center for Supercomputing Applications (NCSA) at Urbana-Champaign.

4 NUMERICAL RESULTS

Simulations in 2D and 3D, using diverse models, are reported. The simulations were carried out
using ak − ε model and a LES approach, with the same airflow rate as in the experiments by
Beckeret al.,6 corresponding to a superficial velocity of 1.6 mm/s. Whereas the first technique
has been used in several papers, the application of LESto this type of flowhas been scarce.19,35

4.1 Simulations in two dimensions

Several papers12,16,20 have shown that 2D simulations of the dynamic behavior of bubble
columns lead to an overestimation of the eddy viscosity with a factor of about 5 to 10, as op-
posed to 3D simulations. Therefore, the transient character of the phenomenon is damped in the
simulation, and the run is incapable of reproducing the wandering phenomenon. A steady-state
is reached after some seconds. In 3D, overdiffusive numerical schemes could also overestimate
the eddy diffusivity and thus dampen the 3D simulations as well.
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Figure 2: Fine mesh employed in the 2D computation of flow in a bubble column.

A quite extensive set of numerical tests, including variations in mesh, time step, stabilization
techniques and closure models was undertaken to assess our model and numerical formulation.

Two 2D meshes were employed. The relatively “coarse” mesh contains 7,500 elements, with
densification at the boundaries (50 x 150 in horizontal and vertical directions, respectively) and
the fine mesh (Fig. 2) contains 30,000 elements (100 x 300). The “coarse” mesh corresponds
to the finest grid employed by Sokolichin and Eigenberger in their 2D simulations.

The time step was varied between 0.1 and 0.0001 seconds. For the stabilization techniques,
the SUPG and SGS were alternatively used. In most of the runs thestandardk − ε model was
employed, as done by Sokolichin and Eigenberger,16 Pflegeret al.,12 and Buwa Ranade.14 A
constant value for the bubble-slip velocity equal to 0.2 m/s was initially used, but the algebraic
model of Wüestet al. was also employed. The mass transfer has been suppresed in the tests.
Table 1 summarizes all the runs, which cover a different turbulent models, time and spatial
steps, stabilization techniques and bubble-slip models.

Despite the wide range of numerical and physical parameters varied during the tests, in-
cluding the simulation of processes of break-up and coalescence, wandering could not be re-
produced in the 2D simulations, i.e., a final steady-state condition was attained. This result is
in agreement with most of the previous tests found in the literature. As an illustration, Figure
3 shows the time series of a surrogate of the mean kinetic energy of the flow field, obtained
as:

∫
Ω

1/2 ρm u2 dΩ, whereΩ refers to the whole domain. It can be seen that a steady state
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Tests D1 D2 D3 D4 D5

Mesh Coarse Coarse Fine Fine Fine
Model Alg. Alg. Alg. Alg. Alg..

Time step (sec.) 0.1 0.01 0.1 0.01 0.1
Stabil. technique SUPG SUPG SUPG SUPG SGS

Rel. velocity Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s
Size groups NO NO NO NO NO

Tests D6 D7 D8 D9

Mesh Fine Fine Fine Fine
Model Alg. Mom.-gas eqn. Mom.-gas eqn. Mom.-gas eqn.

Time step (sec.) 0.0001 0.01 0.01 0.01
Stabil. technique SUPG SUPG SUPG SUPG

Rel. velocity Ct=0.2 m/s Full Full Full
Size groups NO YES YES NO

Table 1: Summary of 2D tests for the study of wandering effects in bubble columns.

is attained after the kinetic energy reaches a peak. Similar evolutions were obtained in all the
cases tested.
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Figure 3: Time evolution of a surrogate of the kinetic energy of the flow in the 2D simulation of a bubble plume in
a box.

Plots of the vertical velocity and turbulent kinetic energy fields for the steady-state situation
(see Fig. 4) show qualitative agreement with the measurements.16 Velocities are smaller than
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Figure 4: Vertical velocity (left) and turbulent kinetic energy (right) obtained in the 2D simulation of a bubble
plume in a box. Values in m/s and m2/s2, respectively.

the measured ones due to excessive eddy viscosity (see Bombardelli 200425). Notice that the
maximum value of the turbulent kinetic energy is smaller than 0.01 m2/s2. Fig. 5 depicts the
eddy viscosity obtained from these two-dimensional simulations. The average value of this
variable is 3 x 10−3 m2/s.

Similar results were obtained in the simulations performed with other combinations of the
above variables. All the runs attained a final steady-state condition.

The conclusion of this section is thatnoneof the investigated models and schemes (which
cover some alternatives not considered in the literature) reproduces in 2D the spontaneous quasi-
periodic behavior identified in the experiments.

4.2 Simulations in three dimensions

The runs in three dimensiions were performed first with thek − ε model and, then, with the
LES treatment. Table 2 summarizes those runs undertaken with three-dimensional setups.
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1977



Figure 5: Eddy viscosity obtained in the 2D simulation of a bubble plume in a box. Values in m2/s.

Tests D10 D11 D12 D13 D14

Mesh Coarse Coarse Fine Fine Fine
Model Alg. Alg. Alg. Alg. Alg.

Time step (sec.) 0.1 0.01 0.1 0.01 0.1
Stabil. technique SUPG SUPG SUPG SUPG SGS

Rel. velocity Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s Ct=0.2 m/s
Turb. model k-e k-e k-e k-e LES

Table 2: Summary of 3D tests for the study of wandering effects in bubble columns.

4.2.1 Runs with thek − ε model

A uniform mesh size of 0.01 m (50 x 150 x 8) was adopted, with a time step equal to 0.1 sec.
This choice is supported by published results.16 This is the mesh termed as “coarse” in Table 2.
The initial conditions were set at rest. Regarding the boundary conditions, wall functions were
used in five faces of the box, whereas a symmetry condition was employed for the free surface.
The runs took about 12 hours to simulate 60 seconds in 5 processors of the Linux Cluster at
NCSA, and were extended for about 1000 s.

Fig. 6 depicts the time evolution of a surrogate of the kinetic energy of the mean flow, for run
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Figure 6: Time evolution of a surrogate of the kinetic energy of the flow in the 3D simulation of a bubble plume in
a box.k − ε model. Three segments of the time evolution are displayed.

D10. Three segments of the time evolution are shown. A quasi-periodic motion develops at the
beginning of the simulation (approximately, first 500 s) but thenthe wandering motion disap-
pears. The first part is consistent with Sokolichin and Eigenberger’s results, but the suppression
of motion is consistent with the findings of other authors.19 It becomes obvious that performing
the simulation for short times may have hidden in some works the steady-state that settles later
on. Fig. 7 shows snapshots of gaseous oxygen concentration (which is a good surrogate for
bubble density) on the mid-thickness plane for different times obtained in run D10, showing the
unsteady behavior in the first part of the simulation. Larger values are displayed in yellow and
red, whereas smaller values are presented in blue. Notice that the resemblance with Fig. 1.

Fig. 8 shows contours ofvelocity magnitudeof the mixture. Again, largest values are pre-
sented in yellow. Each of the ”rings” is a vortex that interplays with other vortices and with
the walls. As anticipated by Sokolichin and Eigenberger it is possible to notice that the “initial”
single vortex bifurcates into two, and then into three smaller vortices, as a result of the motion of
the plume. Later, two vortices appear again via the combination of two and, finally, one vortex
dominates the box again. This number of vortices naturally depends upon the width/water depth
ratio, as demonstrated by Delnoijet al.4 and Borcherset al.9 This description of the flow agrees
completely with Sokolichin and Eigenberger’s counterpart. From the values of dissipation rate,
Kolmogorov length scales have been obtained in all the domain, ranging from 0.1 mm to more
than 3 mm. Most of the Kolmogorov length scales ranged from 0.1 to 1 mm.
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1979



Figure 7: Snapshots of oxygen concentration in the 3D simulation of a bubble plume in a box.k − ε model.

4.2.2 Results corresponding to the run with the LES approach

In the LES computations, 2,870,400 elements were employed, corresponding to a uniform mesh
size of 5 mm and to a mesh of 300 x 100 x 16. This mesh size is two times smaller than Deen
et al.’s.19 It is also about 5 to 10 times the Kolmogorov length scale computed from thek−ε run.
The time step was fixed at 0.1 s, which is consistent with the Courant number of 1 suggested
by Piomelli.36 The effect of a smaller time step of 0.01 s was also investigated once the quasi-
periodic behavior had been attained (run D11, see below).

One important question is whether there is a need for a modification of the Smagorinsky’s
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Figure 8: Snapshots of velocity magnitude in the 3D simulation of a bubble plume in a box.k − ε model. The
images are not separated the same amount of seconds.

model when a disperse phase is present. In our runs we adopt the standard Smagorinsky’s model
to address this issue.

Based on the experience with thek − ε model in the previous runs, it was decided to test a
couple ofdifferent initial conditionsand to run those tests for a very long time. It was concluded
that after 80 s (about two periods of the wandering motion), the run was practically independent
of the initial conditions. Fig. 9 shows the time evolution of a surrogate of the kinetic energy of
the mean flow. It is possible to see that, in fact, a quasi period of basically 50 s characterizes
the motion after 75 s. However, larger quasi periods are also found. For instance, considering
the curve close to 260 s, the quasi period therein is about 80 s.

Regarding the boundary conditions, the airflow rate was imposed in a volume located from
0.15 to 0.19 m from the left wall. The velocity vectors at different planes not so close to the
diffuser were found insensitive to this exact location. The gas flow rate was kept constant during
all the computations, not including any random component. The velocity boundary conditions
at the walls were set enforcing the law of the wall. This approach is called LES-NWM,28 i.e., a
LES with near-wall modeling. The runs required 7 hours for every 9 seconds of simulation on
20 processors of the Linux Cluster at NCSA.

Fig. 10 depicts snapshots of the contours of gaseous oxygen concentration for the case of
the simulation with LES, separated by 0.5 s. Some small length scales can be observed in the
plume, giving information about details of its behavior in diverse parts of the box. In turn, Fig.
11 presents snapshots of gaseous oxygen concentration separated by 5.5 s, comprising a quasi
period of the dynamic motion. The numerically-predicted quasi period was slightly larger than
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Figure 9: Time evolution of a surrogate of the kinetic energy of the flow in the 3D simulation of a bubble plume in
a box. LES approach.

the measured value of 41 seconds.It can be noticed that the simulation satisfactorily mimics
the measurements.

Fig. 12 presents the velocity fields of the mixture corresponding exactly to the above oxygen
concentrations. Notice that, as expected, the large coherent structures that were apparent in
thek − ε model solution appear in the LES counterpart, but embedded in a large spectrum of
smaller scales. These smaller scales are characterized in the following sections.

Compared to the simulations undertaken with thek − ε model, the LES results give a vivid
picture of the features of the instability associated to wandering. It is possible to see from Figs.
10 to 12 that the bubble plume, laden towards the left wall, follows regions of relatively high
velocity of the carrier, with exception of the upper part of the box. In that region, the plume
oscillates back and forth with respect to the wall in the first stages of the quasi period. This
oscillation is produced by the Coanda effect.37 The motion is the source of a vortex on the top-
left corner, at the beginning of the quasi period (see Fig. 13, section (a)). This eddy keeps its
size for later times, interacting with the large vortex located in the rest of the box. At the same
time, it is convected downwards by the mean flow. This eddy diminishes the size of the eddy
occupying the remaining of the box, leading to the condition of two vortices (section (b)). The
eddy coming from the upper-left corner continues in its way down until an eddy forms in the
top-right corner of the box (section (c)). This leads to the three-vortex situation. This condition
lasts until the two lower eddies “merge,” restoring a two-vortex condition (section (d)). Finally,
a single vortex is left in lieu of the two vortices (section (e)).

F. Bombardelli, G. Buscaglia, M. Garćıa, E. Dari
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Figure 10: Evolution in time of the oxygen concentration in the 3D simulation of a bubble plume in a box. The
images are separated by 0.5 seconds. LES approach.

5 ANALYSIS OF TURBULENCE FROM 3D SIMULATIONS

The availability of “instantaneous” velocity fields from the LES computations allowed for the
determination of turbulence statistics. The 3D outputs from the numerical solution were post-
processed in order to obtain statistical moments up to fourth order, turbulent kinetic energy,
turbulent shear stresses and the structure of the flow. This also allowed for the characterization
of the coherent structures induced by the wandering motion.
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Figure 11: Evolution in time of the oxygen concentration in a quasi period of in the 3D simulation of a bubble
plume in a box. The images are separated by 5.5 seconds. LES approach.

5.1 Turbulence statistics

For the different statistical moments, the usual definitions were applied at each node of the
mesh:38

Ui = ui ≡
1

NF

NF∑
j=1

ui,j ; σ2
i ≡ 1

(NF − 1)

NF∑
j=1

[ui,j − ui]
2 ;

Si ≡
1

(NF − 1) s3

NF∑
j=1

[ui,j − ui]
3 ; Ki ≡

1

(NF − 1) s4

NF∑
j=1

[ui,j − ui]
4 (12)

whereu represents any of the velocity components,i refers to the node in the mesh,j indicates
time, ands is the standard deviation. The overbar means time average, whereasNF is the
number of files (values) that were used in the computations. The above equations correspond to
the time average, variance, skewness and kurtosis, respectively. From the variances for the three
velocity components, the turbulent kinetic energy was obtained at each point. The estimator
of the variance above is a non-biased estimator.38 Additionally, the nondimensional turbulent
stress was computed from:(

u
′
k u

′
l

Uk Ul

)
i

=
1

NF

∑NF
j=1

[
uki,j

− uki

][
uli,j − uli

]
uki uli

no summation implied (13)
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Figure 12: Evolution in time of the velocity magnitude in a quasi period of in the 3D simulation of a bubble plume
in a box. The images are separated by 5.5 seconds. LES approach. Notice the correspondence with some images
of Figure 8.
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Figure 13: Sketch of the evolution of the number of eddies and their interrelation with the bubble plume.

wherei andj are as above andk andl indicate the velocity components.
Computations were undertaken using different numbers of files, to address the issue of sta-
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tionarity of the statistics. The smallest number of files was 487, which covered 225 seconds
of simulation, 5.5 quasi periods of plume wandering. It was confirmed that the statistics were
indeed stationary when 250 s were processed, with the exception of the third moment. This
processing took about 2 hours of computer time.

Fig. 14 brings a comparison between the present numerical results and the measurements
provided by Sokolichin and Eigenberger.16 Time-averaged vertical velocities, at different heights
above the diffuser, for the plane located at mid-thickness, are compared. The agreement is very
satisfactory, considering both the short period of time-averaging of the measurements (between
30 and 60 s), and the nature of the model. There are some discrepancies close to the diffuser that
could be attributed to the inexact boundary condition. Fig. 15 in turn shows projected vectors of
the time-averaged velocity field obtained with the LES approach. Planes are parallel to the front
wall and are located at 2, 4, 5.5 and 7 cm from the front wall. The color of vectors indicate the
value of the vertical velocity. Notice that the patterns are quite similar in all the planes, which
confirms the essentially-2D nature of the flow.

Fig. 16 presents the TKE at mid-thickness computed from the LES results. Compared to
Figure 4(b), it is seen that the computed values with LES present a peak on the left which is
more than two times larger than the 2D results. This result can be explained clearly as follows.
TKE can be interpreted roughly as a surrogate of the velocity fluctuations. The 3D simulations
include wandering and, thus, a portion of the fluctuations is associated with the motion of
the plume, andnot with “true” turbulence. Consequently, the wandering kinetic energy, not
necessarilyturbulent kinetic energy, is accounted for in the plot. In order to obtain the true
TKE, a high-pass filter is needed, as employed by Muddeet al.7

Fig. 17 investigates the distribution of variance of the velocity components in the vertical
direction, for planes located at 4, 5.5, and 7 cm from the front face of the box. It is clearly
seen that the variance increases with distance from the diffuser up to a certain elevation, and
then it saturates, as reported by Rensen and Roig,5 for both velocity components. This was at-
tributed by Rensen and Roig to the effect of the walls. However, whereas the horizontal velocity
component seems to show a saturation in the upper 60% of the box, the vertical component of
the velocity vector shows a decreasing value in the upper 50 cm, close to the left wall. This
difference could be the result of the fact of having a non-symmetric plume. Closer to the right
wall, the pattern is similar to that corresponding to the horizontal velocity component. These
results are subjected to the same issues corresponding to the TKE, in terms of the superposition
of wandering motion and true turbulence.

Fig. 18 shows the kurtosis of the velocity components in the vertical direction, at planes
located at 4, 5.5, and 7 cm from the front wall. Kurtosis is a measure of the “non-gaussianity”
of the distribution. For a Gaussian distribution the value of the kurtosis is 3. Notice from the
figure that the vertical velocity presents values greater than 3. The horizontal component has
values close to 3. Similar issues associated with the superposition of wandering motion and true
turbulence appear in these figures. Overall, the LES results are consistent with the physics and
with the measurements.

F. Bombardelli, G. Buscaglia, M. Garćıa, E. Dari
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Figure 14: Comparison of modeled and measured vertical velocities at different planes above the diffuser, for
the 3D simulation of a bubble plume in a box. LES approach. Numerically-obtained values are represented by
dots, showing the fine resolution; measurements are represented by solid lines. Planes correspond to (from top to
bottom): 1.44, 1.25, 1.06, 0.86, 0.67, and 0.48 m above the bottom of the tank.
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Figure 15: Velocity fields for different planes parallel to the front wall. Planes are located at 2, 4, 5.5, and 7 cm
from the front wall. Colors of the vectors indicate the value of the vertical velocity.

Figure 16: Distribution of turbulent kinetic energy in a plane located at mid-thickness. Values are expressed in
m2/s2.
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Figure 17: Distribution of the variance of the velocity component in the vertical direction. Planes located at 4, 5.5,
and 7 cm from the fron face of the box.

Figure 18: Distribution of the kurtosis of the velocity component in the vertical direction. Planes located at 4, 5.5,
and 7 cm from the fron face of the box.
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5.2 Characterization of coherent structures of the flow produced by the wandering mo-
tion

Although turbulent flows are intrinsically random, some of them show certain scales that can
be characterized according to their persistent structure. These scales are called “coherent struc-
tures”.39 In the phenomenon of wandering, and with the configuration of a box, there appear
eddies which interact with each other, with the walls, and with the bubbles. The eddies per-
sist for some time, then dissapear and appear again in the next quasi-period. These eddies are
the coherent structures associated with the wandering motion. In order to characterize those
structures, several analyses have been developed.

Figure 19: Two-dimensional velocity, vorticity and velocity gradients in a plane located at 4 cm (mid-thickness)
from the front wall of the box. The values of vorticity and velocity gradients are multiplied by 103.

Fig. 19 shows the contours of:

• the two-dimensional instantaneous velocity (in m/s),

• the instantaneous “y”-vorticity component (in 1/s, multiplied by 103), and

• the instantaneous horizontal gradient of vertical velocity (∂w/∂x, in 1/s, also multiplied
by 103),

corresponding to a two-vortex condition in the box, for a plane located at mid-thickness (4
cm). The horizontal gradient of “uz” completely dominates the vorticity component field. The
plane located at 4 cm presents a wide range of scales, that are not present closer to the walls.
Additionally, it is possible to see that bubbles do not tend to be trapped by the eddies. Sene
et al.40 determined in a mixing layer that 50% of the bubbles are trapped ifΓSHT = ∆U/vterm,
the “trapping parameter”, is about 3. This parameter measures the tendency for a bubble to
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be trapped through∆U , the velocity difference across the vortex. In this case, this ratio is
about 1, which means that bubbles are not trapped. Finally, the interplay among eddies and
bubbles resembles Wang and Maxey’s41 sketch of the preferential sweeping mechanism for
heavy particles interacting with vortical structures.

6 CONCLUSIONS

Intensive computations regarding bubble plume wandering have been presented. They have
shown that it is possible to reproduce wandering effects with our finite element model in
3D. This could be achieved with a LES approach with a very simple bubble-slip model and
Smagorinsky’s subgrid closure.

With thek − ε model, on the other hand, short simulation times do show wandering, but at
longer times the flow settles to a steady state.

The quasi-period (the motion is not strictly periodic) of the wandering predicted by the sim-
ulation was found to agree reasonably well with the measured one. The agreement between the
modeled and observed position of the plume was very satisfactory. The coherent structures that
take place in the interplay between eddies and bubbles have been characterized using vorticity
fields. It has been shown that bubbles are not trapped by the eddies.

ACKNOWLEDGEMENTS

A large portion of the runs presented herein has been undertaken in the IA-64 Linux Cluster at
the National Center for Supercomputing Applications (NCSA) at the University of Illinois at
Urbana-Champaign. The computer account at NCSA awarded to Prof. Marcelo H. Garcı́a is
gratefully acknowledged. This research was funded in part by the US Army Corps of Engineers,
under Research Contract DACW42-00-P-0396, with Dr. Steven C. Wilhelms (CEERD-HR-F)
as Technical Supervisor. This support is also gratefully acknowledged. GCB and EAD also
belong to CONICET (Argentina). Partial support for GCB and EAD came from ANPCyT
(Argentina).

REFERENCES

[1] K. Kotsovinos. Plane turbulent buoyant jets. Part 2. Turbulence structure.J. Fluid Mech.,
81-1, 45–62 (1977).

[2] S. Johansen, D. Robertson, K. Wohe, and T. Engh. Fluid dynamics in bubble stirred ladles:
Part I. Experiments.Metall. Trans. B, 19B, 745–754 (1988).

[3] A. Castillejos and J. Brimacombe. Measurement of physical characteristics of bubbles
in gas-liquid plumes: Part II. Local properties of turbulent air-water plumes in vertically
injected jets.Metall. Trans. B, 18B, 659–671 (1987).

[4] E. Delnoij, J. Kuipers, and W. van Swaaij. Dynamic simulation of dispersed gas-liquid
two-phase flow: Effect of column aspect ratio on the flow structure.Chem. Eng. Sci.,
52, 3759–3772 (1997).

F. Bombardelli, G. Buscaglia, M. Garćıa, E. Dari
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