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Abstract. In this work the entropy generation in a parallel flat plate microchannel under a purely 

electro-osmotic flow with a non-Newtonian fluid is analyzed. We considering a fully-developed flow 

in the velocity profiles; the fluid obeys a constitutive relation based in a power-law model. The 

temperature fields were obtained by the steady-state analysis of a conjugate heat transfer problem in 

the fluid and solid walls; the governing energy equation was solved firstly using the numerical 

successive-over-relaxation method with central finite differences scheme and then an asymptotic 

solution was introduced to validate the numerical process. Analytical expressions for dimensionless 

local and global entropy are obtained. The goal of this paper is show the influence of dimensionless 

parameters involved in the analysis on the temperature profiles, entropy distributions and the Bejan 

number. The dimensionless parameters are: a flow behavior index, to describe the power-law fluid 

behavior; an electrokinetic parameter, to indicate the thickness of the Debye length; the Peclet 

number, as indicator of heat transfer convection; a normalized power generation term, being the ratio 

of heat flux from the external wall to the Joule heating; a conjugation term, which represents the 

competition between the longitudinal conductive heat in the microchannel wall to the convective heat 

transfer in the fluid; a characteristic temperature difference and finally the aspect ratios of the 

microchannel system, respectively. Additionally is observed the excellent agreement between the 

numerical and asymptotic solution to the Nusselt number for different conditions in the conjugated 

heat transfer process.  
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1 INTRODUCTION 
 

The microfluidic devices are used in the handling of biomedical and chemical analysis. 

Thus, electrokinetic transport is widely used to control flow and for manipulate sample 

solutes, include injection, separation, mixing, dilution/concentration, and reaction, (Steffen 

and Friedhelm, 2007). The electro-osmosis is a mechanism of electrokinetic transport which 

gives the movement of a volume of an aqueous solution adjacent to a solid charged surface 

when an external electric field is applied tangentially along the surface (Tang et al., 2007). 

Due to the rapid development of "Lab-on-a-Chip” technologies during recent years, electro-

osmosis is being used extensively as a driving force for manipulating fluid flows for transport 

and control samples in nano volumes of fluids to biological, chemical and medical 

diagnostics. Advances in microfluidic devices make possible a complete analysis of fluids in 

the biochemistry area in a single fabricated chip; therefore, it is fundamental understand the 

characteristics of fluids flow in microchannels to have an optimum design and precise control 

of microfluidics devices (Zhao et al., 2008). The physics of electrokinetic phenomena and 

specifically in the electro-osmotic flow has been extensively reviewed in the literature 

(Masliyah and Bhattacharjee, 2006; Li, 2004). The heat transfer phenomena of Newtonian 

fluids in microchannels has been studied by Xuan (2004a, b), and Tang (2004a, b; 2007), they 

analyze the coupled cases with temperature and conjugates problems in electro-osmotic flow, 

and the inevitable effect of Joule heating in the flow is emphasized. Although in the literature 

there are several models proposed to analyze the behavior of non Newtonian fluids, at present, 

still appear relevant implications on the transport of electrokinetic flows that have not been 

completely resolved by the scientific community (Das and Chakraborty, 2006). Studies by 

Zhao et al. (2008), Berli (2008) and Tang et al. (2009), in this regard consider the power-law 

model for non Newtonian fluids and only solve the hydrodynamics of electro-osmotic flow; 

Das and Chakraborty (2006) also uses the power-law model to solve analytically the 

distribution of velocity, temperature and concentration on electro-osmotic flows of non 

Newtonian biological fluids, but without consider the conjugate heat transfer problem in the 

microchannel wall. On the other hand there has been a growing interest to optimize thermal 

systems by entropy generation analysis through certain processes. Entropy generation is 

always in proportion to thermodynamic irreversibility, both of which are an indispensable part 

of all real processes. Since there is a strong relationship between entropy generation and lost 

available work, entropy generation should be reduced for the sake of achieving better 

performance. During the last two decades, the interest in the entropy generation techniques 

has experienced a huge growth for the thermal analysis of the flow systems in engineering 

devices, (Abbassi, 2007). Entropy generation minimization thus came to be utilized as a 

robust and handy tool for optimization in a wide range of thermal applications (Bejan, 1996). 

The entropy generation has been studied by Mahmud and Fraser (2006), they consider the 

power-law for flows of non-Newtonian fluids and heat transfer inside a circular duct, they 

presents the competition of viscous dissipation and heat transfer irreversibility as a function of 

flow behavior index. The great deal of researches has been conducted for entropy generation 

analysis in macro-scale processes and devices; however, in open literature there have been a 

few numbers of investigations in the field of microfluidic entropy analysis, (Abbassi, 2007).  

Zhao and Liu (2010), analyze the local entropy generation of electro-osmotic flow due to heat 

conduction, viscous dissipation and Joule heating in open-end and closed-end micro-channels. 

Ibáñez and Cuevas (2010), study the entropy generation in a parallel plate microchannel of a 

magneto-hydrodynamic flow, they solved analytically the conjugate heat transfer problem in 

the fluid and solid walls, for calculated entropy generation rate. In the present investigation 

J. ESCANDON, O. BAUTISTA, E. BAUTISTA1592

Copyright © 2011 Asociación Argentina de Mecánica Computacional http://www.amcaonline.org.ar



the conjugate heat transfer problem in a parallel flat plates microchannel will be solved, taking 

into  account a power-law fluid in the flow; then, the local and global entropy generation rate 

will be calculated, the effect of the main transport parameters involved in the mathematical 

model on the entropy generation will be presented. 

 

2 METHODOLOGY 
 

2.1 Physical model 
 

The Figure 1 shows a squematic view of the physical model, the fluid flow is through of a 

microchannel formed by two parallel flat plates of height 2H  and length L , the wall 

thickness is 
w

H ; / 1L H , / 1
w

L H . We considered a fluid with a rheological power-law 

model. The origin of the rectangular coordinates system is placed at the x -symmetry axis of 

the microchannel and y -axis points out in the transverse direction, which is normal to the 

surface of the microchannel. The driving forces are provided by an electric field xE  in the 

axial direction between inlet and outlet of microchannel. For analysis, properties are 

considered constant with the temperature, the heat transfer in steady state and 

hydrodynamically developed flow. The fluid enters at a temperature 0T
 
in 0x . The wall has 

adiabatic conditions in 0x  and x L . To 0 x L , there is a constant heat flux 0q  in the 

external wall. The figure shows the high concentration of electric charges in the Debye length, 
1
, inside of the electrical double layer; also, the characteristic velocity cu  in flow direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 1: Schematic of electro-osmotic flow between two parallel flat plates. 

 

2.2 Fluid flow and heat transfer modeling 
 

The momentum equation for the assumed conditions is 
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electric double layer, respectively defined by (Zhao et al., 2008) 
 

        

1

,

n

yx

du du
m

dy dy
    (2) 

 

         

2 cosh
,

cosh
e

y

H
    (3) 

 

where u , , , , n  and m  are the axial velocity, the inverse Debye length, the dielectric 

constant of the fluid, the zeta potential in the shear plane of the electric double layer, the flow 

behavior index and the flow consistency index, respectively. 2  is the Debye-Hückel 

parameter which is obtained with the assumption of small zeta potentials in the Poisson-

Boltzmann equation, (Masliyah and Bhattacharjee, 2006). So the Eq. (1) is transformed in 
 

          

2
,

cosh

cosh

n

x

yd du
m E

dy dy H
   (4) 

 

with the corresponding boundary conditions 
 

                 

,, 0u x y H      (5) 
 

                   , 0

0.

x y

du

dy
     (6) 

 

After integrate once the Eq. (4) and using the Eq. (6), the velocity gradient is given as 
 

                    

1

sinh
.

cosh

n

x yEdu

dy m H
    (7) 

 

The energy equation for the fluid is given by 
 

    

2 2

2

2 2
,

f f f

pf f f xyx

T T T du
C u k k E

x dyx y
  (8) 

 

where , pfC , fT , 
f

k  and  are the density, the specific heat, the temperature, the thermal 

conductivity and the electrical conductivity, respectively; x , y
 

are the axial and the 

transversal coordinate. The boundary conditions associated with Eq. (8) are 
 

       
 0

0, ,
f

T x y T
     

(9) 
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, ,

, , ; ,
fw

w w f

x y H x y H

TT
T x y H T x y H k k

y y   
(12) 

 

where wT , and wk  are the temperature and the thermal conductivity in the wall, respectively. 

The energy equation for the solid is given by 
 

    

2 2

2 2
0,w wT T

x y
     

(13) 

 

with their boundary conditions associated  
 

    
0, ;

0,w

x L y

T

x      
(14) 

 

            
0
.w

w

y H Hw

T
k q

y      
(15) 

 

2.3 Second law analysis  
 

Taking account for laminar regimen in electro-osmotic flow, the local volumetric entropy 

generation due to heat conduction, viscous dissipation and Joule heating in the fluid region of 

microchannel can be represented respectively as (Zhao and Liu, 2010) 
 

     

2 2

2
,

f f f

Gcond fluid
f

k T T
S

x yT     (16) 

 

                     
,

1
yxG f fluid

f

du
S

T dy     (17) 

 

                                    

2

,x
G j fluid

f

E
S

T      (18) 

 

in the case of the solid region of microchannel, the local volumetric entropy generation due to 

heat conduction can be described by (Abbassi, 2007) 
 

     

22

2
,w w w

Gcond solid
w

k T T
S

x yT     (19) 

 

2.4 Dimensionless mathematical model for heat transfer process 
 

Defining the following dimensionless variables 
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0
,
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f
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T T
T

T      
(23) 

 

                                

0
,

w

w
c

T T
T

T       
(24) 

 

            
,

w

y H
Z

H      
(25) 

 where X  and Y  are the dimensionless axial and the transversal coordinates respectively; 

U ,
f

T , wT  and Z  are the velocity, the temperature in the fluid, the temperature in the solid and 

the transversal coordinate to analyze the solid wall, dimensionless, respectively. 
11 nn n

c x mu n E  is the generalized Smoluchowski velocity for power-law fluids 

(Zhao et al., 2008). The characteristic temperature change was chosen as 2 2 .c x f
T E H k  

By introducing the dimensionless variables from Eqs. (20-23) in Eqs. (8-12) the 

dimensionless energy equation in the fluid region in the microchannel is obtained 
 

  

12 2

2

2 2
Pr 1,

n
f f fT T T dU

PeU Ec
X dYX Y    

(26) 

 

and their boundary conditions 
 

 
0, 0,fT X Y

     
(27) 
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X Y
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      , 0
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X Y
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, 1 , 0 ,wfT X Y T X Z

     
(30) 

 

in addition to Eq. (30) was considered the next boundary condition in the internal interface of 

microchannel from the Eq. (12) 
  

            
2

, 0 , 1

.
fw

X Z X Y

TT

Z Y
     

(31) 

 

Then, the energy equation in the fluid and their boundary conditions leaves the following 

dimensionless parameters 
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,w w

f

k HH
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(35) 

 

           
,Pr

pf
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1
,

n
c

n
cpf

u
Ec
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where  and  are the aspect ratios in the fluid and solid region, respectively; Pe  and  are 

the Peclet number and the conjugation term which determines the basic heat transfer regimes 

between fluid and solid sections in the microchannel; Pr is the Prandtl number and Ec is the 

modified Eckert number, (Mahmud and Fraser, 2006). By using the Eqs. (21) and (22) into 

Eq. (7) we have the dimensionless velocity 
 

                           

1

,
sinh

cosh

n
n

YdU

dY n
   (38) 

 

Zhao et al. (2008), gives an approximate analytical solution to the above relationship. 

H  is the electrokinetic parameter, (Masliyah and Bhattacharjee, 2006). The Eq. (38) 

takes in consideration the next boundary condition, from Eq. (5) 
 

                     

, 1 0.U X Y      (39) 
 

The dimensionless energy equation for the microchannel wall is obtained by introducing 

the dimensionless variables given in the Eqs. (20), (24-25) in the Eqs. (13-15), then we have   
 

                             

2 2

2 2 2
0,w wT T

X Z    

 (40) 

 

and their boundary conditions 
 

           
0,1;

0,w

X Z

T

X     
 (41) 

 

 

                      

2

, 1

,w

X Z

T
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 (42) 

 

where 
 

          
0
2

,
x

q

E H      (43) 

 

, is the normalized power generation term being the ratio of heat flux from the external wall 

to the Joule heating. For the solid region in the microchannel, is necessary considered the 

boundary condition in the internal interface given by Eqs. (30-31). 
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2.5 Order of magnitude analysis 
 

The order of magnitude of the shear stress can be obtained from Zhao et al. (2008) as 
 

                  

,yx xE      (44) 

 

and the order of magnitude of the velocity gradient or strain rate is  
 

                      

.cudu

dy H
     (45) 

 

So, considering typical values in electro-osmotic flows and by comparing the order of 

magnitude of the viscous dissipation and the power generation terms in Eq. (8), the following 

relationship is obtained 
 

     
2

1,x

c
x

E

u
E

H

     (46) 

 

this order of magnitude indicates that the viscous dissipation effect can be neglected in the 

energy equation for the fluid region. Now, to obtained the scales of the temperature changes in 

the fluid region, we compare the diffusive terms with the power generation term in Eq. (8), as 

follows  
 

     
2 2

, ,x
f x

f

E L
T

k
     (47) 

 

     
2 2

, ,x
f y

f

E H
T

k
     (48) 

 

where, ,f xT  and ,f yT  are the temperature changes in the directions x  and y , respectively. 

Then, by comparing the Eq. (47) and (48) we have 
 

     

2
,

,

1,
f x

f y

T L

T H
     (49) 

 

this result shows that the most important temperature changes are in the longitudinal direction. 

In addition, due to adiabatic boundary conditions in the microchannel walls, an order of 

magnitude of energy balance at the microchannel wall indicates, in a first approximation, that 

the most of the heat generated by Joule heating effect is of the order of magnitude of 

transverse conductive heat into the microchannel wall and also of the same order of the 

magnitude of the heat losses, that is  
 

                   
, ,2

0 ,
f y w y

x f w
w

T T
E H k k q

H H
    (50) 

 

where ,w yT  is the temperature change in y  direction in the microchannel wall. By 

considering the total temperature change in the transversal coordinate yT  of microchannel 

system is then of order  
 

                           , , .y f y w yT T T     (51) 
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Combining the Eqs. (50) and (51), can be shown that 
 

                                
,

2
,

1

1

f y

y

T

T
     (52) 

 

                                

2

,

2
,

1

w y

y

T

T
     (53) 

 

therefore, the total temperature change must be then of the order 

 

                             
2

, .1y f yT T     (54) 

 

From Eq. (52) and (53) we can obtain interesting asymptotic relevant limits, which dictate 

the different physical regimes of the conjugate heat transfer process. Basically, for electro-

osmotic flows, typical limits for the dimensionless parameters are 
2 2 21, 1, 1 all with 1.  For values of 2 1 , from Eqs. (52) and (53) 

we obtain 
 

                        
, ,

2
; ,1

f y w y

y y

T T

T T
    (55)

    

from Eq. (55), the transverse temperature drop in the fluid is small of order of 2 at most, 

and the transverse temperature variations in the microchannel wall is of order of the total 

temperature drop. For values of 2 1, we obtain from the same order relationships 
 

                          
, ,

; ,
1 1

2 2
f y w y

y y

T T

T T
    (56) 

 

in the above equation, the transverse temperature variations in the wall as well as in the fluid, 

compared with the total temperature drop, are of the same order. Finally, for values of 
2 1 , we obtain  

 

                         
2

, ,
; ,1

f y w y

y y

T T

T T
    (57) 

 

for the Eq. (57) the transverse temperature drop in the fluid is of the same order that the total 

temperature drop and the transverse temperature variations in the microchannel wall 

compared with total temperature drop yT  are very small, of order 
2

 at most. 

 

2.6 Asymptotic solution for the temperature fields 
 

In this section, we propose the next regular expansions series, in powers of , for the 

dimensionless temperatures of the fluid and microchannel wall, respectively 
 

                               0 1 , ...,f f fT T X T X Y     (58) 
 

and 
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                             0 1, , ...,w w wT T X Z T X Z     (59) 
 

where we have assumed that the temperature in the fluid is function of X  in a first 

approximation, by the reason mentioned in Eq. (49), and the temperature in the wall depends 

on X  and Z. The Eqs. (58) and (59) are introduced in the energy equations, first to the 

microchannel wall 
 

                       
0 1

2 2

2 2

... 0,w wT T

Z Z    

 (60) 

 

with the following boundary conditions 
 

2
0 1:, 1 ... ,w wT T

X Z
Z Z
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        0 1 0 1, 0 , 1
... ... ,

w w f fX Z X Y
T T T T

   

(62) 

 

and for the fluid 
 

               

2 2 2
0 1 0 1 12

2 2 2
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f f f f fT T T T T
PeU

X X X X Y
    (63) 

 

the Eq. (63) has to be solved with the boundary conditions 
 

            

0 10, : ... 0,f fX Y T T     (64) 
 

          

0 1
1, : ... 0,

f fT T
X Y

X X
    (65) 

 

            

0 1
, 0 : ... 0.

f fT T
X Y

Y Y
    (66) 

 

In addition to the boundary conditions given by Eqs. (62) and (64-66), we need the 

compatibility condition at the internal surface of the microchannel wall given by the 

continuity heat flux; in terms of the expansions (58) and (59), we have that 
 

                   

0 10 1

2

, 0 , 1

... ... .
f fw w

X Z X Y

T TT T

Z Z Y Y
   (67) 

 

As consequence of Eq. (49) we can integrate the energy equation for the fluid, Eq. (63), in 

the transverse direction and apply the appropriate boundary conditions from Eqs. (61-62) and 

(64-67). After collecting terms of the same power of , we obtain up to zeroth-order terms, 

the following equation 
 

                 

2

0 00
1 2

2: 1,
f f

TT
O Pe k

X X       

 (68) 

 

where 
1

1 0
; , , .

Y

Y
k U n dY  

The general solution for the Eq. (68), after applying the boundary conditions, is given by 
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1

0 2
11

1

.

1 exp 1 exp
1

f

k Pek Pe
X

X
T X

k Pek Pe    

(69) 

 

Similarly, up to terms of order 0 , the solution for the energy equation in the solid wall, 

Eq. (60), after applying the corresponding boundary conditions, is written as 
 

            

2

0 0, .w fT X Z Z T X     (70) 

 

On the other hand, the reduced Nusselt number for this problem can be written as 
 

               

,
,Nu

,

f

x y H

f w av

T
H

y

T x y H T
    (71) 

 

where w avT  is the average value of the microchannel wall temperature at a given section. In 

terms of dimensionless variables, Eq. (71) transforms to 
 

            

0

0 0

, 1
,Nu

f

f w av

X Y

T

Y

T T
    (72) 

 

in Eq. (72), 0w avT  is the dimensionless mean microchannel wall temperature defined by  
 

        

1

0

0
0 1

0

,

,w

w av

T X Z dZ

T

dZ

    (73) 

 

and  0
, 1

f
X Y

T Y  is given by Eq. (67). Substituting the corresponding variables into Eq. 

(72), we obtain 
 

                   

2

2
Nu .      (74) 

 

2.7 Dimensionless second law analysis  
 

2.7.1 Local entropy generation 

By introducing the next dimensionless variable, (Ibáñez and Cuevas, 2010) in the second 

law analysis 
 

                 
2

,
S

G

f

S
N

k H      (75) 

 

we have in dimensionless terms, the local entropy generation rate also called dimensionless 

entropy generation number, for heat conduction, viscous dissipation and Joule heating in the 

fluid region, from Eqs. (16-18) and using the appropriate dimensionless variables from Eqs. 

(20-25), we have respectively  
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S j fluid
f

N
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                 ,S S S Sfluid cond fluid f fluid j fluid
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and for heat conduction in the solid region, from Eq. (19) 
 

         

2 2

2

2 2
,

1

w w
S Ssolid cond solid

w

T T
N N

X ZT
  (80) 

 

where 0cT T  is the dimensionless temperature difference, (Mahmud and Fraser, 2006). 

Now, by appropriated substitution of the Eqs. (38), (69) and (70) in Eqs. (76-77) and (80), we 

have the next expressions in first approximation to the entropy generation 
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1 0
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2 2 22

1
2 2

1

.
1

exp 1 1
1

S cond solid

w

k PeN X
k PeT

 (83) 

 

2.7.2 Fluid friction and heat transfer irreversibility 

The entropy is generated in a process or system due to presence of irreversibility; in a 

convection problem both fluid friction and heat transfer contribute to the rate of entropy 

generation. To analyze the relative dominance of entropy generation contributions, Bejan 

(1996), introduce irreversibility distribution ratio  which is defined by the ratio of entropy 

generation due fluid friction to heat transfer. For this work and for typical values in electro-

osmotic flows  can be written as, (Abbassi, 2007) 
 

                          1.
S f fluid

S S Scond fluid j fluid cond solid

N

N N N    (84) 

 

Paolleti et al. (1989), proposes the irreversibility distribution ratio in different way and 

introduce the Bejan number Be, defined and evaluated for this work as 
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                                    ,
1

1
1

Be      (85) 

 

then for this work, the entropy generation is dominated by heat transfer process in the 

microchannel system. 
 

2.7.3 Global entropy generation 

In order to facilitate the comparison between the results and for better insight to the effect 

of dimensionless parameters under investigation, the volumetric averaged or global entropy 

generation rate can be evaluated using the following expression 
 

                                  ,
1

S S
N N d      (86) 

 

where  represent the volume of the microchannel. The Eq. (86) is transformed to the fluid 

and solid region as 
 

                         
.

1 1

f s
s

sS S Sffluid solid
f

N N d N d
   (87) 

 

From the Eq. (87) and with help the Eqs. (78) and (81-83) we obtain  
 

            

1 1

0 0

,
1

f

S S S S Sffluid fluid cond fluid f fluid j fluid
f

N N d N N N dXdY  (88) 

 

      

1 1

0 0

,
1

s
s

sS S Ssolid solid cond solid
N N d N dXdZ    (89) 

 

taking each term from the above equations, the volumetric average entropy for the fluid region 

is 
 

      

1 1 1

0 0 0

2

1

1 0

1
exp 1 1 ,

1
S cond fluid

f

k Pe
N dXdY X dX

k Pe T X   (90) 

 

         
1 1 1 1

0 0 0 0

1
sinh

Pr ,
cosh 1

n nn

S f fluid
f

Y
N dXdY Ec dXdY

n T X   (91) 

 

                

1 1 1

0 0 0

,
1

S j fluid
f

N dXdY dX
T X    (92) 

 

and finally for the solid region 
 

             
1 1 1

0 0 0

2 2 2

1
2

1

2

0 02

1
exp 1 1

,
1 1 1

1
S cond solid

f f

k Pe X
k Pe

N dXdY dX

T X T X
 (93) 
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2.8 Numerical Solution 
 

The mathematical model was solved by a conventional numerical scheme with central 

finite differences. The energy equations for the fluid and solid wall were solved by an iterative 

process. Firstly, we solved the temperature in the solid wall with the corresponding boundary 

conditions, guessing an arbitrary specified temperature at the internal surface in order to 

initialize the process. Consequently, a temperature field is obtained in the microchannel wall, 

from which a temperature gradient at the internal solid-liquid interface is obtained. This 

temperature gradient can be used as a boundary condition into Eq. (31), in order to solve the 

energy equation in the fluid. In this manner, a temperature field in the fluid is obtained. Once 

that the solid and fluid regions are solved, we compare the interfacial temperature 

, 1fT X Y  and , 0wT X Z , such that the condition 5, 1 , 0 10wfT X Y T X Z  is 

fulfilled. The equations in the section 2.4 were solved numerically for different values of the 

involved dimensionless parameters ,n ,Pe , ,  and . For numerical calculations, in the 

fluid, we obtain good results using a grid size of 0.005X , 0.005Y , with 200M  

nodes in the transversal direction Y  and 200N  nodes in the longitudinal direction X  for 

the fluid. Similarly, in the solid microchannel wall, we use a grid size 200M  nodes in the 

transversal direction Z  and 200N  nodes in the longitudinal direction X . The resulting 

system of linear equations is represented by a matrix of order NxM  for each region, which 

was solved by using the iterative method Successive-Over-Relaxation (Hoffman, 2001), with 

a tolerance of 10
-8

. The velocity profiles in the Eq. (38) were solved by Zhao et al, (2008) and 

introduced for the solution in this work. In order to obtain the numerical results for the Nusselt 

number, the Eq. (72) also was discretized. To solve the local entropy generation, we used of 

approximated results to the temperature profiles from Eqs. (69) and (70); finally the global 

energy generation was obtained with a conventional numeric integration.  

 

3 RESULTS AND DISCUSSIONS 

 

For the numerical and analytical calculations in this work, typical transport properties and 

geometrical parameters listed in Table 1 were used (Steffen and Friedhelm, 2007; Das and 

Chakraborty, 2006; Masliyah and Bhattacharjee, 2006; Zhao et al., 2008; Tang et al., 2009, 

2004b, 2007). 

 
Parameter Value Unit Parameter Value Unit 

H  10-5-10-4 (m)  103 (kg/m3) 

w
H  10-5-10-4 (m) 0T  298 (K) 

L
 10-2-10-1 (m)  ≤10-2  (V) 

n  0.1 1.5  (-) x
E  104 -105 (V/m) 

m  10-3 -10-2 (Pa∙sn)  10-10  (C/V∙m) 

pfC  3760 (J/kg∙K)  106 -107 (m-1) 

f
k  0.6-0.7 (W/m∙K)  10-4 -10-2 (S/m) 

w
k  0.15-1.38 (W/m∙K) c

u  10-4 -10-3 (m/s) 

 

Table 1: Material transport properties and geometrical parameters used for estimating  

dimensionless parameters from the present analysis. 
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Figure 2 (a, b and c), show the dimensionless velocity distributions for different values of 

the fluid behavior index, ( 0.33, 0.5, 0.8,1,1.2,1.5)n , while keeping 10, 50, 100 , 

respectively. Dimensionless velocity was obtained using the generalized Smoluchowski 

velocity cu  
for power-law fluids. It can be seen that the irrespective of the value of the fluid 

behavior index, the velocity near the center of the microchannel approaches the generalized 

Smoluchowski velocity; so, the velocity profiles becomes more plug-like as the fluid behavior 

index decreases and also as the electrokinetic parameter increases. For 1n , the Newtonian 

case is recovered. So, it can be seen, that for values of 1n  (pseudoplastic liquids) the 

velocity profile tends to increase in the flow direction upper Newtonian case 1n , while the 

electro-osmotic effect is clearly marked having the larger values of velocity near of the 

microchannel wall, because this kind of fluids has smaller wall dynamic viscosity (Zhao et al., 

2008). For values of 1n  (dilatants liquids) the velocity profile tends to decrease in the flow 

direction below Newtonian case, while the electro-osmotic effect is less in the wall, having 

the smaller values of velocity near of the microchannel wall, because this kind of fluids has 

higher wall dynamic viscosity, having a less influence of the external electric field (Zhao, et 

al., 2008). The influence of the electrokinetic parameter  is clear in this figures, for small 

values of ( 10)  indicates a big size of the electric double layer with respect to the size of 

microchannel (tending to overlap of electric double layers) and therefore a low influence for 

the external electric field near of the microchannel wall, leaving a parabolic pattern in the 

velocity profiles of the fluid flow. On the other hand, for values of ( 10)  indicates a small 

size of the electric double layer respect to the size of microchannel and therefore a high 

influence for the external electric field near of the microchannel wall; leaving a plug–like 

pattern in the velocity profiles of the fluid flow. 

Figure 3 compares the behavior of the numerical solution for the temperature profile in the 

fluid region with the asymptotic solution given by Eq. (69). Results are plotted along the 

dimensionless length of microchannel, for values of  Y(=0, 0.5, 1) and n(=0.5).  For this set of 

parameters, a good accordance between both solutions is obtained. Also, it can be appreciated 

that the temperature changes are more important in the longitudinal direction than in the 

transversal direction, as established by Eq. (49). 

Once validated the numerical solution with the asymptotic solution in the conjugated heat 

transfer problem, Figure 4-Figure 7 plots the numerical results for the transversal temperature 

profiles of the fluid and solid regions in the microchannel. Figure 4 shows the spatial 

development of the Joule heating induced to the fluid and the wall temperature profiles in the 

microchannel, along the transversal direction in the middle axial position for different values 

of ( 0.33, 0.5, 0.8,1,1.2,1.5)n . The temperature distributions in the fluid region exhibit a 

parabolic-like pattern while the solid wall exhibits a linear behavior (Tang, 2004b). The 

highest temperature occurs at the microchannel centerline, therefore, it is clear that the heat 

generated by Joule heating in the fluid is transferred from the central region to the wall by 

convection and conduction, then is dissipated through the microchannel wall by conduction, 

and finally is transferred to the surroundings by effect of 0q . It can be seen that for increasing 

values of the fluid behavior index the velocity profiles decrease, causing a reduction of 

convective heat transfer effect and also an increment of the temperature profiles. 
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Figure 2: Dimensionless velocity distributions for different values of the fluid behavior index, n, while keeping 

a) 10,  (adapted Zhao et al., 2008), b) 50  and c) 100.  
 

Figure 5 shows the evolution of the temperature profiles for different values of Peclet 

number; when Pe decreases, the convection effect decreases also, therefore the temperature 

increases significantly. So, the Pe number is an indicator of the convection velocity in the 

system. The effect of the fluid behavior index 1n  and 1n  is the same in Figure 4. 

Figure 6 depicts the temperature profiles across transversal direction of microchannel in the 

middle axial length for the fluid and solid region, for (=1, 0.75, 0.5) and  n (=0.5, 1.5). In 

all cases, the value of 0q  is considered as a constant extraction of heat from the channel walls. 

The important temperature changes in electro-osmotic flow, may be attributed to the 

combined mechanism of Joule heating and heat transfer to the walls. For the cases studied in 

Figure 6, the Joule heating is the dominant mechanism responsible of temperature increments 

within the system. In general, as Joule heating increases, the transversal temperature also 

tends to increases. So, for the different temperature profiles shown in Figure 6 it can be 

observed that the lower the value of  the higher the temperature at a given axial location of 

the microchannel, (Das and Chakraborty, 2006).  
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Figure 3: Comparison of the numerical and analytical 

solution to the temperature profiles in the fluid, along 

axial direction, for different values of the transversal 

position, while keeping 0.5.n  
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Figure 4: Dimensionless temperature profile as a 

function of dimensionless transversal coordinate  

in the fluid and solid region, at X=0.5 for different 

values of the flow consistency index, n . 
 

Figure 7 shows the dimensionless temperature profiles on a transversal section in the 

microchannel for different values of 2 25, 2.5, 0.25 ,  and 0.5, 1.5n . This figure 

shows that for decreasing values of the parameter 2  there is an increase of temperature 

gradients through the wall of the microchannel; these numerical predictions, are in accordance 

with the order of magnitude analysis given in section 2.5. For example, 
2 25, corresponds to the limit of the Eq. (57), where prevails 

,
1

f y y
T T  and 

,

2
w y y

T T . 2 2.5,  corresponds to the limit of the Eq. (56); finally, to 

2 0.25, corresponds to the limit of the Eq. (55). Therefore, for the parameters shown and 

decreasing values of the 2 , heat dissipation is slower through the wall of the 

microchannel, causing significant temperature gradients due to the variation of thermal 

conductivity and geometry of the wall of the microchannel. 

In Figure 8 and Figure 9 the dimensionless entropy generation number for the fluid and 

solid region is plotted, respectively, as a function of dimensionless longitudinal coordinate for 

different fluid behavior index ( 0.33, 0.5, 0.8,1,1.2,1.5)n . For all cases, the entropy 

generation decreases toward exit of the microchannel as consequence of the temperature 

increase in this direction. The entropy generation in the transversal direction is negligible for 

any value on the index n, compared to the entropy generation changes in the longitudinal 

direction; therefore, inside the fluid or solid regions in the microchannel, the entropy 

generation rate is of the same order of magnitude for all values of n.  

Figure 10 shows the influence of the electrokinetic parameter  on the dimensionless 

entropy generation number in the microchannel as a function of the longitudinal coordinate. 

The entropy generation decreases towards the exit of the microchannel for all values of . 
The main effect of the electrokinetic parameter on the entropy generation is on its transversal 

distribution. For decreasing values of , the entropy generation decreased as a result of the 

temperature profile and convective heat transfer decrease in the system. For higher values of 

50  the S
N  changes are negligible. The magnitude of the dimensionless entropy 

generation number is higher in the fluid region than in the solid one for two reasons. First, the 

wall thickness is smaller than height of the microchannel, so the fluid region has the largest 

volume in the microchannel system, and consequently the most important changes in entropy; 
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and second, because of the significant difference between thermal conductivities of the solid 

and fluid regions.  

In Figure 11, the entropy generation number is presented as a function of the longitudinal 

coordinate for different values of Peclet number, ( 0.1, 0.25, 0.5,1, 2.5)Pe . The entropy 

generation decreases towards the exit of the microchannel for all values of Pe, as temperature 

increases along the axial coordinate. Being Pe a convective heat transfer parameter, when it 

value tends to increase, the longitudinal temperature drops significantly in the microchannel, 

leading to an increase of entropy generation in the fluid region. In the case of the 

microchannel wall, the entropy generation is higher near the X=0 position, because it is the 

zone of lower temperature along the wall of the microchannel and of the whole system. 

 
 

 

Figure 5: Dimensionless temperature profile as a 

function of dimensionless transversal coordinate  

in the fluid and solid region, for different values  

of the Peclet number, Pe , and 0.5, 1.5 .n  

 
Figure 7: Dimensionless temperature profile as a 

function of dimensionless transversal coordinate 

 in the fluid and solid region, for different values of 

parameter,
2

, and 0.5, 1.5 .n  

 

 

Figure 6: Dimensionless temperature profile as a 

function of dimensionless transversal coordinate 

 in the fluid and solid region, for different values 

of the normalized power generation term, , and 

0.5, 1.5 .n   
 

Figure 8: Entropy generation number for the fluid 

region as a function of dimensionless axial coordinate, 

for different values of index .n  
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Figure 9: Entropy generation number for the solid 

region as a function of dimensionless axial coordinate, 

for different values of index .n  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

Figure 10: Entropy generation number for the 

microchannel as a function of dimensionless axial 

coordinate, for different values of electrokinetic 

parameter .  

Figure 12 shows the entropy generation number as a function of the axial coordinate for 

different values of parameter ( 0.5,0.75,1) . The entropy generation decreases towards exit 

of the microchannel for any value of , as temperature increases along the axial coordinate. 

When increasing , the longitudinal microchannel temperature drops significantly, leaving an 

increase of entropy generation in the fluid region, dictated by Eqs. (78) and (81-82).  

In general Figure 13 and Figure 14 show the entropy generation number as a function of the 

axial coordinate for different values of the parameters, 2 ( 25, 2.5, 0.25)  and 

( 0.01, 0.001, 0.0001) , respectively. The entropy generation decreases towards the exit of 

the microchannel for any values of 2  and , as temperature increases along the axial 

coordinate. In Figure 13, the magnitude of entropy generation for any value of 2  in the 

fluid region is the same. In the solid region the effect of the thermal properties of the material 

and geometry of the microchannel wall is very important. For decreasing values of 2  the 

temperature of the wall of the microchannel decreases significantly increasing the entropy 

generation. In Figure 14, the magnitude of the entropy generation is strongly linked to the 

characteristic temperature variation in the system; so, with large changes in temperature 

(increasing values of parameter ), higher values of entropy generation rates are obtained, 

dictated by Eqs. (78) and (81-83).  

In this context, the irreversibility ratio is plotted as a function of axial coordinate in Figure 

15 for different values of ( 0, 0.5,1)Y . For the group of dimensionless parameters shown, it 

is observed a negligible contribution by viscous dissipation to the entropy generation in the 

system. The highest local generation entropy by viscous dissipation is at the microchannel 

inner interface. Figure 16 shows the Bejan number as a function of axial coordinate, for 

different values of Peclet number, ( 1, 0.5, 0.25, 0.1)Pe . For any case, the entropy generation 

by viscous dissipation is negligible, so that, the second law analysis for this problem is 

dominated by the heat transfer process. Figure 17 shows the average entropy generation as a 

function of behavior index n , for different values of ( 0.5, 0.75, 1) . It is clearly seen that 

the entropy generation is less dependent on flow behavior index, n , but strongly dependent on 

the power generation parameter, increasing the SN  value as increases. 
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Figure 11: Entropy generation number for the 

microchannel as a function of dimensionless axial 

coordinate, for different values of Peclet number, .Pe  

 

Figure 13: Entropy generation number for the 

microchannel as a function of dimensionless axial 

coordinate, for different values of parameter, 
2 .  

 

 

Figure 12: Entropy generation number for the 

microchannel as a function of dimensionless axial 

coordinate, for different values of parameter, .  

 
Figure 14: Entropy generation number for the 

microchannel as a function of dimensionless axial 

coordinate, for different values of parameter, .  
  

Complementary, Table 2 and Table 3 show the comparison between the numerical and 

asymptotic solutions for the reduced Nusselt number, evaluated for different longitudinal 

positions X and for different values of the dimensionless presented parameters. Table 2 shows 

the independence of the Nusselt number with the dimensionless parameters ,n , Pe  and , 

as indicated by Eq. (74), and dependence only on the parameter 2  (see also Table 3). 

 

4 CONCLUSIONS 
 

For any heat transfer and fluid flow process the entropy generation is associated with 

thermodynamic irreversibility. The present work we studied the local and global entropy 

generation of electro-osmotic flow in a parallel flat plate microchannel. The local entropy 

generation is greater in the region of the fluid than in the wall of microchannel, being higher 

the entropy generation contribution by Joule heating and negligible by viscous dissipation. In 

general the entropy generation in this work is dominated by heat transfer process, dictated by 

the value of Bejan number. There is a strong dependence of the entropy generation rate with 

the Peclet number, the power generation term, the conjugation term and the characteristic 

temperature difference; but a weak dependence with any flow behavior index and large values 

of electrokinetic parameter. The present investigation contributes towards the understanding 

of the different interconnected transport mechanisms in the design of microfluidic systems. 
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Figure 15: Irreversibility distribution ratio as a function 

of dimensionless axial coordinate, for different values 

of transversal coordinate, .Y  

 
 

 

Figure 16: Bejan number as a function of 

dimensionless axial coordinate, for different  

values of Peclet number, .Pe
 

  

 

 

 

 

 

 

 

 
 

 

 
Figure 17: Average entropy generation number as a function  

of fluid index, for different values of parameter, . 
 

 Nu
N

 
 

NuA  

X  0.5n  1.5n  10  100  0.5Pe  1Pe  0.75  1.0    

0.1 49.8343 49.8329 49.8343 49.8343 49.8329 49.8342 49.8343 49.8648  50 

0.5 49.8387 49.8373 49.8387 49.8387 49.8373 49.8386 49.8387 49.8658  50 
1.0 51.2909 51.4564 51.5045 51.2909 51.4564 51.5257 51.2909 49.8683  50 

 

Table 2: Reduced Nusselt number, evaluated at different axial positions and for different values of dimensionless 

parameters, and 
2 25 . The subscript A refers to asymptotic solution and subscript N  

denotes numerical solution. 

 

 5 2, 252.5 10x
  

6 2, 2.52.5 10x
  

5 2, 0.252.5 10x
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N
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N
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Nu
N

 NuA  

0.1 49.8343 50  4.9832 5  0.4983 0.5 

0.5 49.8387 50  4.9833 5  0.4983 0.5 

1.0 51.2909 50  5.0072 5  0.5128 0.5 

 

Table 3: Reduced Nusselt number, evaluated at different axial positions and for three values of 
2 25,2.5,0.25  with 50, 0.5, 0.5n Pe  and 0.75 . The subscript A refers to asymptotic 

solution and subscript N denotes numerical solution. 
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6 NOMENCLATURE 
 

Be  Bejan number 

p
C  specific heat [J/kg∙K] 

Ec  modified Eckert number 

xE  electric field  [V/m] 

H  half of microchannel [m] 

wH  wall thickness of the microchannel [m] 

k  thermal conductivity [W/m∙K] 

L  length of microchannel [m] 

m  flow consistency index [Pa∙s
n
] 

n  flow behavior index  

Nu Nusselt number 

SN  local entropy generation rate 

S
N  volumetric average entropy generation rate 

Pe  Peclet number  

Pr  Prandtl number  

0
q  heat flux at the wall in the region 0 x L  [W/m

2
] 

G
S  local volumetric entropy [W/m

3
∙K] 

T  temperature [K] 

0
T  microchannel inlet temperature [K] 

T  dimensionless temperature 

u  fluid axial velocity [m/s] 

U  dimensionless fluid axial velocity 

c
u  generalized Smoluchowski velocity for power law fluids [m/s] 

x  axial coordinate [m] 

X  dimensionless axial coordinate 
y  transversal coordinate [m] 

Y  dimensionless transversal coordinate in the fluid region 

Z  dimensionless transversal coordinate in the solid wall 

 

Greek symbols 

 conjugation term 

 aspect ratio of the fluid region 

cT  characteristic temperature change 

 dielectric constant [C/V∙m] 

 aspect ratio of the solid region  

 zeta potential in the shear plane of the electric double layer [V] 

 inverse Debye length [m
-1

] 

1
 Debye length [m] 

 electrokinetic parameter 

 ratio of heat flux from the external wall to the Joule heating 

 fluid density [kg/m
3
] 
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e
 net charge density [C/m

3
] 

 electrical conductivity of the fluid [S/m] 

yx  shear stress [N/m
2
] 

 irreversibility distribution ratio  

 dimensionless temperature difference 

Subscripts  

f  fluid 

w  wall  
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